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Abstract 

 

We examined the effect of chronic exposure of tumor cells to a mitogen-activated protein 

kinase/extracellular signal-regulated kinases (ERK) kinase inhibitor, PD98059, on cell 

proliferation was investigated. Human renal carcinoma cells (ACHN) and prostatic 

carcinoma cells (DU145) were cultured in the presence of PD98059 for more than 4 

weeks (denoted ACHN (PD) cells and DU145 (PD) cells, respectively) and proliferation 

and signal transduction pathways were examined. PD98059 significantly inhibited the 

proliferation of parental cells. However, PD98059 failed to inhibit proliferation of ACHN 

(PD) and DU145 (PD) cells significantly. Expression of ERK 1 and 2 was elevated in 

these cells. These phenotypes were reversible. Downregulation of ERK 2, but not ERK 1, 

by small interfering RNA significantly inhibited the proliferation of ACHN (PD) and 

DU145 (PD) cells. Taken together, chronic exposure of tumor cells to PD98059 induced 

elevated expression of ERK 2, which was associated with decreased sensitivity of cellular 

proliferation to PD98059.  
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        Extracellular signal-regulated kinase (ERK) 1 and 2 are activated through the 

Ras-Raf-Mitogen-activated kinase (MAPK)/ERK kinase (MEK) pathway and play 

fundamental roles in a variety of pathophysiological conditions, such as embryonic 

development, inflammation, tumor growth, and angiogenesis [1, 2]. In particular, their 

important roles in regulating tumor cell proliferation and migration encouraged us to 

target these kinases as a potent therapeutic strategy for cancer patients [2-4]. 

        MEK 1 and 2 are the only upstream molecules that are able to activate ERK 1 and 2. 

Thus, specific inhibition of MEK achieves specific and efficient inactivation of ERK[3, 

4]. In human cancer cells, ERK activity is frequently elevated than in normal adjacent 

cells [5]. It has been shown that MEK inhibitors potently blocked the tumor progression 

in xenografted animal models [6, 7]. However, MEK inhibitors did not affect human 

tumors in clinical trials [8, 9]. 

        To address the question of how human tumor cells evade the inhibitory action of 

MEK inhibition at a cellular level, we examined the effects of chronic exposure to 

PD98059 on human tumor cells. We show here for the first time that the chronic exposure 

of tumor cells to a MEK inhibitor upregulated the expression of ERK 2, which was 

involved in the decreased sensitivity of their proliferation to MEK inhibitor-treatment. 
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Materials and Methods 

 

    Materials Anti-MEK 1 polyclonal antibody (12-B), small interfering RNA (siRNA) for 

human ERK 1 and 2, and non-targeting control siRNA were purchased from Santa Cruz 

Biotechnologies, Santa Cruz, CA. Anti-phospho-mitogen-activated protein kinase 

(MAPK) polyclonal antibody was obtained from Cell Signaling Technology, Inc., 

Beverly, MA. Anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) monoclonal 

antibody was purchased from Chemicon International, Temecula, CA, and anti-ERK 1/2 

polyclonal antibody was from Upstate Cell Signaling Solutions, Lake Placid, NY. 

Minimal essential medium (MEM), Ham’s F-12 medium, non-essential amino acids 

(NEAA), and anti-vinculin monoclonal antibody (VIN-1) were purchased from Sigma 

Chemical Company, St. Louis, MO. Fetal bovine serum was obtained from Invitrogen 

Corporation, Carlsbad, CA. HiPerFect transfection reagent was purchased from Quiagen 

K.K., Tokyo, Japan. PD98059 was obtained from Wako Pure Chemicals, Osaka, Japan. It 

was dissolved in dimethyl sulfoxide (DMSO) and stored at -80°C until use. After thawing, 

it was dissolved in culture medium and added to the cells. The final concentration of 

DMSO was 0.1% and the same amount of DMSO was added to the cells not treated with 

PD98059. 

 

    Cell culture A human renal carcinoma cell line, ACHN cells [10], was purchased from 

Dainippon Pharmaceuticals, Tokyo, Japan. A hormone-resistant human prostate cancer 

cell line, DU145 cells, was obtained from the American Type Culture Collection. ACHN 
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cells were cultured in MEM supplemented with NEAA and 10% FBS, and DU145 cells 

were cultured in Ham's F-12 medium supplemented with 10% FBS. For the chronic 

exposure of cells to PD98059, cells were cultured in the presence of 50 M PD98059 for 

more than 4 weeks. To remove the effect of chronic exposure to PD98059, cells were 

further cultured without PD98059 for 2 weeks. The culture medium was changed to fresh 

medium every 3 days. As described below, these cells were examined biologically and 

biochemically in the presence or absence of PD98059 (the short-period treatment). To 

avoid confusion between chronic exposure and the short-period treatment with PD98059, 

unexposed parental cells were denoted ACHN (pa) or DU145 (pa) cells, cells chronically 

exposed to PD98059 (for more than 4 weeks) were denoted ACHN (PD) or DU145 (PD) 

cells, and cells exposed to PD98059 for 4 weeks and then cultured without PD98059 for 2 

weeks were denoted ACHN (no PD) or DU145 (no PD) cells, respectively. If not 

specifically stated, ACHN (pa) cells, ACHN (no PD) cells, DU145 (pa) cells, and DU145 

(no PD) cells were cultured without PD98059. ACHN (PD) cells and DU145 (PD) cells 

were cultured with PD98059 in all assays, except when otherwise specified. 

 

    Cell proliferation assay Cells were suspended in either MEM with NEAA or Ham's 

F-12 medium containing 10% FBS and seeded into 24-well plates at a density of 1  104 

cells/well in the presence of 0.1% DMSO or 50 M PD98059. After 3 days, the cells were 

detached with trypsin and counted with the use of a hemocytometer. Cell number without 

short-period PD98059-treatment was set to 100. 
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    Labeling index Labeling index was examined to determine the numbers of cells in 

S-phase using the bromodeoxyuridine (BrdU) In-Situ detection kit® (BD Biosciences 

Pharmingen, San Diego, CA) as described before [11]. In brief, cells were seeded into 

wells of 48-well-culture plates. On the following day, medium was changed to fresh 

medium containing 10% FBS with either 0.1% DMSO or 50 M PD98059, and culture 

was continued. After 16 h, cells were pulse-labeled for 4 h with BrdU. Cells were then 

fixed, treated with 4 M HCl, and uptaken BrdU was visualized with anti-BrdU antibody. 

At least 500 cells were counted for each well, and labeling indices were determined as 

labeled nuclei/total nuclei ratios and expressed as percentages.  

 

    Treatment of cells with siRNA Cells suspended in MEM with NEAA or Ham’s F-12 

medium containing 10% FBS were seeded into 24-well plates (2  104 cells/well) and 

cultured for 20 h. Culture medium was replaced with fresh medium containing 10% FBS. 

Serum-free medium supplemented with HiPerFect reagent and siRNA at the indicated 

concentrations were mixed, left for 20 min at room temperature, and then added to cells. 

The culture was continued for 2 days. Cells from one set of cultures were counted (three 

wells of each treatment) and total cell lysates, normalized by cell number, were examined 

for the expression of ERK proteins by immunoblotting as described below.  

 

    Immunoblot analyses Cells grown in 24-well plates were serum-starved overnight and 

then stimulated or left unstimulated with 10% FBS for the indicated periods. Two sets of 

culture were prepared, one set was used for immunoblotting and the other set was used for 
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cell counts. Cells were lysed by boiled SDS-sample buffer, and the proteins from 3  104 

cells in each lysate were separated on SDS-polyacrylamide gels. Proteins were 

electrotransferred onto polyvinylidene difluoride membranes (Millipore, Bedford, MA). 

Membranes were incubated with the indicated antibodies, followed by incubation with 

peroxidase-conjugated secondary antibodies. Proteins were visualized using enhanced 

chemiluminescence reagents and exposed on X-ray films. X-ray films were scanned and 

the densities of particular bands were measured by NIH Image ver. 1.64. Fold activation 

of ERK 2 was estimated by the ratio of optimal density of phospho-ERK 2/ optimal 

density of ERK 2 in FBS-treated cells to that in untreated cells. ERK 2/vinculin or ERK 

1/GAPDH ratios were cauculated as the ratio of optimal density of ERK 2 or 1/optimal 

density of vinculin or GAPDH.  

 

    Statistical analysis Values are presented as mean cell numbers ± SD. Differences 

between two groups were examined by Mann-Whitney’s U test. Differences were 

considered significant when the P value was less than 0.05. 
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Results  

 

Effects of chronic exposure to PD98059 on cell proliferation  

        We first examined whether PD98059 inhibits FBS-induced activation of ERK 1 and 

2 in ACHN (pa) cells and DU145 (pa) cells. Proteins from 3  104 cells were examined. 

As shown in Fig. 1 A, PD98059 at 50 M efficiently inhibited FBS-induced ERK 

activation. These cells were cultured in the presence of 50 M PD98059 for 4 weeks to 

obtain ACHN (PD) cells and DU145 (PD) cells. ACHN (no PD) cells and DU145 (no 

PD) cells were derived from ACHN (PD) cells and DU145 (PD) cells, respectively, by 

culturing them in the absence of PD98059 for 2 weeks. The proliferation of these cells in 

the presence or absence of PD98059 (short-period treatment) was determined. As shown 

in Fig. 1 B, the proliferation of ACHN (pa) cells was significantly and dose-dependently 

inhibited by PD98059 treatment. Proliferation of ACHN (PD) cells was inhibited by 

PD98059 treatment, but the inhibition was not statistically significant. Proliferation of 

ACHN (no PD) cells was significantly and dose-dependently inhibited by PD98059 

treatment. Similar results were obtained with DU145 cells (Fig. 1 C). Decrease in cell 

number is affected by the inhibition of proliferation and induction of apoptosis. We did 

not observe dead, floating cells during the experiments. However, to confirm that the 

effect of PD98059 was due to the inhibition of cell cycle, we examined the number of 

cells in S-phase by labeling index. As shown in Fig. 1 D, ACHN (PD) cells and DU145 

(PD) cells in S-phase were not significantly decreased by PD98059, indicating that 

chronic exposure of cells to PD98059 decreased the sensitivity of cell cycle progression 
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to PD98059. These results suggest that the sensitivity of the proliferation of ACHN (PD) 

cells and DU145 (PD) cells to PD98059 was decreased, and that the sensitivity was 

reversed when PD98059 was removed from the culture medium.  

 

Effects of chronic exposure to PD98059 on ERK activation 

        We next examined the ERK activation by FBS in these cells. ACHN (pa) cells and 

ACHN (PD) cells were either stimulated or left unstimulated by 10% FBS for 10 min, and 

protein from 3  104 cells was analyzed. As shown in Fig. 2 A, ERK activation of ACHN 

(PD) cells by FBS was observed at a level similar to that of ACHN (pa) cells. However, 

ERK expression was elevated in ACHN (PD) cells, suggesting that the elevated 

expression of ERK resulted in an amount of activated ERK similar to that in ACHN (pa) 

cells. Upregulation and activation of ERK was also observed in DU145 (PD) cells. This 

upregulation required long term exposure to PD98059, because treatment of cells with 

PD98059 for up to 96 h did not increase the expression of ERK protein (data not shown). 

The expression and activation of ERK in ACHN (no PD) cells and DU145 (no PD) cells 

returned to the levels in ACHN (pa) cells and DU145 (pa) cells (Fig. 2 B), suggesting that 

elevated expression of ERK caused by chronic exposure to PD98059 was also reversible. 

 

Effects of siRNA for ERK 2 on Erk expression and proliferation  

        To examine whether upregulation of ERK is responsible for the decrease in 

sensitivity of ACHN (PD) and DU145 (PD) proliferation to PD98059, we transfected 

these cells with ERK 2 siRNA. ERK 2 siRNA specifically and efficiently downregulated 
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the expression of ERK 2 in both ACHN (PD) cells and DU145 (PD) cells (Fig. 3 A). In 

ACHN (PD) cells treated with 5 nM siRNA and DU145 (PD) cells treated with 10 nM 

siRNA, expression of ERK 1 protein was elevated. The proliferation of ACHN (PD) cells 

treated with control siRNA was not significantly inhibited by PD98059-treatment (Fig. 3 

B). On the other hand, the proliferation of ACHN (PD) cells treated with ERK 2 siRNA 

was significantly and dose-dependently inhibited in response to PD98059-treatment. 

Similar results were obtained with DU145 (PD) cells (Fig. 3 C). These results indicate 

that upregulation of ERK 2 was responsible for the decrease in sensitivity of their 

proliferation to PD98059. When ERK 1 was downregulated by siRNA in ACHN (PD) 

cells and DU145 (PD) cells (Fig. 4 A), neither the inhibition of their proliferation by 

PD98059-treatment nor upregulation of ERK 2 was observed (Fig. 4 and B).  
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Discussion 

 

        In the present study, we employed two kinds of human tumor cells, originated from 

renal cell carcinoma and hormone-resistant prostate carcinoma. These tumors are known 

to be resistant to conventional chemotherapy, radiation therapy, and hormonal therapy. 

Therefore, these tumors are good candidates for molecular targeting therapies as well as 

antiangiogenic therapies. We observed that chronic exposure of these tumor cells to 

PD98059 decreased the sensitivity of their proliferation to PD98059-treatment. This 

phenotype was associated with elevated ERK 2 expression, because downregulation of 

ERK 2 by siRNA restored their sensitivity of proliferation to PD98059 (Fig. 3). Chronic 

exposure to another MEK inhibitor, U0126 (at 10 M), also exerted the similar effect on 

ACHN and DU145 cells (decrease in sensitivity of the proliferation and upregulation of 

ERK expression), suggesting that these phenotypes may be commonly observed in MEK 

inhibitor-treated tumor cells. PD98059 and U0126 also inhibit MEK 5, an upstream 

kinase of ERK 5, at a lower concentration than CI-040 [12]. Thus, decrease in sensitivity 

to PD98059 may also be due to the upregulation of ERK 5. However, we did not observe 

the upregulation of ERK 5 in ACHN (PD) cells and DU145 (PD) cells (data not shown). 

Recently, a CI-1040-resistant clone from colon 26 carcinoma cells has been established 

and exhibited 100-fold more resistant growth in soft agar to CI-1040 inhibition than the 

parental cells and 2.8-fold more resistant proliferation in monolayer to CI-1040 inhibition 

[13]. In this resistant cell line, expression of activated K-Ras was elevated and subsequent 

upregulation of activated ERK was observed. However, we did not observe the 
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upregulation of K-Ras in ACHN (PD) cell and DU145 (PD) cells (data not shown). 

Finally, downregulation of ERK 2, but not ERK 1, by siRNA restored the sensitivity of 

proliferation (Fig. 3 and 4), suggesting that upregulated ERK 2 was responsible for the 

decreased sensitivity to PD98059 in ACHN (PD) cell and DU145 (PD) cells and these 

phenotype was different from the CI-1040-resistant colon 26 cell line. Although 

treatment with CI-1040 downregulated the activated ERK in both xenograft animal 

models [6] and clinical trials [8], the ERK assays used in these studies were normalized 

by the amount of protein, not by the cell number. Thus, in vivo, upregulation of ERK 

expression by tumor cells may occur after several weeks of treatment. Indeed, the 

re-growth of xenografted MDA-MB-231 breast tumors treated with CI-1040 was 

observed on the 24th day of treatment [14]. Pancreatic BxPc3 xenografts started to grow 

after the completion of CI-1040-treatment [15]. Furthermore, another MEK inhibitor 

PD184161 failed to suppress MEK activity in hepatocellular carcinoma xenografts 

following long term (24 days) and to regress established xenograft tumors [16]. These in 

vivo studies are consistent with our data (Fig. 1 B and C). It is therefore possible that 

chronic exposure of tumor cells to MEK inhibitors may decrease the sensitivity of their 

proliferation in vivo as well.  

        The mechanism underlying upregulation of ERK in ACHN (PD) cells and DU145 

(PD) cells is not known. However, downregulation of ERK 2 protein by siRNA 

significantly restored the sensitivity of proliferation of these cells to PD98059-treatment 

(Fig. 3, B and C). In these experiments, the expression of ERK 1 protein was elevated. 

However, elevated ERK 1 did not restore the sensitivity of proliferation. Conversely, 
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efficient downregulation of the expression of ERK 1 by siRNA neither affected the 

proliferation nor upregulation of ERK 2 (Fig. 4 A, B). In gene-targeted mouse models, 

ERK 2-/- mice died in utero, whereas ERK 1-/- mice were viable, fertile, and grew 

normally [17, 18]. The proliferation and sustained activation of ERK 2 displayed by 

embryonic fibroblasts from ERK 1-/- mice were similar to those of fibroblasts from wild 

type embryos, suggesting that ERK 2 compensates for ERK 1 deficiency. Taken together, 

the amount of ERK 2 expression may be critical for the proliferation of tumor cells in the 

presence of a MEK inhibitor. 

    Our data provide evidence that chronic exposure to a MEK inhibitor affects signal 

transduction pathways, leading to decrease in sensitivity of tumor cell proliferation to 

MEK inhibition. Treatment of ACHN (PD) cells and DU145 (PD) cells with 1 g/ml of 

actinomycin D for 16 h significantly repressed ERK expression in association with 

decreased proliferation (data not shown). Thus, treatment of patients with a MEK 

inhibitor in combination with inhibitors of protein synthesis or translation could be an 

important option for future clinical studies.  
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Figure legends 

 

Fig. 1. (A) Effect of transient treatment of parental ACHN cells and DU145 cells with 

PD98059 on FBS-mediated activation of ERK. Cells grown in 24-well plates were 

serum-starved overnight and PD98059 (50 M) or DMSO (0.1%, vehicle) was added to 

the cells. Sixty minutes later, cells were stimulated with 10% FBS or left unstimulated for 

the indicated periods. Two sets of culture were prepared: one set was used for 

immunoblotting and the other was used for cell counts. Cells were lysed by boiled 

SDS-sample buffer and the proteins from 3  104 cells in each lysate were separated on 

SDS-PAGE gels. Proteins transferred to PVDF membranes were incubated with the 

indicated antibodies and visualized by chemiluminescence. Reproducible results were 

obtained in two independent experiments. (B) Effect of chronic exposure to PD98059 and 

removal of PD98059 on the proliferation of ACHN cells. Parental ACHN cells—denoted 

ACHN (pa) cells—were cultured in the presence of 50 M PD98059 for more than 4 

weeks. These cells were then denoted ACHN (PD) cells. ACHN (PD) cells cultured for 2 

weeks in the absence of PD98059 were denoted ACHN (no PD) cells. Cells were 

suspended in MEM containing NEAA and 10% FBS, and seeded into 24-well plates at a 

density of 3  104 cells/well with either 0.1% DMSO (PD98059; 0 M) or indicated 

concentration of PD98059. After 3 days, cell number was counted with a hemocytometer. 

Cell number without short-period PD98059-treatment was set to 100. Bars represent 

means ± SD for triplicate wells. Reproducible results were obtained in two independent 

experiments. (C) Effect of chronic exposure to PD98059 and removal of PD98059 on the 



 19

proliferation of DU145 cells. Parental DU145cells—denoted DU145 (pa) cells—were 

cultured in the presence of 50 M PD98059 for more than 4 weeks. These cells were 

denoted DU145 (PD) cells. DU145 (PD) cells cultured for 2 weeks in the absence of 

PD98059 were denoted DU145 (no PD) cells. Cells were suspended in Ham’s F-12 

medium containing 10% FBS and proliferation of these cells in the presence or absence of 

PD98059 was examined as described above. Cell number without short-period 

PD98059-treatment was set to 100. Bars represent means ± SD for triplicate wells. 

Reproducible results were obtained in two independent experiments. (D) Labeling 

indices of ACHN and DU145 cells in the presence or absence of PD98059. Cells were 

seeded into wells of 48-well plates and cultured for 24 h in the presence (PD cells) or 

absence (pa and no PD cells). Medium was changed to fresh medium containing either 

0.1% DMSO (PD98059; 0 M) or 50 M PD98059 and cultured for 16 h. Cells were 

pulse-labeled with BrdU for 4 h and labeling indices were determined as labeled 

nuclei/total nuclei ratios. Values are expressed as percentages ± SD for triplicate wells.  

 

Fig. 2. (A) Effect of the chronic exposure of ACHN cells and DU145 cells to PD98059 on 

FBS-mediated activation of ERK. ACHN (pa) cells, ACHN (PD) cells, DU145 (pa) cells, 

and DU145 (PD) cells grown in 24-well plates were serum-starved overnight and 

stimulated with 10% FBS or left unstimulated for 10 min. Proteins from 3  104 cells 

were examined for ERK activation by immunoblotting as described in the legend of Fig. 

1 A. Immunoblotting with anti-vinculin antibody was performed to assess loaded proteins. 

Reproducible results were obtained in two or three independent experiments. (B) Effect 
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of the removal of PD98059 from the culture medium of ACHN (PD) cells and DU145 

(PD) cells on FBS-mediated activation of ERK. ACHN (pa) cells, ACHN (no PD) cells, 

DU145 (pa) cells, and DU145 (no PD) cells grown in 24-well plates were serum-starved 

overnight and were stimulated with 10% FBS or left unstimulated for 10 min. Proteins 

from 3  104 cells were examined for ERK activation by immunoblotting. 

Immunoblotting with anti-vinculin antibody was performed to assess loaded 

proteins.Reproducible results were obtained in two independent experiments. 

 

Fig. 3. (A) Effect of ERK 2 siRNA on ERK expression of ACHN (PD) cells and DU145 

(PD) cells. Cells grown in 24-well plates were treated with the indicated reagents. Two 

days later, cells were lysed and proteins from 3  104 cells were examined for ERK 

expression by immunoblotting. Immunoblotting with anti-vinculin antibody was 

performed to assess loaded proteins. Protein bands were scanned and the densities of 

particular bands were measured by NIH Image version 1.62. The ERK 2/vinculin ratio 

was calculated as described in “Materials and Methods”. (B) Effect of ERK 2 siRNA on 

the proliferation of ACHN (PD) cells. Cells grown in 24-well plates were treated with the 

indicated reagents. Two days later, the cell number was counted. ACHN (pa) cells were 

examined as control. Bars represent means ± SD for triplicate wells. Reproducible results 

were obtained in two independent experiments. (C) Effect of ERK 2 siRNA on the 

proliferation of DU145 (PD) cells. Cells grown in 24-well plates were treated with the 

indicated reagents, and 2 days later, the cell number was counted. DU145 (pa) cells were 

examined as control. Bars represent means ± SD for triplicate wells. Reproducible results 
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were obtained in two independent experiments.  

 

Fig. 4. (A) Effect of ERK 1 siRNA on ERK expression in ACHN (PD) cells and DU145 

(PD) cells. Cells grown in 24-well plates were treated with the indicated reagents. Two 

days later, proteins from 3  104 cells were examined for ERK expression by 

immunoblotting. Immunoblotting with anti-GAPDH antibody was performed to assess 

loaded proteins. The ERK 1/GAPDH ratio was calculated as described above. (B) Effect 

of ERK 1 siRNA on the proliferation of ACHN (PD) cells and DU145 (PD) cells. Cells 

grown in 24-well plates were treated with the indicated reagents, and 2 days later, the cell 

number was counted. Bars represent mean cell numbers/well ± SD for triplicate wells. 

Reproducible results were obtained in two independent experiments. 
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