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Abstract 

Blood-brain barrier (BBB) characteristics are induced and maintained by cross-talk 

between brain microvessel endothelial cells and neighbouring elements of the neurovascular 

unit. While pericytes are the cells situated closest to brain endothelial cells morphologically 

and share a common basement membrane, they have not been used in co-culture BBB models 

for testing drug permeability. We have developed and characterized a new syngeneic BBB 

model using primary cultures of the three main cell types of cerebral microvessels. The co-

culture of endothelial cells, pericytes and astrocytes mimick the anatomical situation in vivo. 

In the presence of both pericytes and astrocytes rat brain endothelial cells expressed enhanced 

levels of tight junction (TJ) proteins occludin, claudin-5 and ZO-1 with a typical localization 

at the cell borders. Further morphological evidence of the presence of interendothelial TJs 

was provided by electron microscopy. The transendothelial electrical resistance (TEER) of 

brain endothelial monolayers in triple co-culture, indicating the tightness of TJs reached 400 

Ω×cm2 on average, while the endothelial permeability coefficients (Pe) for fluorescein was in 

the range of 3×10-6 cm/s. Brain endothelial cells in the new model expressed glucose 

transporter-1, efflux transporters P-glycoprotein and multidrug resistance protein-1, and 

showed a polarized transport of rhodamine 123, a ligand for P-glycoprotein. To further 

characterize the model, drug permeability assays were performed using a set of 19 compounds 

with known in vivo BBB permeability. Good correlation (R2=0.89) was found between in 

vitro Pe values obtained from measurements on the BBB model and in vivo BBB permeability 

data. The new BBB model, which is the first model to incorporate pericytes in a triple co-

culture setting, can be a useful tool for research on BBB physiology and pathology and to test 

candidate compounds for centrally acting drugs. 

 

Keywords: Blood-brain barrier; Brain endothelial cells; Pericytes; Astrocytes; Co-culture; In 

vitro BBB model (rat); Tight junction; P-glycoprotein; Transendothelial electrical resistance; 

Drug permeability 
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1. Introduction 

 

Cell-culture based models have greatly contributed to our knowledge on the physiology, 

pathology and pharmacology of the blood-brain barrier (BBB) (Deli et al., 2005; Cecchelli et 

al., 2007). Since 1973, when the first in vitro model of the BBB was established by the 

successful isolation of brain microvessels (Joó and Karnushina, 1973) several models 

constructed from cultured cells have been developed (Deli, 2007). The mono-cultures of brain 

endothelial cells were replaced by co-culture systems when it was recognized that (i) cerebral 

endothelial cells lose easily their specific characteristics in culture and (ii) the cells of the 

neurovascular unit play an important role in the induction of BBB properties (Abbott et al., 

2006; Cecchelli et al., 2007). The BBB phenotype of brain endothelial cells includes tight 

junctions (TJs) and the lack of pinocytosis and fenestrae restricting passage of solutes and 

cells to the brain, transendothelial transport pathways, metabolic and detoxifying functions 

(Abbott et al., 2006; Neuwelt et al., 2008). By these specialized functions the BBB provides 

ionic homeostasis and nutrients necessary for the proper functioning of the CNS and it 

protects the nervous system from xenobiotics and regulates the level of neuroactive mediators 

(Pardridge, 2002; Abbott et al., 2006; Zlokovic 2008).  

Brain capillary endothelial cells have a dynamic interaction with other neighbouring 

cells, astroglia, pericytes, perivascular microglia and neurons. This cooperation contributes to 

their unique characteristics displaying both endothelial and epithelial features (Joó, 1996; Deli 

et al., 2005; Abbott et al., 2006; Cecchelli et al., 2007). The cross-talk between the cells of the 

neurovascular unit is crucial for the formation and maintenance of a functional BBB (Abbott 

et al., 2006; Zlokovic, 2008). Among these cells, astrocytes were the first to be recognized as 

regulators of brain endothelial characteristics and functions (for reviews see Abbott, 2005; 

Haseloff et al., 2005; Abbott et al., 2006). Astrocytes are able to induce among others the 

formation of interendothelial tight junctions (TJs) (Tao-Cheng et al., 1987), a fundamental 

characteristic of the BBB. A great number of currently used in vitro BBB model is composed 

of co-culture of brain endothelial cells with astrocytes (Deli et al., 2005; Deli 2007; Cecchelli 

et al., 2007). 

Brain pericytes the nearest neighbours of endothelial cells sharing a common basal 

membrane in cerebral capillaries received much less attention so far (Lai and Kuo, 2005). 

Despite their localization and fundamental role in stabilizing brain capillary structure in vivo 

(Hellstrom et al., 2001; Lai and Kuo, 2005), and their possible importance in the development, 

maintenance, and regulation of the BBB (Lai and Kuo, 2005; Zlokovic, 2008) few data are 
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available on the functional significance of pericytes on BBB properties. Pericytes were found 

to be able to tighten the paracellular barrier in cultured brain endothelial cells (Hayashi et al., 

2004; Dohgu et al., 2005) similarly to astrocytes. We have recently performed a systematic 

comparison of 7 different types of BBB models constructed from primary cultures of rat brain 

microvessel endothelial cells, pericytes and astrocytes (Nakagawa et al., 2007). 

Transendothelial electrical resistance (TEER) and permeability for a small water-soluble 

tracer fluorescein were measured to evaluate paracellular transport reflecting TJ function, an 

important parameter of the quality of BBB models (Deli et al., 2005). We confirmed that 

brain pericytes could strengthen the barrier integrity of cerebral endothelial monolayers. It 

was demonstrated that a triple co-culture model consisting of brain endothelial cells and 

pericytes grown on the opposite sides of a porous membrane and cultured in the presence of 

astrocytes was superior in barrier integrity to the other BBB models tested (Nakagawa et al., 

2007). This in vitro BBB model corresponds to the anatomical situation in the cerebral 

microvessels. 

The aim of the present study was the detailed characterization of the new triple co-

culture BBB model. We examined the cytoarchitecture and cellular markers by 

immunofluorescence and electron microscopy, the morphological and functional integrity of 

the paracellular barrier and the presence and function of influx and efflux transporters. Finally 

in vitro drug permeability was tested for 19 compounds on the triple co-culture BBB model 

and compared to in vivo permeability data in the same species.  

 

2. Materials and Methods 

 

All reagents used in the study were purchased from Sigma (St. Louis, MO, USA), 

unless otherwise indicated. Wistar rats were obtained from Japan SLC Inc., (Shizuoka, Japan). 

Balb/c mice were obtained from Charles River Laboratories Japan Inc., (Kanagawa, Japan). 

All animals were treated in strict accordance with the NIH Guide for Care and Use of 

Laboratory Animals (NIH Publications No. 80-23) and as approved by the Nagasaki 

University Animal Care Committee.  

 

2.1. Cell cultures 

 

Primary cultures of rat brain capillary endothelial cells (RBEC) were prepared from 3-

week-old rats, as previously described (Deli et al., 1997). Meninges were carefully removed 
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from forebrains and gray matter was minced into small pieces of approximately 1 mm3 in ice-

cold Dulbecco’s modified Eagle’s medium (DMEM), then dissociated by 25-times of up-and 

down-strokes with a 5-ml pipette in DMEM containing collagenase type 2 (1 mg/ml, 

Worthington, USA), 300 μl DNase (15 μg/ml), gentamycin (50 μg/ml) and then digested in a 

shaker for 1.5 h at 37 °C. The cell pellet was separated by centrifugation in 20 % bovine 

serum albumin (BSA)-DMEM (1000 × g, 20 min). The microvessels obtained in the pellet 

were further digested with collagenase-dispase (1 mg/ml, Roche, Switzerland) and DNase 

(6.7 μg/ml) in DMEM for 1 h at 37 °C. Microvessel endothelial cell clusters were separated 

on a 33 % continuous Percoll (Pharmacia, Sweden) gradient, collected and washed twice in 

DMEM before plating on 35 mm plastic dishes coated with collagen type IV and fibronectin 

(both 0.1 mg/ml). RBEC cultures were maintained in DMEM/F12 supplemented with 10 % 

plasma derived serum (PDS, Animal Technologies, USA), basic fibroblast growth factor 

(bFGF, Roche, Switzerland, 1.5 ng/mL), heparin (100 μg/ml), insulin (5 μg/ml), transferrin (5 

μg/ml), sodium selenite (5 ng/ml) (insulin-transferrin-sodium selenite media supplement), 

gentamycin (50 μg/ml) and puromycin (4 μg/ml) (Perrière et al., 2005) (RBEC medium I) at 

37 °C with a humidified atmosphere of 5% CO2/95 % air, for 2 days. On the third day, the 

cells received a new medium which contained all the components of RBEC medium I except 

puromycin (RBEC medium II). When the cultures reached 80% confluency (4th day in vitro), 

the purified endothelial cells were passaged by a brief treatment with trypsin (0.05 % wt/vol)-

EDTA (0.02 % wt/vol) solution, and used to construct various types of in vitro BBB models 

(Figs. 1 and 4). 

Rat cerebral astrocytes were obtained from neonatal Wistar rats. Meninges were 

removed and cortical pieces mechanically dissociated in astrocyte culture medium (DMEM 

supplemented with 10 % fetal bovine serum). Dissociated cells were seeded into cell culture 

flasks. In order to obtain type 1 astrocytes, flasks with confluent cultures were shaken at 

37 °C overnight. The purity of astrocytes was checked by immunostaining for glial fibrillary 

acidic protein (GFAP), and the cells were used at passage 2.  

Pure cultures of rat cerebral pericytes were obtained by a prolonged, 2-week culture of 

isolated brain microvessel fragments, that contain pericytes beside endothelial cells. The same 

preparations yield primary RBEC after puromycin-treatment. Pericyte survival and 

proliferation was favored by selective culture conditions, using uncoated dishes, and DMEM 

supplemented with 10 % fetal bovine serum and antibiotics. Culture medium was changed 

every 3 days. Pericytes were characterized by their large size and branched morphology, 

positive immunostaining for α-smooth muscle actin, NG2 chondrotitin sulfate proteoglycan 
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and absence of von Willebrand factor and glial fibrillary acidic protein (GFAP) staining. 

Pericytes and astrocytes were frozen in cryo-medium Cellbanker (BCL-1, Zenoaq, Koriyama, 

Japan), and stored at -80 °C until use. 

 

2.2. Construction of in vitro BBB models 

 

The day when the endothelial cells were plated and models were established was 

defined as day zero in vitro (Day 0; Fig. 1). To construct various in vitro models of BBB 

pericytes or astrocytes (1.5×104 cells/cm2) were seeded on the bottom side of the collagen-

coated polyester membrane of the Transwell inserts. The cells were let to adhere firmly for 

overnight, then endothelial cells (1.5×105 cells/cm2) were seeded on the inside or upper side 

of the inserts placed in the well of the 12-well culture plates containing no cells, pericytes or 

astrocytes (Fig. 4). From Day 1 BBB models were maintained in RBEC medium II. 

supplemented with 500 nM hydrocortisone (Hoheisel et al., 1998). Under these conditions, in 

vitro BBB models were established within 3 days after setting of the cells. Seven types of 

BBB models were constructed (Fig. 4; Nakagawa et al., 2007). As negative controls for 

barrier integrity studies, astrocytes and pericytes, which do not form barrier, were cultured on 

the inserts, respectively. 

 

2.3. Immunostaining 

 

To characterize the cultures after washing and fixation brain endothelial cells were 

incubated with anti-von Willebrand factor rabbit polyclonal antibody, astrocytes with anti-

GFAP mouse monoclonal antibody (Progen Scientific Ltd., Mexborough, UK), pericytes with 

anti-NG2 chondrotitin sulfate proteoglycan rabbit polyclonal antibody (Millipore Corp., MA, 

USA). All primary antibodies were used in a dilution 1:100. As secondary antibodies Alexa 

Fluor 488 conjugated donkey anti-rabbit and anti-mouse immunoglobulins (both from 

Invitrogen Corporation, CA, USA) were used in a dilution 1:1000. To counterstain cell nuclei 

TO-PRO-3 Iodide (Invitrogen Corporation, CA, USA) was used in a dilution of 1:400. To 

stain brain endothelial junctional proteins cell monolayers cultured on inserts in the absence 

or presence of glial cells and pericytes were stained for ZO-1 and claudin-5. The cultures 

were washed in PBS and fixed with ethanol (95 v%)-acetic acid (5 v%) for 10 min at - 20 C 

(ZO-1) or with ethanol for 30 min at 4 C (claudin-5). Cells were blocked with 3 % BSA and 

incubated with primary antibodies anti-ZO-1 and anti-claudin-5 (Zymed Laboratories Inc., 
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CA, USA), for 1 h 30 min. Incubation with secondary antibody Cy3-labelled anti-rabbit IgG 

lasted for 1 h. Between incubations cells were washed three times with PBS. Preparations 

were mounted in Gel Mount (Biomeda, USA) and staining was examined by a Zeiss LSM 5 

Pascal Confocal laser scanning microscope (Oberkochen, Germany). 

 

2.4. Electron microscopy 

 

Cells grown on the membrane were fixed with 3 % paraformaldehyde in cacodylate 

buffer (pH 7.5) for 30 min at 4 °C. After washing with cacodylate buffer several times, the 

membranes of the culture inserts with the cells on the two sides were removed from their 

support and placed into 24 -well chamber slide and were postfixed in 1 % OsO4 for 30 min. 

Following washing with distilled water, the cells on the membrane were dehydrated in graded 

ethanol, block-stained with 2 % uranyl acetate in 70 % ethanol for 1 h and embedded in Taab 

812 (Taab; Aldermaston, Berks, UK). Ultrathin sections were cut perpendicularly for the 

membrane using a Leica UCT ultramicrotome (Leica Microsystems, Milton Keynes, UK) and 

examined using a Hitachi 7100 transmission electron microscope (Hitachi Ltd., Tokyo, Japan). 

 

2.5. Evaluation of the barrier integrity 

 

TEER reflecting the flux of mainly sodium ions through cell layers in culture 

conditions was measured by Epithelial-volt-ohm meter and Endohm-12 chamber electrodes 

(World Precision Instruments, USA). TEER of coated, but cell-free filters was subtracted 

from measured TEER values of the models shown as Ω × cm2. The flux of sodium fluorescein 

(Na-F) across endothelial monolayers was determined as previously described (Kis et al., 

2001; Veszelka et al., 2007). Cell culture inserts were transferred to 12-well plates containing 

1.5 ml Ringer-Hepes buffer (136 mM NaCl, 0.9 mM CaCl2, 0.5 mM MgCl2, 2.7 mM KCl, 1.5 

mM KH2PO4, 10 mM NaH2PO4, 25 mM glucose and 10 mM Hepes, pH 7.4) in the lower or 

abluminal compartments. In the inserts (luminal compartment) culture medium was replaced 

by 0.5 ml buffer containing 10 μg/ml Na-F (MW: 376 Da). The inserts were transferred at 5, 

15 and 30 min to a new well containing Ringer-Hepes buffer. The concentrations of the 

marker molecule in samples from the upper and lower compartments were determined by 

fluorescence multiwell plate reader Wallac 1420 ARVO Multilabel Counter (Perkin Elmer, 

USA; excitation: 485 nm, emission: 535 nm). Flux across cell-free inserts was also measured. 
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Transendothelial permeability coefficient (Pe) was calculated as previously described (Deli et 

al., 2005; Veszelka et al., 2007) and as detailed in data analysis. 

 

2.6. Western blotting 

 

Protein samples from brain endothelial cells cultured in the presence or absence of 

pericytes and astrocytes were separated by SDS-PAGE and transferred to nitrocellulose 

(Hybond, GE Healthcare, UK). Non-specific binding sites were blocked by Perfect-Block 

(MoBiTec GmbH, Germany) (1 % w/v) in Tris-buffered saline (TBS; 25 mM Tris, 150 mM 

NaCl, 2 mM KCl, pH 7.4) containing 0.1 % Tween-20. Anti-claudin-5 and anti-occludin 

mouse monoclonal antibodies, anti-ZO-1 rabbit polyclonal antibody (all from Zymed 

Laboratories Inc., CA, USA), anti-Mdr rabbit and anti-MRP1 goat polyclonal antibodies 

(Santa Cruz Biotechnology, Inc., CA, USA), anti-glucose transporter-1 rabbit polyclonal 

antibody (Millipore Corp., MA, USA) were used in a dilution of 1:5000 in blocking solution 

to incubate blots for 1 h at room temperature. Peroxidase-conjugated anti-mouse, anti-rabbit 

and anti-goat immunoglobulins (GE Healthcare, UK) were applied as secondary antibodies. 

Between incubations blots were washed three times with TBS. To reveal immunoreactive 

bands the blots were incubated in ECL Plus reagent following the manufacturers instructions 

(GE Healthcare, UK) and detected by FluorChem SP Imaging System (Alpha Innotech Corp., 

CA, USA). 

 
2.7. Functional assay for P-glycoprotein  

 

Activity of P-glycoprotein was determined by the measurement of the polarity of the 

transport of rhodamine 123, a ligand of P-glycoprotein (Fontaine et al., 1996). In brief, the 

inserts containing the cell layers were gently washed and the flux of 1 μM rhodamine 123 in 

Ringer-Hepes buffer was measured for 1 h at 37C in the luminal-to-abluminal and in the 

opposite abluminal-to-luminal directions. Rhodamine 123 content in both compartments was 

determined by Wallac 1420 ARVO Multilabel Counter (Perkin Elmer, USA; excitation at 485, 

emission at 538 nm). Verapamil (2 μM, 30 min preincubation) was used as a reference P-

glycoprotein inhibitor. 

 

2.8. In vitro drug transport experiments 
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To measure the flux of 19 drugs selected for the study (Table 1) across the endothelial 

and pericyte monolayers cell culture inserts following measurement of TEER were transferred 

to 12-well plates containing 1.5 ml Ringer-Hepes solution in the lower compartments. All test 

compounds were dissolved in DMSO to yield a 1 mM solution, which was further diluted in 

Ringer-Hepes buffer. In the upper or luminal chambers culture medium was replaced by 0.5 

ml Ringer Hepes containing the test compounds at 1 μM concentration. The inserts were 

transferred at 20, 40 and 60 min to a new well containing Ringer-Hepes solution. The 

concentrations of the test molecules in samples from the upper (luminal) and lower 

(abluminal) compartments were determined by high performance liquid chromatography. Pe 

was calculated for each drug as described in data analysis. 

 

2.9. In vivo studies of drug permeability in mice 

The distribution of compounds to brain tissue in vivo was measured using a tissue 

distribution model in mice (Garberg et al., 2005). Five min after the injection of a single dose 

of the compounds in anesthetized mice via tail vein (n=3), blood samples were collected from 

vena cava and the whole brain was removed. The concentration of the compounds in brain 

and plasma samples were measured by liquid chromatography-tandem mass spectrometry 

(LC-MS/MS). The ratio of the concentration in brain and plasma (Kp) was determined for 

each drug. The ratio was then used to calculate the apparent permeability coefficient (Papp), as 

described in section 2.10., presuming that metabolism, back-flux and tissue accumulation are 

negligible at that time point. 

 

2.10. Analysis of permeability data and correlation with in vivo results 

 

Transport was expressed as μl of donor (luminal) compartment volume from which 

the tracer is completely cleared. Transendothelial permeability coefficient (Pe) was calculated 

as previously described (Deli et al., 2005; Veszelka et al., 2007). Cleared volume was 

calculated from the concentration (C) of the tracer in the abluminal and luminal compartments 

and the volume (V) of the abluminal compartment (0.5 ml) by the following equation: 

luminal

abluminalabluminal

C

VC 
(µl) volumeCleared  

The average cleared volume was plotted vs. time, and permeability  surface area product 

value for endothelial monolayer (PSe) was calculated by the following formula: 



 11

inserttotallendothelia PSPSPS

111
  

PSe divided by the surface area (1 cm2 for Transwell-12) generated the endothelial 

permability coefficient (Pe; in 10-6 cm/s).  

The in vivo data were obtained as described in section 2.9. Brain uptake assays were 

performed with the compounds, and in vivo Papp values were calculated from the ratio 

between the concentration in the plasma and brain tissue at 5 min and expressed as cm/s 

(Ohno et al., 1978, Garberg et al., 2005). The capillary surface area value of 240 cm2/g brain 

was used for the calculations (Garberg et al., 2005). 

 

2.11. Statistical analysis 

All data presented are means ± S.E.M. The values were compared using the analysis 

of variance followed by Bonferroni-Dunn test. Changes were considered statistically 

significant at P < 0.05. All experiments were repeated at least three times, and the number of 

parallel inserts was four. 

 

3. Results 

 

3.1. Characterization of the cells of the triple co-culture BBB model by immunfluorescence 

and electron microscopy 

 

Rat brain endothelial cells obtained by the puromycin purification method (Fig. 1; 

Perrière et al., 2005; Veszelka et al., 2007; Nakagawa et al., 2007) grow in non-overlapping 

continuous monolayers and show tightly apposed, elongated, fusiform morphology and 

positive immunostaining for von Willebrand factor, a marker for endothelium (Fig. 2). 

Astroglia cells characterized by GFAP immunostaining are polygonal with long cell processes 

resembling astroytic endfeet and indicating a differentiated phenotype could be also observed 

(Fig. 2). The shape and size of brain microvascular pericytes are very different from the other 

two cell types of the neurovascular unit (Fig. 2). Pericytes in culture spread large with 

irregular projections. They may grow in multiple layers and are positive for pericyte-markers 

NG2 chondroitin sulfate proteoglycan, nestin (data not shown) and α-smooth muscle actin and 

negative for von Willebrand factor and GFAP staining (Fig. 2). When brain endothelial cells 

were cultured in the presence of both pericytes and astrocytes (EPA model Fig. 1) smooth 

luminal membrane, long and oval cell nuclei (Fig. 3A), a great number of mitochondria (Fig. 
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3B), and interendothelial tight junctions (Fig. 3C) could be observed by electron microscopy. 

The cell nuclei of brain pericytes were more round and the cell bodies protruding (Fig. 3D). 

No junctions were present between pericytes (Fig. 3D). Long thin pericytic cytoplasmic 

processes were also typical (Fig. 3E).  

 

3.2. Paracellular permeability of the BBB models 

 

As compared to brain endothelial cell monolayers which received no influence from 

other cells (E00 on Fig. 4), all co-culture models showed higher TEER and lower 

permeability for fluorescein (Fig. 4). Astrocytes (EA0 and E0A) could increase the tightness 

of endothelial monolayers more than two-fold. The effect was higher when astrocytes were 

positioned on the bottom-side of the inserts in the in contact type model EA0. The presence of 

pericytes (EP0 and E0P) elevated the TEER of RBEC by four-fold on culture day 4 (Fig. 4), 

an effect that was significantly higher than that of astrocytes standardly used in BBB models. 

Triple co-culture models (EAP and EPA) were thigher than the double co-culture models as 

reflected by the TEER values. The resistance of EPA model increased up to 354 ± 15 Ω × cm2 

at day 4, the highest value of the seven models tested which significantly differs from all 

other models (Fig. 4). High TEER was observed in the models constructed with pericytes, as 

compared with those without pericytes. In addition, endothelial cells in contact with pericytes 

(EP0, EPA) showed higher TEER than those out of contact with pericytes (E0P, EAP). 

Astrocytes or pericytes do not form any barrier, as reflected by their very low resistance 

which never exceeded 10 Ω × cm2. The paracellular permeability of RBEC monolayers 

measured by the water soluble small marker fluorescein was the highest in endothelial mono-

cultures (E00; 6.6 ± 0.1 × 10-6 cm/s), indicating the leakiest barrier (Fig. 4). The presence of 

astrocytes or pericytes in either double or triple co-culture systems significantly decreased the 

flux of the tracer. A low permeability for Na-F (3.9 ± 0.2 × 10-6 cm/s) could be measured on 

EPA model of the BBB (Fig. 4). 

 
3.3. Expression and localization of interendothelial tight junction proteins in the BBB models 
 

The levels of TJ proteins occludin, claudin-5 and ZO-1 in brain endothelial cells 

cultured in the absence or presence of astrocytes and pericytes were determined by Western-

blot (Fig. 5). The presence of astrocytes and pericytes increased the expression of endothelial 

TJ proteins. The highest relative levels of claudin-5 and ZO-1 were measured in the triple co-
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culture model EPA, the anatomically correct model, and differed significantly from 

endothelial mono-cultures (E00, Fig. 5). Similar tendency could be observed for occludin. 

Examination of brain endothelial monolayers by immunohistochemistry revealed that 

both E00 and EPA models show strong staining for intercellular junction proteins ZO-1 and 

claudin-5 at cell-cell contacts (Fig. 6). In endothelial cells grown in the absence of any 

cellular interaction (E00) irregular, „zipper-like” localization of the TJ proteins could be 

observed. Punctate distribution in the cytoplasm close to the cell junctions was also visible 

(Fig. 6 arrows). In contrast localization of ZO-1 and claudin-5 was more restricted to 

intercellular junctions delineating clearly cell borders in brain endothelial cells grown in the 

triple co-culture (EPA model; Fig. 6 arrowheads). Zipper-like irregularities and cytoplasmic 

localizations were also reduced in these cells. 

 

3.4. Expression of transporters in the triple co-culture model 
 

Brain endothelial cells in the EPA model express the BBB-specific transporter for 

hexoses, glucose transporter-1, revealed by western blotting as a major band at 45 kDa and a 

weaker band of 55 kDa isoform, both described as glucose transporter-1 isoforms in brain 

(Fig. 7; Yu and Ding, 1998). A strong and even distribution of glucose transporter-1 was 

observed in brain endothelial cells by immunohistochemistry. Among the efflux pumps 

present at the BBB Mrp1 was detected as a single immunoreactive band of 190 kDa (Fernetti 

et al., 2001) and P-glycoprotein as a band at 170 kDa (Rao et al., 2005). Both pumps could be 

also visualized in brain endothelial cells by immunohistochemistry (Fig. 7). In addition, the 

functional activity of Pgp was also tested on the EPA model using rhodamine 123 as a ligand. 

The abluminal to luminal (brain-to-blood) transport of the Pgp ligand was 2.5 times higher 

than in the opposite direction, indicating a strong efflux. 

 

3.5. Drug permeability and correlation with in vivo data 

 

The triple co-culture EPA model was further characterized by testing drug 

permeability. For these assays 19 compounds with known permeability properties including 

passive and active transport at the level of BBB were selected (Table 1). All molecules which 

enter the nervous system by lipid-mediated free diffusion and exert a central effect, antipyrin, 

caffeine, carbamazepine, hydroxyzine, phenytoin, propranolol, trazodone and zolpidem 

(indicated as CNS+ drugs) displayed a high Pe (147.36 - 1174.04 × 10-6 cm/s) when measured 
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on the model (Fig. 8). In contrast, the Pe value of hydrophilic small molecules with passive 

diffusion, like atenolol, or that of efflux pump ligands, like cimetidine, digoxin, epinastine, 

hydrocortisone, hydroxyzine, prazosin, quinidine, sulpiride, verapamil, vinblastine, vincristine, 

that all have low BBB permeability in vivo (indicated as CNS- drugs) was also small when 

tested on the in vitro BBB model (0.44 - 23.51 × 10-6 cm/s; Fig. 8). When the data obtained 

on the in vitro model were compared with in vivo data expressed as Papp for the same 

compounds a correlation of R2 = 0.89 was found (Fig. 9).  

 

4. Discussion 

 

In the present study we have constructed and characterized a novel BBB model 

consisting of the triple co-culture of primary rat brain endothelial cells, pericytes and 

astrocytes with the aim to produce a tool for research on BBB physiology, pathology and 

pharmacology. 

 

4.1. Development of the in vitro BBB model: methodical considerations 

 

To establish the model three advances in culture techniques have been exploited as 

shown on Fig. 1. (i) The puromycin method (Perrière et al., 2005 and 2007; Calabria et al., 

2006; Veszelka et al., 2007; Nakagawa et al., 2007) was used to obtain pure cultures of rat 

brain endothelial cells on which all further experiments were based. The principle of the 

method is that endothelial cells of cerebral capillaries express much higher amounts of efflux 

pumps especially P-glycoprotein than any other cells in the freshly isolated brain microvessel 

fractions and tolerate the otherwise toxic concentrations of P-glycoprotein ligand drugs while 

non-endothelial cells are eliminated. Puromycin was found to be the best among the P-

glycoprotein ligands to selectively kill contaminating cells during the first 2 days of the 

culture (Perrière et al., 2005). This selection can also favor capillary endothelial cells versus 

those from larger microvessels, and this could lead to tighter monolayers and better BBB 

models (Ge et al., 2005). 

(ii) Glucocorticoid receptor agonists either physiological like corticosterone and 

hydrocortisone or pharmacological like dexamethasone are known to improve the tightness of 

brain endothelial cells and are used in BBB models (for reviews see Deli et al., 2005; Deli, 

2007). Dexamethasone an effective synthetic glucocorticoid hormone strengthens barrier 

properties, increases TEER and decreases Pe for paracellular markers in many models (for 
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reviews see Deli et al., 2005; Deli, 2007). Physiological concentration of hydrocortisone 

considerably improves the barrier properties of porcine cerebral endothelial cells in serum-

free culture conditions (Hoheisel et al., 1998). Corticosterone is the major glucocorticoid 

hormone in rodents not having hydrocortisone, however both corticosterone and 

hydrocortisone are effective in improving paracellular tightness in cultured rat brain 

endothelial cells (Calabria et al., 2006). Hydrocortisone with more potent anti-inflammatory 

properties was more effective enhancer of the barrier properties in rat cerebral endothelial 

monolayers than corticosterone (Calabria et al., 2006). These results are in agreement with 

previous observations that hydrocortisone improved the barrier properties in both rat (Perrière 

et al., 2005) and mouse BBB models (Weidenfeller et al., 2005). Further studies on rat BBB 

models (Perrière et al., 2007; Veszelka et al., 2007; Nakagawa et al., 2007) and our present 

data all confirm the pharmacological effect of hydrocortisone on rat brain endothelial cells.  

(iii) Cell culture inserts enabled the establishment of BBB models using three cell types. 

Previous triple co-culture BBB models used combinations of brain endothelial cells or cell 

lines, astrocytes, neurons, and leukocytes (for review see Deli, 2007). The presence of both 

astrocytes and neurons decreased the paracellular permeability of RBE4 immortalized rat 

brain endothelial cells (Schiera et al., 2005). In a flow-based in vitro BBB model, the 

differentiation of serotonergic neurons was promoted by the endothelial-glial co-culture 

(Stanness et al., 1999). Although the new model characterized in this study is not the first 

BBB model using three cell types, this is the first rat primary culture-based syngeneic model 

that uses brain pericytes and correspponds to the anatomical situation in brain capillaries 

(Nakagawa et al., 2007). 

 

4.2. The role of pericytes in the induction of BBB properties 

 

Pericytes are crucial in the angiogenesis of the nervous system. Growing microvessels 

of the human telencephalon are formed by a pericyte-driven angiogenic process in which the 

endothelial cells are preceded and guided by migrating pericytes (Virgintino et al., 2007). 

Pericytes also contribute to the maturation and maintenance of BBB properties (for review see 

Lai and Kuo, 2005). Pericytes form direct interdigitating contacts with vascular endothelial 

cells in vivo and there is a clear correlation between higher ratio of pericytes versus 

endothelial cells in blood vessels and the tightness of the endothelial barrier (Allt and 

Lawrenson, 2001). The barrier tightening effect of pericytes was demonstrated on in vitro 

BBB models (Hayashi et al., 2004; Dohgu et al., 2005; Nakagawa et al., 2007). Pericytes were 
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found the be even more effective inducers than astrocytes of paracellular tightness in primary 

rat brain endothelial cells (Nakagawa et al., 2007). While several observations found that 

pericytes or extracellular matrix from pericytes (Hartmann et al., 2007) improve the tightness 

of brain endothelial cells, interestingly, pericyte-endothelial interaction increased matrix 

metalloproteinase-9 secretion and did not improve barrier tightness in a porcine BBB model 

(Zozulya et al., 2008). The differences between species, the models and the culture conditions 

including the preparation of pericyte cultures may explain the dissimilar results. 

Pericytes used in our study were derived from the same brain microvessel fraction from 

which endothelial cells were obtained, but they were cultured separately in conditions 

favoring pericyte growth. The morphology of brain pericytes revealed by light and electron 

microscopy was typical for this cell type (Dore-Duffy, 2008). While smooth muscle cells can 

also express α-smooth muscle actin, the expression of markers NG2 chondroitin sulfate 

proteoglycan and nestin are indicative for brain pericytes (Dore-Duffy, 2008). These pericytes 

together with astrocytes in the presence of hydrocortisone induced in the puromycin-purified 

primary brain microvascular endothelial cells a cytoarchitecture typical for the BBB. The 

tightly apposed, elongated, fusiform cells expressing the endothelial marker von Willebrand 

factor grew in monolayers in a contact inhibited fashion and were connected by tight junction. 

Glucocorticoids can exert a direct action on endothelial cells by switching endothelial 

morphology from larger, cobblestone appearance to smaller spindle shape and increasing 

endothelial cell density via an anti-apoptotic effect (Calabria et al., 2006). In addition, an 

indirect glucocorticoid effect has been suggested through astrocytes and brain pericytes by 

upregulation of angiopoietin-1 and downregulation of VEGF resulting in the stabilization of 

barrier properties at the BBB (Kim et al., 2008). 

 

4.3. Characterization of BBB properties in the new triple co-culture model 

 

The paracellular permeability of the new model with TEER of 350-600 Ω×cm2 

(measured on a 1 cm2 surface with a standard, commercially available instrument; results 

from more than 40 preparations and 600 filters during a period of 2 years) and fluorescein Pe 

between 1.8 - 4  10-6 cm/s is more restrictive than any cell line based BBB model and is 

among the best primary cell based BBB models (for reviews see Deli et al., 2005 and Deli, 

2007). Although higher TEER and, or lower Pe values were described for some bovine and 

porcine models (Zenker et al., 2003; Hoheisel et al., 1998), they have not been extensively 
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characterized for drug permeability except for the bovine brain endothelial cell and rat glia 

co-culture model (Cecchelli et al., 2007). 

Brain endothelial cells in the triple co-culture EPA model, which shows the tightest 

paracellular barrier for ions and fluorescein among the seven models tested in our 

experiments, expressed the highest level of TJ proteins occludin, claudin-5 and ZO-1. The 

localization of claudin-5 and ZO-1 was also more restricted to the interendothelial junctions 

in the EPA model than in brain endothelial cells cultured alone. The higher expression and 

junctional localization of claudin-5 is especially important in the new model, because this TJ 

protein is the only one so far which has been directly linked to restricted BBB permeability in 

vivo (Nitta et al., 2003). Angiopoietin-1 is a likely candidate molecule to mediate this effect, 

because it is upregulated in both pericytes and astrocytes by glucocorticoid treatment (Kim et 

al., 2008) and pericyte-derived angiopoietin-1 enhanced occludin gene expression in a brain 

endothelial cell line (Hori et al., 2004).  

In addition to the induction of barrier properties the presence of the influx transporter 

proteins Glut-1 and the efflux transporters Mrp-1 and Pgp was demonstrated in the new model. 

These transporters are crucial for the nutrient transport and for the extrusion of drugs at the 

BBB (Pardridge, 2002; Abbott et al., 2006; Zlokovic, 2008). The polarity of the Pgp efflux 

pump activity was also demonstrated in a functional assay in the triple model. Astrocytes, 

pericytes and hydrocortisone may all contribute to the expression of BBB transporters in brain 

endothelial cells. It has been demonstrated earlier, that cerebral endothelial cells when 

cultured alone lose the expression of efflux transport proteins and this can be reversed by co-

culture with astrocytes (Berezowski et al., 2004). In the same study the mRNA expression of 

MRP6 efflux pump was up-regulated in bovine brain endothelial cells by pericytes 

(Berezowski et al., 2004). Rat pericytes also enhanced P-glycoprotein activity in a mouse 

brain endothelial cell line, MBEC4 (Dohgu et al., 2005). Astrocytes, hydrocortisone and 

cyclic AMP increased the transcript level of Glut-1, Mdr1a (Pgp), Mrp3, Mrp4 and Bcrp in rat 

brain endothelial cells (Perrière et al., 2007).  

 
4.4. Drug permeability test on the new BBB model 

 
The pharmaceutical industry needs reliable in vitro BBB models for predicting BBB 

permeability of CNS drugs. Any in vitro model to serve as a permeability screen should 

display a restrictive paracellular pathway, a physiologically realistic cell architecture and 

functional expression of transporter mechanisms (Gumbleton and Audus, 2001). As we could 
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demonstrate, the new model possesses all these criteria. A further advantage of the rat BBB 

model is that it can be easily compared to in vivo results and measurements, and it is simple to 

construct syngenic cultures. We tested the drug permeability of the new model with a set of 

19 compounds, the largest set ever tested on primary cell-based in vitro rat BBB model. From 

the results it was possible to discriminate between passively and actively distributed drugs, 

compounds with good penetration to the CNS and ligands of efflux transporters. Moreover, a 

good correlation, R2 = 0.89, was obtained when data from the in vitro model were compared 

with in vivo data.  

The only rat BBB model which has been tested for 22 compounds in a comparative 

study, is an SV40-immortalized rat brain endothelial cell line called SV-ARBEC (Garberg et 

al., 2005). The TEER values of monolayers were only 50-70 Ω × cm2, correlation between in 

vitro and in vivo permeability coefficients was low and the model could not distinguish 

between passively and actively distributed compounds. Our results compare favorably to the 

best BBB model tested in that study, bovine brain endothelial cells cultured with rat glia cell, 

which also could discriminate between passively transported compounds and substrates of 

active efflux (Garberg et al., 2005) and gave high correlation between in vivo and in vitro 

permeability data in earlier reports (Cecchelli et al., 1999).  

 
4.5. Conclusion 

 
In vitro reconstituted BBB models are important research implements to study the 

structural and functional organization of the BBB under physiological and pathological 

conditions. Furthermore pharmacological studies on reliable and reproducible in vitro BBB 

models can accelerate the research and development of new drugs with better brain 

penetration. The syngeneic rat BBB model established and characterized in this study could 

be a new tool for basic research and pharmaceutical screening. 
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Legend to Figures 
 

Fig 1 Schematic drawing of the preparation of the in vitro BBB model. Rat brain endothelial 

cells (RBEC) are isolated 4 days before the establishement of the co-culture system. To purify 

cultures cells are kept in the presence of puromycin for two days. Rat astrocytes are seeded at 

the bottom of 12-well plates, while rat brain pericytes at the filter membranes of inverted cell 

culture inserts the day before the start of the co-culture. On day 0 RBECs are added to the 

luminal compartment of the inserts having pericytes on the other side and positioned in the 

12-well plates containing the astrocytes. From day 1 cells are grown in culture medium 

containing 500 nM hydrocortisone. Experiments were performed on day 4. 

 

Fig. 2 Characterisation of primary cultures by immunofluorescence microscopy. Brain 

endothelial cells express factor VIII-related antigen/von Willebrand factor, while astrocytes 

are positive for glial fibrillary acidic protein (GFAP). Pericytes give a positive 

immunostaining for α-smooth muscle actin and NG2, markers of brain pericytes while are 

negative for endothelial or glial markers. Bar=50 μm. 

 

Fig. 3 Transmission electron microscopy images of brain endothelial cells (A, B, C) and brain 

pericytes (D, E) grown in the triple co-culture model on the two sides of the filter membrane 

of Transwell inserts, marked on pictures as membrane. Brain endothelial cells show typical 

morphology with oval nucleus (A), many mitochondria (A, B) and tight intercellular junctions 

(C). There are now junctions between pericytes which have more round cell bodies and nuclei 

(D) but also long thin processes (E). Bar=600 nm. 

 

Fig. 4 Transendothelial electrical resistance (TEER, expressed as Ω × cm2) and endothelial 

permeability coefficient for sodium fluorescein (Na-F Pe, expressed in 10-6 cm/s) of the 

different blood-brain barrier models constructed from brain endothelial cells (E), astrocytes 

(A) and pericytes (P). All data are presented as means ± S.E.M. (n=8). Statistically significant 

differences (P < 0.05) in TEER are indicated compared to E00 (a), EA0 (b), E0A (c), EP0 (d), 

E0P (e) and EAP (f), whereas these in Pe are indicated compared to E00 (A), E0A (B),  

respectively. 

 

Fig. 5 Expression of the tight junction integral membrane proteins occludin and claudin-5, 

and the cytoplasmic tight junction protein zonula occludens-1 (ZO-1) in different blood-brain 
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barrier models detected by Western blot. The relative level of the proteins was determined by 

densitometry. Brain endothelial cells were kept in co-culture with astrocytes in contact (EA0) 

or out of contact (E0A), with pericytes in contact (EP0) or out of contact (EPA), or with both 

pericytes and astrocytes (EAP, EPA).  

 

 

Fig. 6 Immunofluorescent staining of confluent brain endothelial cell monolayers alone (E00) 

and in triple co-culture (EPA) for tight junction proteins ZO-1 and claudin-5. Arrows show 

zipper-like staining between endothelial cells in the E00 model, while the junctional 

immunostaining of endothelial cells in co-culture (EPA) forms a continuous, smooth, 

pericellular, belt-like pattern (arrowheads). Bar=20 μm. 

 

Fig. 7 Expression of the influx transporter protein glucose transporter-1 (GLUT1) and the 

efflux transporters multidrug resistance protein-1 (Mrp1) and P-glycoprotein (Pgp) in brain 

endothelial cells cultured in the presence of brain pericytes and astrocytes (EPA model) by 

Western blot and immunohistochemistry. The function of Pgp was tested by the transport of 

its ligand rhodamine 123 (R123) in the apical to basolateral (A to B) and basolateral to apical 

(B to A) directions. 

 

Fig. 8 Endothelial permeability coefficients of drugs tested at the in vitro blood-brain barrier 

model (in vitro Pe) consisting of brain endothelial cell monolayers cultured in the presence of 

brain pericytes and astrocytes. Drugs with known penetration to the central nervous system 

(CNS +) and with low permeability across the BBB and no central effects (CNS -) were 

selected. 

 

Fig. 9 Correlation between endothelial permeability coefficients of drugs tested at the in vitro 

blood-brain barrier model (brain endothelial cell monolayers cultured in the presence of brain 

pericytes and astrocytes, EPA model) (in vitro Pe) and the apparent permeability coefficients 

of the same drugs measured in animal models (in vivo Papp). 

 

Table 1 List of the drugs selected for transport study across brain endothelial cell monolayers 

cultured in the presence of brain pericytes and astrocytes (EPA model). Drugs with known 

penetration to the central nervous system (CNS +) are mostly lipophilic and cross brain 

endothelial cell membranes by lipid-mediated free diffusion. Drugs with low permeability 
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across the BBB and no central effects (CNS -) are actively extruded by brain endothelial 

efflux transporters. BCRP, brain cancer resistance protein (ABCG2); MRP-1, multidrug 

resistance protein-1 (ABCC1); MRP-2, multidrug resistance protein-2 (ABCC2); OATP2, 

organic anion transporting polypeptide-2 (SLCO1B1); OCT, organic cation transporter 

(SLC22); Pgp, P-glycoprotein (ABCB1); Pe, endothelial permeability coefficient. 
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Table 1 
 

Name MW CNS Transport 
Pe 

(10-6cm/s) 

 antipyrin 188 +  passive lipophilic  222.51

 atenolol 226 -  passive hydrophilic 2.49

 caffeine 212 +  passive lipophilic  496.67

 carbamazepine 236 +  passive lipophilic  198.53

 cimetidine 252 -  efflux: Pgp, BCRP, OCT1-3, OCTN-1  2.99

 digoxin 781 -  efflux: Pgp, Oatp2  0.44

 epinastine 286 -  efflux: Pgp  1.87

 hydrocortisone 362 -  efflux: Pgp 5.67

 hydroxyzine 448 +  passive lipophilic  1174.04

 phenytoin 252 +  passive lipophilic  326.73

 prazosin 420 -  efflux: BCRP, Pgp 22.91

 propranolole 296 +  passive lipophilic  1987.16

 quinidine 783 -  efflux: Pgp, OCT-1  7.54

 sulpiride 341 -  efflux: Pgp, influx: OCTN-1, -2, PEPT1 4.39

 trazodone 408 +  passive lipophilic  333.61

 verapamil 491 -  efflux: Pgp, OCT1-3, OCTN-1 23.51

 vinblastine 909 -  efflux: Pgp, MRP-1, -2  3.20

 vincristine 923 -  efflux: Pgp, MRP-1, -2 6.32

 zolpidem 382 +  passive lipophilic  147.36
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