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Abstract 

Ionizing radiation can induce genomic instability in the progeny of irradiated cells, as was 

demonstrated in various experimental systems. Most in vitro studies have utilized replicating 

cells, but it is not clear whether radiation-induced genomic instability persists in quiescent 

cells. Here we show the induction of X-ray-induced genomic instability in normal human 

diploid cells irradiated and maintained in a quiescent state for up to 24 months while cells 

were subcultured approximately once every two to three months. Every 12 months, a fraction 

of the irradiated cell population was stimulated to divide by culturing at a low density, and we 

found that these cells showed increased frequencies of phosphorylated ATM foci, decreased 

colony-forming ability, and increased frequency of chromosomal aberrations. No significant 

increases in ROS levels were detected in long-term cultured cells. These results suggest that 

there are ROS-independent mechanism(s) induced by radiation, which can generate persistent 

delayed effects in quiescent cells, and could ultimately contribute to carcinogenesis. 

 

 

 

 

 

 

 



Introduction 

     Accumulating evidence suggests that ionizing radiation can cause various delayed 

effects in cells that have not directly absorb radiation energy (1-5). These effects, observed in 

non-irradiated cells, are now collectively described as non-targeted effects, which include 

radiation-induced genomic instability. Genomic instability is manifested in the progeny of 

surviving cells and is measured as the expression of various delayed effects such as delayed 

reproductive death or lethal mutation, delayed chromosomal instability, and delayed 

mutagenesis (6-9). Since radiation-induced genomic instability leads to the accumulation of 

gene mutations and chromosomal rearrangements, it is thought to play a pivotal role in 

radiation-induced carcinogenesis (10-13). 

     Recent advances in stem cell biology suggest the possible involvement of tissue stem 

cells in the development of cancer (14-17). Stem cells are able to proliferate both 

asymmetrically and symmetrically, and until they are stimulated to divide, some stem 

populations undergo quiescence in contact with a stem cell niche (18-22). Such quiescence in 

niche has been hypothesized to account for why cancer stem cells are refractory to 

chemotherapy and radiotherapy (23, 24). In contrast to the proliferating tissue stem cells, 

whose surviving progenies manifest radiation-induced genomic instability during the 

successive cell divisions, survived quiescent stem cells remain residing in the 

radiation-exposed tissues until they face circumstances that trigger their proliferation and 

increase the risk of manifesting genomic instability. Since genetic changes leading to 



carcinoma are thought to accumulate in non-hematopoietic stem cells, and most of these cells 

remain in a quiescent state for the better part of their life span, it is highly relevant to examine 

the persistence of radiation-induced genomic instability in cells maintained in a quiescent 

state (17). As reported recently, sustained excess relative risk of solid cancers demonstrated in 

Atomic bomb survivors has suggested that radiation-exposed tissue stem cells residing in a 

niche may undergo proliferation after a long period of quiescence (25, 26). Thus, our present 

study was designed to determine whether or not irradiated cells that have remained in a 

quiescent state for long time are indeed capable of inducing delayed phenotypes after they are 

forced to divide. Current studies are also indispensable for the better understanding of the late 

effects of radiation, because non-cancerous late effects are also known to be stemmed from 

delayed dysfunction in stem cells of various adult tissues. 

     In the present study, normal human diploid cells were maintained in a confluent 

(quiescent) state for up to 24 months after irradiation. We found that those cells stimulated to 

divide after the confluence showed the delayed induction of DNA double strand breaks, as 

well as various delayed phenotypes, including delayed reproductive death and delayed 

chromosome instability, thereby indicating the persistence of radiation-induced genomic 

instability. Interestingly, no significant increase in ROS levels were detected in long-term 

cultured cells, which implicated ROS-independent mechanism(s) capable of contributing to 

the succession and perpetuation of the initial insults of the genome caused by ionizing 

radiation. 



Materials and Methods 

Cell culture and irradiation 

Normal human diploid fibroblast-like cells were cultured in MEM supplemented with 10% 

fetal bovine serum (TRACE Bioscience PTY Ltd., Australia)(27). Exponentially growing 

cells were irradiated with an X-ray generator at 150 kVp and 5 mA with a 0.1-mm copper 

(SOFTEX M-150WE, Softex, Osaka). Cells remaining in a confluent state were irradiated at a 

dose rate with 0.44 Gy/min. After irradiation with 4 Gy, the cells were cultured in T75 flasks 

(75 cm2) for up to 24 months, during which time the medium was changed every 2 to 3 days. 

At subculture, cell numbers were determined using a cell counter (Microcell Counter, Sysmex 

Co. Ltd., Tokyo). The population doubling numbers (PDNs) were calculated as follows: 

PDNs = ln (N1/N0)/ln 2, where N1 and N0 are the cell number at the end of each passage and 

the number of cells inoculated, respectively. 

 

Analysis of delayed effects 

The procedure used for the analysis of delayed effects is summarized in Figure 1. Twelve and 

24 months after irradiation, cells were collected by trypsinization and a portion of both the 

control and X-irradiated cells was kept on ice to examine ROS levels. Another portion of cells 

was grown in T75 flasks at a low density (1 x 106 cells/flaks), and these cells were cultured 

for an additional 3 and 7 days in order to examine any delayed DNA damage, delayed 

chromosomal instability, and to determine levels of ROS. Delayed induction of DNA double 



strand breaks was determined by examining phosphorylated ATM foci. After 3 and 7 days in 

culture, the cells were replated onto 22 x 22 mm cover slips for immunofluorescence study 

using monoclonal antibody against phosphorylated ATM protein. At the same time, another 

portion of the proliferating cells was plated onto 100-mm dishes at a clonal density (102 cells 

per 100 mm-dish) to determine delayed reproductive death and giant cell formation in the 

colonies. After two weeks incubation, twenty formed colonies were randomly isolated from 

both populations, and the clonal cells were directly replated onto coverslips. Twenty-four 

hours after isolation, the cells were stained with monoclonal antibody against phosphorylated 

ATM protein. 

 

Detection of delayed DNA damage 

Delayed induction of DNA double strand breaks was determined by phosphorylated ATM foci 

as described previously (28). Cells cultured on coverslips were fixed with 4% formaldehyde, 

permeabilized with 0.5% Triton X-100, and were washed extensively with 

phosphate-buffered saline (PBS). The primary antibodies, anti-phosphorylated ATM 

monoclonal antibody (Clone 10H11.E12, Rockland, Gilbertsville, PA) was diluted in 100 µl 

of TBS-DT (20 mM Tris-HCl, 137 mM NaCl, pH7.6, containing 50 mg/ml skim milk and 

0.1% Tween-20), and the antibody was applied on the coverslips. The samples were incubated 

for 2 hours in a humidified CO2 incubator at 37°C. The primary antibody was washed with 

PBS, and Alexa488-labelled anti-mouse and anti-rabbit IgG antibodies (Molecular Probes, 



Inc., OR) were added. The coverslips were incubated for 1 hour in a humidified CO2 

incubator at 37°C, washed with PBS and counterstained with 0.1 mg/ml of DAPI. The 

samples were examined with a F300B fluorescence microscope (Leica, Tokyo). Digital 

images were captured and the images were analyzed by FW4000 software (Leica). The 

formation of phosphorylated ATM foci was determined in 103 cells for each group. 

 

Analysis of delayed reproductive death and giant cell formation 

Cells were trypsinized and counted using a cell counter (Microcell Counter, Sysmex Co. Ltd., 

Tokyo). Aliquots of 102 cells were plated onto 100-mm dishes and incubated for 14 days 

before they were fixed with ethanol and then stained with 3% Giemsa. Colonies of more than 

50 cells were counted. The cells, which occupied an area in the colony several times greater 

than the rest of the cells, were considered to be giant cells, as described previously (29). 

 

Analysis of senescence-like growth arrest 

Senecence-like growth arrest was examined by senescence-associated -galactosidase 

(SA--gal) staining. Cells were washed briefly in PBS and fixed with 2% formaldehyde 

containing 0.2% glutaraldehyde for 5 min at room temperature. Then, the cells were washed 

extensively in PBS and incubated in SA--gal staining solution (40 mM citric acid/sodium 

phosphate, pH 6.0, 5 mM potassium ferrocyanide, 5 mM potassium ferricyanide, 150 mM 

NaCl, 2 mM MgCl2) containing 1 mg/ml 5-bromo-4-chloro-3-indolyl -D-galactopyranoside 



(X-gal), as described previously (30). 

 

Analysis of delayed chromosomal instability 

Exponentially growing cells were treated with 0.033 µg/ml Colcemid (GIBCO, Grand Island, 

NY) for 1 hour, and mitotic cells were collected. The mitotic cells were treated with 0.075 M 

potassium chloride for 20 min, fixed in ice-cold Carnoy’s fixative (methanol:acetic acid, 3:1) 

for 30 min, and spread on slide glasses using an air-drying method. After these cells were 

stained with 3% Giemsa, chromosome aberrations were classified as previously described 

(31). Three independent experiments were performed, and more than 400 metaphases were 

counted for each sample. 

 

Determination of oxidative stress in long-term culture 

Oxidative stress was evaluated using DCFH fluorescence (32). A part of the confluent cell 

cultures and cells cultured for 3 and 7 days at a low density were kept on ice, washed once 

with PBS, and then treated with 1 M DCFH-DA (Molecular Probes) for 30 minutes. The 

cells were washed with PBS, and fluorescence intensity was measured using a fluorescence 

spectrophotometer F2000 (Hitachi, Tokyo, Japan). The excitation and emission wavelengths 

were 503 nm and 524 nm, respectively. 

 

 



Statistical analysis 

The data were analyzed statistically using Wilcoxon test. 

 

Results 

Rare cell division in a confluent culture 

     In order to maintain the cells at a confluent state, control cells (1 x 107) were 

subcultured in T75 flasks (Figure 2). These cells underwent only one to two cell doublings 

within one passage. However, in X-irradiated population, some fractions of cells were 

expected to lose their proliferative potential, as the clonogenic surviving fraction of 4 Gy of 

X-rays was approximately 0.05. While no significant cell loss by apoptosis was observed, 

some giant cells caused by X-ray-induced senescence-like growth arrest were observed, as 

they were positive for SA--gal staining. Thus, such giant cells might be gradually eliminated 

from a population, most of the irradiated population contained cells that had lost proliferative 

potential. Therefore, the population doubling numbers (PDNs) at early passages (Figure 3) 

might have been underestimated. Fresh medium was supplied every 3 or 4 days, and the cells 

were subcultured every two (first 12 months) or three (12 to 24 months) months. The cultures 

were trypsinized, and 1 x 107 cells were reseeded to maintain confluent cultures. As shown in 

Figure 3, the total PDN of the control and 4 Gy-irradiated cells at 24 months was about 18. 

 

 



Delayed induction of DNA damage 

     Twelve and twenty-four months after irradiation, cells were collected by trypsinization, 

and a portion of both the control and X-irradiated cells were cultured at low density for 3 and 

7 days to analyze delayed induction of DNA damage. In addition, colonies formed by the 

control and irradiated populations were independently isolated, and clonal cells were cultured 

to analyze the induction of delayed DNA damage. The cells were fixed and stained with an 

antibody recognizing phosphorylated ATM, i.e., the active form of ATM protein (Figure 4). 

Because phosphorylated ATM forms discrete foci at sites of DNA double strand breaks, we 

determined the number of foci in order to estimate the delayed induction of DNA 

double-strand breaks in 103 cells. While phosphorylated ATM foci were rarely detected in the 

control cells (0.013 foci/cell), the number of such foci was significantly higher (p<0.05) in 

cells derived from the exposed confluent cultures (Table 1). The frequency of phosphorylated 

ATM foci did not significantly differ between cells cultured for 3 days and 7 days, indicating 

a similar probability of genomic instability in proliferating cells, irrespective of the number of 

days in culture. Because it is possible that observed DNA damage was due to the initial 

damage that had occurred when cells were irradiated, the frequency of phosphorylated ATM 

foci was also determined in cells clonally expanded after long-term quiescence. As shown in 

Table 2, no increased in the number of phosphorylated ATM foci was observed in any of the 

clones derived from irradiated population, as radiation-induced genomic instability is 

expressed randomly among the progenies of surviving cells. However, a higher number of 



clones with an increased frequency of foci was observed in irradiated clones as opposed to the 

non-irradiated clones. This finding clearly indicated that delayed DNA damage did occur 

when quiescent cells were forced to proliferate. 

 

Delayed induction of reproductive cell death, giant cells and chromosomal instability 

     Delayed reproductive cell death, as determined by decreased colony-forming ability, 

was also apparent in cells from the exposed cultures (Table 3). In addition, the delayed 

induction of giant cells was more frequent in colonies formed by irradiated cells (Table 4). As 

shown in Table 5, the cells subcultured for 3 and 7 days also showed delayed induction of 

chromosomal aberrations. The frequency of every type of aberration was higher in the 

exposed cells that in the non-irradiated cells. The induction of chromatid-type aberrations as 

well as unstable chromosomal aberrations such as dicentric and ring chromosomes, indicate 

that delayed chromosome rearrangements occurred only after the confluent cells were forced 

to proliferate. In addition, the appearance of such non-clonal and multiple aberrations 

demonstrates that delayed chromosome instability was induced in those cells derived from 

exposed cultures that had been maintained in a quiescent state for a long period of time after 

irradiation. 

 

 

 



Determination of oxidative stress in long-term culture 

     Levels of oxidative stress were evaluated using DCFH fluorescence (Figure 5). While 

X-irradiation immediately and directly induced a significant increase in fluorescence intensity, 

there were no significant increases in ROS levels in the exposed cells after they had been 

maintained in a confluent state for a long period of time. It is possible that ROS levels 

increased in cells seeded at a low density. Therefore, cells cultured for 3 and 7 days at a low 

density were also examined; once again, no significant increases in ROS levels were observed 

in these latter two groups. 

 

 

Discussion 

     It is well established that ionizing radiation can induce genomic instability in the 

progeny of irradiated cells. However, most studies conducted thus far have utilized replicating 

cells. Here, we demonstrated persist genomic instability for up to 24 months in quiescent 

normal human diploid cells. It was of interest that the incidence of delayed phenotypes was 

almost the same in cells cultured for 12 and 24 months, indicating that radiation-induced 

genomic instability was comparably maintained in quiescent cultures. These results are in 

disagreement with those showing that radiation induced genomic instability gradually 

disappeared in normal proliferating human cells (33). Notably, gradual disappearance of 

genomic instability was not observed in p53-defective cells. For example, unstable clones 



isolated from Chinese hamster cells retained their genomic instability for over 45 population 

doublings (34). Furthermore, we previously observed that the delayed activation of a DNA 

damage checkpoint in the progeny of p53-defective human tumor cells surviving radiation 

exposure (35). Thus, it can be concluded that in proliferating normal cells, in which DNA 

damage response is intact, initially unstable cells are gradually eliminated by delayed 

reproductive cell death or by apoptosis. The absence of growth-related cell death in quiescent 

cells could maintain a state of genomic instability for a long period of time after irradiation. 

     It should be mentioned that radiation-induced genomic instability has not been 

commonly observed in the previous studies using normal human cells. For example, Dugan 

and Bedford reported finding no evidence for the induction of such instability, although they 

observed a senescence-related chromosomal instability in the progeny of both irradiated and 

unirradiated cells (36). Such senescence-related changes were also observed in the current 

study. For example, as shown in Table 4, the frequency of dicentric chromosomes was higher 

in cells cultured for 24 months, which might be due to shortened telomeres. The reason for 

this discrepancy remains unknown; here, we attempt to use cells from early passages in order 

to avoid the possibility that senescence-related changes mask persistent radiation effects. In 

the present study, we confirmed the significant induction of genomic instability only in the 

progeny of irradiated cells. Therefore, these results indicate that the observed genomic 

instability in quiescent cells is indeed dependent on irradiation. 

     Recently, several studies have proposed the importance of tissue stem cells as targets 



for carcinogenesis (14-17). In contrast to the somatic cells that divide continuously, tissue 

stem cells stay quiescent in a stem cell niche (18-21). Although we did not use stem cells in 

this study, radiation-induced genomic instability is likely to persist over the lifetime of 

quiescent cells such as those found in niche. Such persistent inheritance of radiation-induced 

genomic instability in stem cells was well-described in mice (10), and has been suggested in 

exposed humans (25, 26, 37, 38). Conditions enforcing cell division (e.g., tissue damage 

caused by radiation exposure) could provide opportunities for quiescent stem cells to manifest 

radiation-induced genomic instability. 

     The mechanism(s) underlying the perpetuation of genomic instability in quiescent cells 

remains to be determined. To date, elevated ROS levels have been considered as a cause of 

persisted instability (39-44). Recent in vivo studies have suggested that inflammatory-type 

tissue response provides microenvironment that leads to persistent genomic instability (42). 

Moreover, it has been shown that dysfunctional mitochondria are involved in the persistence 

of radiation-induced genomic instability (39-44). Thus, it is reasonable to consider that 

persistent oxidative stress is among the mechanisms associated with radiation-induced 

genomic instability. We, therefore, examined ROS levels using DCFH fluorescence in 

irradiated quiescent cells. Although direct ROS production was observed immediately after 

irradiation, no increases were observed in ROS levels of quiescent cells cultured for a long 

period of time after irradiation. We also examined ROS levels in cells forced to proliferate for 

3 and 7 days at a low cell density. However, neither of these groups showed increased levels 



of ROS. Thus, our results clearly indicated that ROS-independent mechanism can contribute 

to the perpetuation of radiation-induced genomic instability. As we reported previously, 

X-ray-induced large deletions potentially cause unstable chromosome regions (PUCRs), 

which could be transmitted through generations (9, 45). These deletions are not DNA breaks 

by themselves, but abnormal structures in higher-order chromatin created through 

mis-rejoining of DNA double strand breaks. Such structural radiation signature may mediate 

perpetuation of genomic instability in quiescent cells. 

     In summary, the present study demonstrated that X-irradiation induces genomic 

instability in normal quiescent human diploid cells, and this instability persists for up to 24 

months after irradiation. These findings indicated that ROS-independent mechanisms 

"memorize" initial DNA damage, and are somehow associated with radiation-induced 

genomic instability. As no delayed phenotypes accumulate in the quiescent cells observed 

here, such a DNA damage memory is most likely to induce delayed DNA breakage, which 

result in the induction of delayed phenotypes, only after quiescent cells are exposed to a 

condition that initiate cell proliferation. 
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Figure legends 

Figure 1. Experimental procedure for the analysis of delayed effects. 

 

Figure 2. Morphology of normal human diploid cells cultured in different conditions. 

(A) Confluent 4 Gy-irradiated cells cultured for 12 months, (B) A portion of 4 Gy-irradiated 

cells cultured at confluence for 12 months, reseeded at a low cell density. 

 

Figure 3. Population doubling numbers of control and 4 Gy-irradiated cells cultured at 

confluence. 

Control (open circles) and 4 Gy-irradiated (closed circles) cells maintained at confluence 

were subcultured every two or three months, and the population doubling numbers were 

calculated as described in Materials and Methods. 

 

Figure 4. Phosphorylated ATM foci in cells derived from confluent cultures maintained for 12 

months. 

A portion of cells from control (A) and 4Gy-irradiated (B) confluent cultures was grown at a 

low cells density. Cells were stained with anti-phosphorylated ATM antibody as described in 

Materials and Methods. Phosphorylation of ATM is detected with Alexa-488-labelled 

secondary antibody (green), and chromosomal DNA is counterstained with DAPI (blue). 

Triangles indicate the foci-positive nuclei. 



 

Figure 5. Oxidative levels determined by DCFH fluorescent assay. 

Portions of both control (open bars) and 4 Gy-irradiated (closed bars) confluent cultures 

maintained for 12 and 24 months were treated with 1 M DCFH-DA for 30 minutes. In 

addition, cells cultured for 3 days (3D) and 7 days (7D) at a low density were treated with 1 

M DCFH-DA for 30 minutes. Fluorescence intensity was determined by a fluorescence 

spectrophotometer as described in Materials and Methods. 
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Table 1  Delayed induction of phospho-ATM foci

Cells Total no. cells % cells with foci   No. foci per cell
counted (x10-2)

12 months after X-rays
- 3 days
0 Gy 1000 1 3 ± 0 6 1 3 ± 0 60 Gy 1000 1.3 ± 0.6 1.3 ± 0.6
4 Gy 1000 5.0 ± 0.2 7.0 ± 2.0

- 7 days
0 Gy 1000 1.5 ± 0.7 1.5 ± 0.7

p<0.01

0 Gy 1000 1.5 0.7 1.5 0.7
4 Gy 1000 5.3 ± 0.3 7.5 ± 2.2

24 months after X-rays

p<0.01

y
- 3 days
0 Gy 1000 1.7 ± 0.6 2.7 ± 1.2
4 Gy 1000 7.0 ± 0.2 9.3 ± 3.5
7 d

p<0.05

- 7 days
0 Gy 1000 1.6 ± 0.6 2.8 ± 1.4
4 Gy 1000 6.9 ± 0.5 9.5 ± 3.7 p<0.05



Table 2  Delayed induction of phospho-ATM foci in isolated colonies

Cells Total no cells % cells No foci/cell Cells Total no cells % cells No foci/cellCells    Total no. cells   % cells    No. foci/cell      Cells   Total no. cells   % cells    No. foci/cell
counted      with foci       (x10-2) counted with foci (x10-2)

12 months after X-rays
C1            1000             1.3             1.3 X1            1000             4.3             7.3
C2            1000             1.2             1.2 X2            1000             1.0             1.3
C3            1000             1.0             1.3 X3            1000             1.3             1.9
C4 1000 1 1 1 5 X4 1000 1 2 1 7C4            1000             1.1             1.5 X4            1000             1.2             1.7
C5            1000             1.2             1.3 X5            1000             1.1             1.6
C6            1000             1.3             1.3 X6            1000             4.5             6.3
C7            1000             1.1             1.1 X7            1000             7.3           11.9
C8            1000             1.0             1.5 X8            1000             1.1             1.3
C9            1000             1.0             1.8 X9            1000             1.2             3.3
C10          1000             1.3             1.9 X10          1000             1.3             4.1C 0 000 3 9 0 000 3
C11          1000             1.5             1.5 X11          1000             6.3             9.2
C12          1000             1.9             1.9 X12          1000             3.1             4.8
C13          1000             1.1             1.4 X13          1000             3.3             6.9
C14          1000             1.0             1.3 X14          1000             2.3             3.1
C15          1000             1.1             1.3 X15          1000             1.2             1.5
C16          1000             1.1             1.4 X16          1000             9.3           14.5
C17 1000 1 3 1 7 X17 1000 1 0 1 3C17          1000             1.3             1.7 X17          1000             1.0             1.3
C18          1000             1.7             2.1 X18          1000             1.1             1.1
C19          1000             1.5             1.8 X19          1000             3.3             4.3
C20          1000             1.7             1.9 X20          1000             1.9             2.0

24 months after X-rays
C1            1000             1.1             1.3 X1            1000             5.3           11.3
C2 1000 1 3 1 7 X2 1000 4 2 6 1C2            1000             1.3             1.7 X2            1000             4.2             6.1
C3            1000             1.5             1.9 X3            1000             3.3             5.0
C4            1000             1.7             2.1 X4            1000             2.9             4.3
C5            1000             1.2             1.8 X5            1000             1.5             1.9
C6            1000             1.3             1.5 X6            1000             1.3             3.3
C7            1000             1.3             1.8 X7            1000             1.1             1.7
C8            1000             1.0             1.9 X8            1000             1.0             2.8
C9 1000 1 1 2 0 X9 1000 7 3 13 3C9            1000             1.1             2.0 X9            1000             7.3           13.3
C10          1000             1.0             1.3 X10          1000             7.2             8.3
C11          1000             1.2             1.8 X11          1000             9.3            11.0
C12          1000             1.4             1.9 X12          1000             4.0             5.3
C13          1000             1.3             1.5 X13          1000             1.1             1.8
C14          1000             1.7             2.6 X14          1000             3.7             5.3
C15          1000             1.2             2.7 X15          1000             2.3             3.3C 5 000 5 000 3 3 3
C16          1000             1.1             1.7 X16          1000             1.0             2.0
C17          1000             1.3             1.5 X17          1000             4.7             7.7
C18          1000             1.0             1.8 X18          1000             5.3           10.5
C19          1000             1.1             1.8 X19          1000             7.1             6.7
C20          1000             1.2             1.7 X20          1000             1.8             3.1



Table 3  Delayed reproductive deathy

Cells Cloning efficiencies (%)

12 months after X-rays
0 Gy 32.7 ± 1.5
4 Gy 17 0 ± 2 0 p<0.014 Gy 17.0 ± 2.0 

24 months after X-rays
0 Gy 10 7 ± 0 60 Gy 10.7 ± 0.6
4 Gy 4.0 ± 1.0 p<0.01



Table 4  Delayed induction of giant cells

Cells No. colonies with giant cells /
No. colonies counted (%)

12 months after X-rays
0 Gy 9 / 264 (0.034)

<0 014 Gy 44 / 228 (0.193)

24 months after X-rays

p<0.01

y
0 Gy 13 / 320 (0.041)
4 Gy 19 / 220 (0.086) p<0.01



Table 5   Induction of delayed chromosomal instability

Cells No. cells No. metaphases No. aberrations
counted with aberrations (%) Dic (with Frag) Gaps Breaks Fragments Ringcounted with aberrations (%) Dic (with Frag)     Gaps Breaks Fragments    Ring

12 months after X-rays
- 3 days
0 Gy 418 7 ( 1 7) 0 3 2 2 00 Gy 418 7 (  1.7) 0 3 2 2 0  
4 Gy 402 44 (10.9) 12 (12) 20 12 15 0  

- 7 days
0 Gy 513 7 (  1.4) 0 2 3 2 0  

p<0.01

0 014 Gy 472 52 (11.0) 10 (10) 25 13 4 0  

24 months after X-rays
- 3 days

p<0.01

y
0 Gy 500 17 (  3.4) 3 (  1) 7 7 3 0  
4 Gy 652 86 (13.2) 34 (13) 34 22 20 9

- 7 days
0 Gy 515 19 ( 3 7) 3 ( 3) 8 7 4 0

p<0.01

0 Gy 515 19 (  3.7) 3 (  3) 8 7 4 0  
4 Gy 635 81 (12.8) 27 (19) 27 15 7 5    p<0.01




