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Abstract. Epidemiological models concerned with the control of malaria using
interventions such as bed nets and vaccines increasingly incorporate realistic aspects of
malaria biology. The increasing complexity of these models limits their ability to abstract
ecological processes and to address questions on the regulation of population dynamics using
time-series data, particularly in regards to interactions between different pathogens and the
regulatory role of innate (bottom-up) and acquired (top-down) immunity. We use a theoretical
framework to test hypotheses on the importance of population-level immunity and parasite
abundance in regulating the population dynamics of malaria. We use qualitative loop analyses
to examine the sign of the interaction between Plasmodium falciparum and P. vivax at the
population level, and we discuss implications of this sign for the within-host regulation of
parasites. Our analyses of monthly malaria time-series data from the island of Espirito Santo,
Vanuatu (1983–1997), show that the dynamics of P. falciparum are not sensitive to P. vivax,
whereas infections by the latter increase in response to those of the former. These results
support a differential use of resources inside the hosts, a resource–consumer interaction
between hosts and their immune system, and within-host regulation of parasites. Finally, our
results emphasize the need to better understand factors regulating malaria dynamics before
developing control strategies and call for the use of control strategies directed at the
interruption of transmission, such as vector control and the use of bed nets.

Key words: bed nets; cross-immunity; loop analysis; malaria time series; parasite interactions;
Plasmodium falciparum; Plasmodium vivax; population regulation.

INTRODUCTION

Malaria, one of the most devastating infectious

diseases in humans, is widely distributed across the

tropics. Infections can be caused by four different

parasite species: Plasmodium vivax, P. ovale, P. malariae,

and P. falciparum. In most malaria endemic regions, two

or more parasite species co-occur (e.g., Cohen 1973), as

well as several strains of any given species (e.g., Färnert

et al. 1997). This diversity poses a challenge to our

understanding of the population dynamics of the

disease, and several scenarios have been proposed to

understand how the infection by one parasite species or

strain determines the fate of an infection by another.

Classical views on the problem considered patterns of

malaria infection to be determined by the action of

climatic forces (Gill 1928, 1938). The development of

ecological theory for competition (e.g., Gause 1934,

Vandermeer 1969), in addition to a growing body of

knowledge on the human immune system, led to the

proposal of parasite cross-immunity (also known as

heterologous immunity) as a force regulating infection

by closely related malaria parasites (Cohen 1973). A

major emphasis was placed on the specific (a.k.a.,

adaptive) immune response (Kuby 1997), which recog-

nizes and neutralizes specific pathogens through the

response to parasite specific signals or antigens and the

selection of T and B cells, also generating a memory that

allows to quickly target pathogen-motifs following a

reinfection. This within-host mechanism implies a top-

down regulation in co-infections because it leads to

competition for susceptibles in the process of transmis-

sion between hosts. The interaction between parasites in

this case is negative (see Fig. 1).

The existence of cross-immunity predicts fewer cross-

infections than expected by chance. Following Cohen

(1973), several authors supported the existence of cross-

specific immunity by analyzing cross-sectional studies

and finding the number of cross-infections to be less

than random (Richie 1988, McKenzie and Bossert 1997,

Smith et al. 2001). This idea also underlies more

dynamical approaches to the subject of malaria immu-
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nity and the role of multiple strains of a given parasite

species (Gupta and Day 1994a, b). However, as pointed

out by Molineaux et al. (1980), Cohen’s (1973) method

requires high quality data and assumes that all

individuals in a population manage infections in the

same way. Molineaux et al. (1980) found the number of

cross-infections to be higher than expected at random, a

pattern that does not rule out cross-immunity, but can

arise when some individuals in a population do not raise

a proper immune response against the parasites. With

the advent of molecular techniques, the pattern de-

scribed by Molineaux et al. (1980) was shown to be more

common than originally suspected, both at the intra-

specific (Färnert et al. 1997, Felger et al. 1999, Smith et

al. 1999) and interspecific level (Mehlotra et al. 2000,

Bruce et al. 2000, Mayxay et al. 2004).

Advances in immunology also showed that immune

responses can act through nonspecific or innate

mechanisms that do not generate memory cells (Kuby

1997). Before the discovery of nonspecific immunity,

dynamic transmission models for malaria developed in

the context of the Garki project included hosts whose

response to infection differed, closely resembling differ-

ences that could arise from innate vs. acquired

immunity (Dietz et al. 1974). The Garki project was a

large scale intervention in Nigerian villages to test

several malaria control measures ranging from vector

control with insecticides to drug based malaria chemo-

prophylaxis. The effectiveness of different control

measures was evaluated using a combination of ento-

mological, immunological, parasitological and demo-

graphic data (Molineaux and Gramiccia 1980). A

mathematical transmission model developed as part of

the Garki project assumed some hosts develop tempo-

rary immunity to re-infection, as expected under

acquired immunity, while others can be readily infected

after clearing their parasites, akin to innate immunity

(Dietz et al. 1974). Analysis of the course of individual

infections from malariotherapy studies (Molineaux et

al. 2002) strongly supported individual heterogeneity in

immune responses, with no evidence for cross-specific

immunity at the population level.

Nonspecific innate immunity implies a bottom-up

regulation mechanism for co-infections, in the sense that

hosts can be seen as a self-regulating resource for the

parasites (who act as consumers) through the action of

the immune system (see Fig. 1). We can also consider

that hosts ‘‘feed’’ their immune system when infected at

a cost for immunity, which would result in a positive

interaction among parasites. The model by Dietz et al.

(1974) captured this diversity of mechanisms by

subdividing the population according to the handling

of infection and the development of immunity across

different hosts. This model has been the most successful

approximation to malaria dynamics in the populations

of the Garki project (Nedelman 1984, 1985, Struchiner

et al. 1989). However, epidemiological data on which the

model was based are unique in the level of detail.

Importantly, the model does not consider the possible

effects of environmental forcing on malaria dynamics,

whereas recent work has demonstrated that transmission

varies with both temperature and rainfall (e.g., Pascual

et al. 2008).

As knowledge of intra-host dynamics increase, it is

becoming clear that innate immunity can play a key role

in the control of malaria infections. Although several

models have considered these new findings explicitly

(McKenzie and Bossert 2005, Gurarie et al. 2006, Filipe

et al. 2007), the question of regulation of parasitic

infections has not been addressed using a population-

level time-series approach. Here, we propose a time-

series modeling approach based on conceptual ideas

from population dynamics (Sinclair 1989, Royama 1992,

Berryman et al. 2002) that allow us to combine the

FIG. 1. Feedback loops for top-down and bottom-up regulation of multispecies malaria infections. Negative effects are
indicated by small circles, positive effects by arrows, and unknown effects by dotted lines. H represents the hosts, I stands for
immunity, and PF and PV represent Plasmodium falciparum and P. vivax, respectively. Immunity is always costly, so under both
mechanisms there is a negative effect of I on H, and parasites exploit hosts. (A) Under top-down regulation the interaction of hosts
and their immune systems is negative both ways: the interaction of hosts with the parasites determines their immune response, and
immunity regulates the hosts available for the parasites at the population level. This corresponds to a mechanism where immunity is
regulated by the influx of susceptibles. Therefore, each parasitic infection has a negative effect on the other (B). (C) Under a
bottom-up regulation, the hosts feed their immune system when parasitized, since they canalize the information about the infection,
resulting in a positive interaction among parasites (D) and the self-regulation of each species. Panels (B) and (D) were obtained
through loop analysis (see Puccia and Levins [1985] for details on the technique).
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statistical framework of seasonal autoregressive models

with mechanistic elements of a simple transmission

model. Our model directly incorporates climate forcing

and considers the fraction of parasite-free individuals in

the population as a limiting resource. This model is used

to test three main mechanisms (randomness, top-down

or bottom-up regulation) for parasite coexistence in a

population of hosts. Specifically, we ask whether models

that assume a negative parasite interaction via cross-

immunity, a positive parasite interaction via innate

immunity, or no immune-mediated interaction provide a

better fit to patterns observed for two malaria species,

Plasmodium vivax and P. falciparum, in a Pacific Island.

METHODS

Loop analysis for qualitative understanding

of species interactions

Interactions among species can be studied through

analysis of a community matrix that describes the

interactions of members around an equilibrium (Levins

1968, 1974). To apply loop analysis, the first step is to

define interactions among the system’s components. For

the multispecies malaria systems described in Fig. 1, the

components are PV (Plasmodium vivax), PF (P.

falciparum), H (hosts), and I (immunity). Let /ij denote

the qualitative effect of i on j represented by a negative

or positive sign corresponding respectively to a decrease

or an increase in j when i increases. Then, all interactions

can be represented in a community matrix as follows:

/ ¼

/HH /IH /PFH /PVH

/HI /II /PFI /PVI

/HPF /IPF /PFPF /PVPF

/HPV /IPV /PFPV /PVPV

0
BB@

1
CCA: ð1Þ

Assuming that hosts self-regulate (e.g., Cohen 1995),

/HH is negative. By definition, it also follows that /PFH

and /PVH are negative and that /HPF and /HPV are

positive, since parasites exploit hosts. Because hosts

attack their parasites through immunity, we assume that

/IPF and /IPV are negative. We also assume that

immunity is costly to hosts and /IH is negative, since

resources that can be allocated to grow or reproduction

are instead allocated to build up the immune response

(e.g., Cannon 1958, Mardsen 1964). At the population

level, the effect of host abundance on immunity levels

has been typically modeled as negative (e.g., Finkestädt

and Grenfell 2000) by assuming that the influx of

susceptible hosts regulates population-level immunity;

thus /HI is negative. From these considerations (sum-

marized in Fig. 1A), the matrix of signs, /, becomes

/ ¼

� � � �
� 0 0 0

þ � 0 0

þ � 0 0

0
BB@

1
CCA: ð2Þ

On the other hand, we could assume that immunity is

canalized through the host itself when infected (Schmal-

hausen 1949, Matzinger 1994). We can then hypothesize

that hosts ‘‘feed’’ their immunity leading to a positive

value for /HI. In this view (summarized in Fig. 1C), / is

given by

/ ¼

� � � �
þ 0 0 0

þ � 0 0

þ � 0 0

0
BB@

1
CCA: ð3Þ

Once the community matrix is defined, the next step is to

compute the community effect matrix, which is the

negative inverse of the community matrix, i.e,�/�1. The
community effect matrix shows the direction of change

in abundance of the community members following a

small perturbation, where indirect effects can also be

considered (for formal derivations and extensions see

Levins 1974, Puccia and Levins 1985, Zavaleta and

Rossignol 2004). The community effect matrix for Eqs.

2 and 3 is summarized in graph form in Fig. 1B, D,

which correspond respectively to the analysis of matrices

Eqs. 2 and 3.

MODEL AND THEORETICAL CONSIDERATIONS

Let It represent new malaria cases during a discrete

time step Dt from t � 1 to t, and assume that this

quantity changes according to a per capita growth rate

r(t)¼ ln(It/It�1), which is constant for Dt (Turchin 2003).

The dynamics for new cases can be written as

It ¼ It�1erðtÞ: ð4Þ

To define r(t), we can equate it to the difference

between the rates for recruitment of new infected

individuals (b) and recovery of those already infected

(d), such that r(t)¼ b� d. We can also consider a general

mass action transmission (de Jong 1995) and let b ¼
bS/N, (where b is the transmission rate, N is the total

population size, and S is the susceptible population size).

The susceptible class is given by S ¼ N � I0, where I0 is

defined as the number of parasitemic hosts based on

previous and current cases, I 0t ¼ f(It�i, i � 0). The

parasitemic class (I 0t ) is introduced to allow for a time of

parasite clearance which is longer than the length of the

time step Dt. This class (I 0t ) is also necessary to account

for regulation in the recruitment of new infected

individuals by the number of susceptibles. Finally,

exogenous forcing, exoF(t), can be added within r(t) to

account for effects of extrinsic variables on transmission

(Levins 1969, Lewontin and Cohen 1969). Then, the

growth rate r(t) is defined as follows:

rðtÞ ¼ b� d� b
I 0t�1

Nt�1

þ a exo Ft þ wt ð5Þ

where wt is a normal random variable accounting for

unexplained variation. To simplify the notation in Eq. 5,

we define b0 ¼ b � d, as the difference between the

transmission rate and the recovery rate. The basic model

in discrete time becomes the following:
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It ¼ Ih
t�1 exp b 0 � b

I 0t�1

Nt�1

þ a exo Ft þ wt

� �
ð6Þ

where 0 , h , 1 is included to consider deviations from
mass-action in transmission (Liu et al. 1987). This
exponent can also be interpreted as a density-dependent
factor in the generation of new infections (Hochberg
1991, Fenton et al. 2002), or as an implicit representa-
tion of the effect of spatial and network clustering of the
hosts during the process of infection (Finkenstädt and
Grenfell 2000, Roy and Pascual 2006). Note that by
tracking the growth of new cases, the model explicitly
considers the limiting effect of the number of hosts that
can be infected (i.e., those that are susceptible).

Seasonality.—Classical work on the dynamics of
infectious diseases interprets seasonality as deviations
from a mean annual value that occur every year
approximately after a fixed period (Gill 1928). Here we
modify r(t) to make it a seasonal function:

rðtÞ ¼ rseasðkÞ þ b 0 � b
I 0t�1

Nt�1

þ a exo Ft þ wt ð7Þ

where rseas(k) accounts for the seasonal contribution
during the kth period of any given season. Most models
incorporate seasonal variation in transmission using
fixed seasonalities (e.g., Finkenstädt and Grenfell 2000)
or symmetrical sine and cosine functions (e.g., Kot et al.
1988). This approach can lead to symmetrical cyclical
behavior that lacks the inherent seasonal variability of a
time series, limiting the ability of models to reduce the
variability due to unknown factors (Priestley 1988).
Seasonal autoregressive forms (Shumway and Stoffer
2000) overcome this limitation by letting the value of a
variable x at time t be a function of its previous seasonal
value (t� r). Here, rseas(k) can be defined as a function
of r(t� r). When this function can be linearized (using a
parameter u), rseas(k) becomes

rseasðkÞ ¼ u logðIk�rÞ: ð8Þ

Then the seasonal version of the model in Eq. 3 can be
written as

It ¼ Ih
t�1Iu

t�r exp b 0 � b
I 0t�1

Nt�1

þ a exo Ft þ wt

� �
: ð9Þ

Parasite clearance and immunity.—We consider vari-
ation among individuals in the duration of parasite
clearance (with or without the generation of long lasting
immunity) by introducing a random variable d whose
distribution describes the length of individual parasit-
aemia. We let

I 0t ¼
X‘

i¼0

½1� cmfðiÞ�3 It�i ð10Þ

where cmf is the cumulative mass function of the
random variable d at time i, and It�i is the number of
new cases at time t� i.

Randomness, top-down, and bottom-up mechanisms.—

The model presented in Eq. 6 can be extended to

account for possible interspecific interactions between

two parasites, by introducing a coefficient (b2) for the

second species as follows:

It ¼ Ih
t�1Iu

t�r exp b 0 � b
I 0t�1

Nt�1

6 b2

I 02t�1

Nt�1

þ a exo Ft þ wt

� �

ð11Þ

where b2 represents the effect of the second species on

the per capita growth of the first one, which can be

positive or negative depending on the mechanism of

regulation. Thus, the following possibilities correspond

to the different mechanisms we wish to test for: (1) if the

estimated parameters, b̂ ¼ b̂2 ¼ 0, then random

interactions are supported; (2) if b̂ , 0; b̂2 , 0 (both

coefficients with negative signs) cross-specific immunity

is the most likely mechanism, since the interaction of the

parasites have the signs expected under feedback loops

of top-down regulation (i.e., the effect of the second

species on the focal is negative, see Fig. 1); (3) if b̂ , 0;

b̂2 . 0, (the focal species with a negative coefficient, the

second species with a positive one), nonspecific immu-

nity is at play, since the interactions of the parasites have

the signs expected under feedback loops of bottom-up

regulation (i.e., the effect of the second species on the

first is positive see Fig. 1).

We refer to the dynamical sufficiency (sensu Lewontin

1974) of a given species when there is no significant

effect of the other species on its dynamics. In the specific

case of malaria, this can reflect niche differences in host

resource exploitation since P. falciparum is able to

colonize erythrocytes (red blood cells) of all ages,

whereas P. vivax only colonizes young ones, which

makes it potentially sensitive to the patterns of

exploitation by P. falciparum (McQueen and McKenzie

2006).

Data

Monthly records of malaria in Espirito Santo,

Vanuatu were obtained from people attending govern-

ment health centers (free of charge) who presented with

fever or a recent history of fever, and whose standard

blood slide analysis indicated infection with either

Plasmodium vivax or P. falciparum, from January 1983

to December 1997. Additional data on distributed

insecticide treated nets and population growth were

available for the same period and obtained from the

Malaria and other Vector Borne Diseases Control Unit,

Ministry of Health, Port Vila, Vanuatu (Figs. 2 and 3).

Seasonal patterns for malaria cases are presented in Fig.

2. Data collection was done under the guidance of the

World Health Organization. The Malaria and other

Vector Borne Diseases Control Unit maintained quality

controls on the reporting system and diagnosis reliability

during the studied period. We chose this data set as it is

one of the few high quality long term data sets that track

infection by both P. vivax and P. falciparum.
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To estimate the distribution of the clearance time d we

used the data from P. falciparum malariotherapy for

neurosyphilis patients published by Collins and Jeffery

(1999b), and analyzed by Sama et al. (2006). We

considered the datasets from Georgia and South

Carolina (Fig. 3C, D), as examples of populations with

a minimum use of drugs and some use of drugs,

respectively. Since no similar data are available for P.

vivax we assumed the clearance time distributions to be

the same as for P. falciparum. We used this data set

because, to the best of our knowledge, it is the only

reliable source available to estimate d (Sama et al. 2006).

Our use of these data to estimate d relies on the

assumption that malaria parasite clearance was inde-

pendent of the co-infection with syphilis and that the

values of this parameter can be transferred to a

geographically and historically unrelated population.

For the climate data, we used records from the airport

of Pekoa (Fig. 3D), a close-by island (data available

online).7 Missing data were imputed from a time series

for the political area of Vanuatu (Mitchell et al. 2002).

For the analysis, the temperature series was demeaned.

Because the model includes exogenous forcing by

climatic factors explicitly, the seasonality term of Eq. 8

can account for a series of additional factors that are

seasonal but independent of climate, such as harvest

FIG. 2. Time-series patterns of malaria infection, human population, and temperature. For Plasmodium falciparummalaria, (A)
time series of monthly incidence in Espirito Santo, Vanuatu (1983–1997) and (B) seasonal pattern of incidence based on monthly
averages. For P. vivax malaria, (C) time series of monthly incidence and (D) seasonal pattern of incidence. (E) Population size of
Espirito Santo, Vanuatu based on census data, and (F) average monthly temperature from Pekoa Airport. In panels B and D, the
solid horizontal bar represents the median values, and the box extends from the first quartile to the third quartile; the whiskers
extend to the 5th and 95th percentiles, with outliers shown as open dots.

7 hhttp://weather.noaa.gov/i
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times, migrations for seasonal work or school terms

(Chaves 2007).

Model fitting

Estimation of d and I0.—Unlike Sama et al. (2006),

who used continuous distributions, we fitted a discrete

distribution to clearance time data, given the discrete

nature of the data and the way we computed I0. Negative

binomial distributions maximized the likelihood when

compared with other discrete distributions (e.g., Pois-

son). I0 was obtained with Eq. 10 and the series of I for

each species, with month length based on each calendar

year, the cmf was truncated at the end of a calendar year

(365 days).

Inapparent infections.—We considered the effect of

inapparent infections on the series by multiplying the I0

series by the ratios of reported to unreported cases

published for Espirito Santo, Vanuatu (1992–1994) by

Maitland et al. (1996) of 1:1 in the wet season

(November–May) and 1:4 in the dry season (June–

October) for P. falciparum, and 1:1 in the wet season

and 1:2 in the dry season for P. vivax.

Effect of bed nets.—To account for the effects of bed

nets we considered two possibilities; bed nets either

diminish the size of N, the total host population, or they

decrease I0. In both cases the effects were assumed to be

additive, i.e., Nb ¼ N � (number of bed nets), I 0b ¼ I0 �
(number of bed nets). We assumed the effect of bed nets

was cumulative or transient ( just for the month when

they were delivered). We also computed the percentage

of the population covered with insecticide treated bed

nets for each delivery (Fig. 3B) and assumed the effects

of the bed nets lasted from 1 to 6 months, the life span of

the insecticide Permethrin (Kaneko et al. 1998).

Exogenous forcing.—To find appropriate lags for the

introduction of climatic variables we used the pre-

whitening method. This is a filtering technique based on

Kalman recursions (Durbin and Koopman 2001), whose

outcome is a series of residuals (or innovations) that can

be used to perform cross correlation analysis between

the series used to estimate the coefficients for the filter

and the filtered series, in our case the malaria and

temperature time series respectively (see Chaves and

Pascual 2006 for an example). More specifically, the

FIG. 3. Bed nets and parasite clearance. (A) Monthly number of bed nets distributed in Espirito Santo, Vanuatu, (B) estimated
percentage of people locally covered with each bed net distribution (note that negative values for the percentage of covered people
are artifacts of the kernel computation), (C) long-time parasite clearance of P. falciparum for Georgia patients without anti-
malarial therapy, and (D) short-time parasite clearance for South Carolina patients in the presence of anti-malarial therapy.
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Kalman recursions provide a prediction-correction

method for parameter estimation. For a given time t

the mean value and variability of a state vector are

estimated for a future time tþ k. These estimated values

are updated at time t þ k by using the observation at

such time for future predictions. The differences between

observation and prediction, i.e., residuals or ‘‘innova-

tions,’’ are used to correct the state vector of estimated

parameters (Cazelles and Chau 1997). As a result, the

cross-correlation function is then computed between the

two series but with the intrinsic variability of the filtered

series removed, thus allowing the identification of the

lags when both series are correlated (Durbin and

Koopman 2001, Chaves and Pascual 2006).

Parameter estimation.—For parameter estimation, we

linearized the model in Eq. 11 as follows:

logðItÞ ¼ h logðIt�1Þ þ u logðIt�12Þ þ b 0

� b
I 0t�1

Nt�1

6 b2

I 02t�1

Nt�1

þ aTt�5 þ wt ð12Þ

and used a fitting procedure for negative binomial

generalized linear models (NB-GLM) for the time series

of each species. To avoid confusion in the parameters,

specifically the finding of parameters with incorrect signs

or magnitude, a problem arising from the linear algebra

behind linear models (Ellner et al. 2002), the estimation

of parameter b was restricted between (�‘, �1], using
the Nelder-Mead algorithm (Nelder and Mead 1965).

The reason for the restriction is that the parameter b
needs to be larger than the recovery rate, given the

endemicity of the disease. Since the recovery rates are

equal or smaller than one (the average duration of

infections is larger than 3 months and therefore longer

than the time step of 1 month), then the estimated value

of this parameter, b̂, must be smaller than �1. Also, a

positive value of b̂ lacks a plausible biological interpre-

tation since this coefficient represents the magnitude of

the negative feedback regulating infections in Eq. 12.

The significance of b was tested through a maximum

likelihood ratio test between models including/excluding

the parameter value found with the Nelder-Mead

algorithm. However, we could not compute its standard

error since the value is fixed as an offset during the final

estimation of all other parameters. Since likelihood ratio

tests for NB-GLMs are only reliable for a fixed over-

dispersion parameter (k), we compared the most

complex model with simplified ones in which the

overdispersion parameter was fixed (at the value of the

most complex one). To ensure robustness, we also made

comparisons the other way around. The models were

fitted only to the data from January 1985 to December

1997, given the need for burning values in I to compute

I0 using Eq. 10.

RESULTS

The three main mechanisms of within-host interac-

tions between malaria parasites predict very specific

outcomes. Under the random hypothesis, only exoge-

nous forcing will be important for the dynamics.

Bottom-up regulation implies a positive value for the

parameter b2, reflecting the positive effect of the second

parasite on the focal one. For the top-down mechanism,

b2 is expected to be negative. Finally, there is the

possibility of dynamical sufficiency for the case of

bottom-up regulation, when the dynamics reflect differ-

ences in resource exploitation by parasites. This can be

tested using the estimated value of the parameter b2
which would not be different from zero for any of the

two parasite species. Fig. 1 shows the loop analysis

results for the sign of the interaction between parasites,

conditioned on the sign of the relationship between

hosts and immunity.

To specify the time-series models, we need both the

number of bed nets over time and the independent

estimates of clearance times. Fig. 3A shows that the

deployment of bed nets was extremely episodic, with bed

net distribution following an erratic pattern. Fig. 3B

shows the proportion of people locally covered with bed

nets, which was on average about 5% of the island

population. Fig. 3C, D shows the distribution of

clearance times in neurosyphilis patients treated with

malariotherapy. For Georgia patients, long-time clear-

ance time was 169.15 days (close to 6 months), with an

overdispersion parameter of 2.10. For South Carolina

patients, short-time clearance time was 78.40 days (;3

months) with an over-dispersion parameter of 3.51.

Table 1 shows the search for the best model under the

scenarios considered and provides evidence of the

robustness of the findings. For both species, consider-

ation of inapparent infections increases the likelihood

(minimizes the AIC) of the models. A similar result was

found for the long-time clearance, which is partially

shown for the best models in Table 2. For P. falciparum,

all models without P. vivax outperformed the corre-

sponding models with both parasite species. For P. vivax

the opposite result was found, with models that consider

the parasitemic individuals for P. falciparum exhibiting

the highest likelihood. For both species, the likelihood

was also maximized when the effect of bed nets was

considered transient and short, of only one month

(Table 1). In all cases the restricted search for b ended in

�1, and this value was statistically significant as revealed

by the likelihood ratio test (P , 0.05). Only for P. vivax

b2 was statistically significant and positive in the final

model (Table 2).

Temperature was a statistically significant driver for

the dynamics of both species with a lag of 5 months. For

both species the magnitude of this forcing is small, about

10%, when compared with the parameter b’, the

difference between transmission and recovery (Table

2). In absolute terms the effect of temperature is slightly

larger, about 25%, for P. falciparum (â ffi 0.11), than for

P. vivax (â ffi 0.08).

Finally, Fig. 4 shows the success of the best models in

fitting the data. The correlation between observed and
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TABLE 1. Model search outline for two species of malaria parasite, Plasmodium falciparum and P.
vivax.

Species 1 3 species 2
Inapparent
infections Bed nets AIC

Plasmodium falciparum 3 P. vivax no Nb (constant 1 month) 1916.3
Nb (cumulative) NC
Ib (constant 1 month) 1770.1
Ib (cumulative) 1838.9
no effect 1772.9

yes Nb (constant 1 month) 1769.9
Nb (cumulative) 1763.4
Ib (constant 1 month) 1768.7
Ib (cumulative) 1813.0
no effect 1771.7

Plasmodium falciparum 3 none no Nb (constant 1 month) 1908.1
Nb (cumulative) NC
Ib (constant 1 month) 1772.0
Ib (cumulative) 1814.6
no effect 1766.4

yes Nb (constant 1 month) 1762.9
Nb (cumulative) 1765.4
Ib (constant 1 month) 1770.7
Ib (cumulative) 1813.0
no effect 1765.2

Plasmodium vivax 3 P. falciparum no Nb (constant 1 month) 1633.2
Nb (cumulative) 1707.0
Ib (constant 1 month) 1567.9
Ib (cumulative) 1627.4
no effect 1562.1

yes Nb (constant 1 month) 1561.1
Nb (cumulative) 1565.4
Ib (constant 1 month) 1568.2
Ib (cumulative) 1627.2
no effect 1573.9

Plasmodium vivax 3 none no Nb (constant 1 month) 1623.4
Nb (cumulative) 1717.0
Ib (constant 1 month) 1563.4
Ib (cumulative) 1620.5
no effect 1574.3

yes Nb (constant 1 month) 1565.7
Nb (cumulative) 1562.2
Ib (constant 1 month) 1564.2
Ib (cumulative) 1620.3
no effect 1562.2

Notes: Species 1 indicates the focal parasite species, species 2 indicates whether a second parasite
species was considered, ‘‘Inapparent infections’’ indicates whether the ratios for inapparent
infections were considered, ‘‘Bed nets’’ indicates how the bed net effect was considered, and AIC
refers to the Akaike information criterion value for the models (values in boldface type indicate the
minimum for each species). Models are not directly comparable because they have different
overdispersion parameters. NC indicates models whose parameters did not converge in the iterative
process for fitting the negative binomial generalized linear models (NB-GLMs). When considering
the second species, its I0 was the best estimate for the species alone. Nb¼N� (number of bed nets),
where N is the total host population; Ib ¼ I0 � (number of bed nets), where I0 is the number of
parasitemic hosts based on previous and current cases.

TABLE 2. Parameter estimates for the best-fit models.

Species ĥ û b̂0 b̂2 â k̂ AIC

P. falciparum 0.737 6 0.050 0.121 6 0.050 0.842 6 0.343 � �0.106 6 0.028 6.53 6 0.76 1762.9 (1766)
P. vivax 0.648 6 0.058 0.155 6 0.048 0.820 6 0.240 3.66 6 1.55 �0.0796 6 0.0270 7.58 6 0.96 1561.1 (1566.6)

Notes: Parameter values (mean 6 SE; defined in Methods) are assuming short times for parasite clearance (South Carolina
patients). AIC values inside parentheses are for the same model assuming long times for parasite clearance (Georgia patients for
malariotherapy).

� Value not computed because of model structure.
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fitted values is 0.77 for the best P. falciparum model, and

0.74 for the best model for P. vivax.

DISCUSSION

Malaria models have been evolving (e.g., Bailey 1981,

Anderson and May 1992, Awerbuch 1994) since the

initial framework developed by Ross (1911). The results
of our time-series model support the regulation of

malaria infections by parasites present in the population.

The process of model selection showed that the

likelihood of models is minimized when a short-time of

clearance (3 months) is used instead of a longer time (6
months). This suggests that lasting host immunity is not

a major force regulating the population dynamics of

infection. However, this result also indicates that either

transient immunity to clear parasites is developed or the

population-level use of anti-malarials has an effect in
shortening clearance times (since the longer time

estimate corresponds to immunologically naı̈ve popula-

tions, Sama et al. 2006; see also Gurarie and McKenzie

2006, Klein et al. 2008).

The regulation of transmission by parasite abundance

was originally proposed by Ross (1911) and it was the

basis for future developments of control based on

reducing mosquito populations. Strategies for mosquito

control, primarily through mosquito larval habitat

reduction (Kitron and Spielman 1989, Keiser et al.

2005, Spielman 2006) and bed nets (Kaneko et al. 2000,

Lengeler 2004, Chaves et al. 2008), have been very

successful, by contrast to vaccine trials (Druilhe and

Barnwell 2007).

The transient effect of bed nets at the population level

can be explained by the low local coverage associated

with deliveries, which was about 5% of the population,

when compared to the average of 80% seen at other

localities (Kaneko et al. 2000, Chaves et al. 2008). Thus,

the threshold for the population effectiveness of bed nets

was never reached in this island. Although the effect of

bed nets seems to be primarily one of reducing the total

population at risk of infection, more sophisticated

models and field studies are needed to understand their

regulatory function.

The effect of climatic forcing in regulating transmis-

sion was small when compared to the endogenous

factors regulating the population, and slightly larger for

P. falciparum, in accordance with the effects seen for the

whole archipelago of Vanuatu (Chaves et al. 2008). It is

also worth to notice that in our specific study setting

mosquitoes do not seem to be a limiting factor for

transmission (Williams et al. 1995). However, for other

settings transmission limitation by mosquito abundance

may play a role and could amplify the effects of climate

on transmission dynamics, thus calling for increased

studies on mosquito ecology under changing environ-

ments.

Differences in seasonal patterns and age specific

prevalence for P. vivax and P. falciparum have been

used as evidence for heterologous (cross-specific) immu-

nity for these two malaria parasites in Vanuatu (Mait-

land et al. 1996, 1997). However, the seasonal patterns

are very similar for the two species over a longer time

horizon (Fig. 2). Infection by one species does not seem

to reduce the infection with the other, and in the

biogeographical region where Vanuatu is located,

multispecies infections are common, although only

detected by sensitive molecular based techniques (Bruce

et al. 2000, Bruce and Day 2003, Mayxay et al. 2004).

However, the presence of co-infections at any given time

does not necessarily indicate mechanisms of parasite

species interactions.

Our results are consistent with observations from

malariotherapy patients (Boyd and Kitchen 1937, 1938),

where following a co-infection, P. falciparum reached

higher densities first, in some cases suppressing the

growth of P. vivax. They are also consistent with

evidence on the absence of heterologous immunity

(Collins and Jeffery 1999a, Molineaux et al. 2002). A

lack of heterologous immunity may be explained by

differences in resource exploitation by the two parasites

inside the hosts, since P. falciparum is able to parasitize

all erythrocytes whereas P. vivax only parasitizes young

FIG. 4. Fitted vs. observed values for the best models. (A)
Plasmodium falciparum malaria, Pearson’s r¼ 0.77, CL¼ [0.70,
0.83]; (B) P. vivax malaria, Pearson’s r¼ 0.74, CL¼ [0.67, 0.81].
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ones, leading to enhanced parasitemia by the former

(McQueen and McKenzie 2006). This difference can

also explain the dynamic sufficiency P. falciparum, since

it can reach peak densities in the presence of P. vivax,

whereas the latter reaches its maximum only after the

former parasite is cleared (Boyd and Kitchen 1938).

For the interaction between the parasites to be

positive at the population level, a mechanism of

density-dependent within-host regulation is likely to be

at play as proposed by Bruce and Day (2002). This is

supported by empirical observations and theoretical

results. The results by Bruce et al. (2000) suggest that

parasites are likely to be regulated only when they reach

large densities, since fluctuating densities of parasites

through time were reported together with the develop-

ment of tolerance to malaria parasites in malariotherapy

patients (Molineaux et al. 2002). Also, levels of

parasitemia in holoendemic settings are reported to

become stabilized as individuals age (Ofulla et al. 2005)

and significant reductions in malaria transmission have

been reported after population-level drug administration

campaigns that reduce within-host parasite density (e.g.,

Kaneko et al. 2000). Our results with loop analysis show

that when the two parasites co-occur, a positive effect of

a second parasite species on the first is plausible because

of self-regulation of the former parasite as expected

under a bottom-up mechanism (Fig. 1).

Another explanation for the dynamics observed here

is a switch in immune strategy of individuals with age,

since there is evidence for changes from nonspecific to

specific immune responses in hyper-endemic settings

(Rogier et al. 1999). More specifically, it has been shown

that in early age infections, parasite clearance is mostly

carried out by cells of the innate response, and that over-

expression of Interferon gamma, (IFN-c) and the tumor

necrosis factor alpha (TNF-a) facilitate phagocytosis of
malaria parasites. By contrast, due to the lack of

immune plasticity in adults, the immune response will

depend mostly on T and B specific cells and their

effector mechanisms (Artavanis-Tsakonas et al. 2003).

The demographic profile of Vanuatu, including that of

Espirito Santo, shows that at least 30% of the total

population is under 15, and most of the cases are

concentrated in this age group (Kaneko et al. 1998,

2000). Although adults may be an important source of

infections (Bousema et al. 2007), children are the main

source of gametocytes (infecting stage to mosquitoes) in

hyperendemic settings, where prevalence is above 20%,

as in Espirito Santo (Maitland et al. 1996). This would

explain why long-lasting immune responses that can

lead to cross-immunity do not play a major role in

regulating the dynamics of transmission. Additionally,

human traits like metabolic deficiencies on G6PD and

a-thalassemias could have dynamical effects similar to

innate immunity (e.g., Kaneko et al. 2000).

Finally, our study emphasizes the need to better

understand the factors regulating the dynamics of

infection before formulating strategies of control at the

population level. The failure of strategies that target

infection management through immunity, e.g., vaccines,

may ultimately be determined by their irrelevance to the

regulation of disease dynamics at the population level.
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