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Abstract 

Quantitative process management (QPM) and causal analysis and resolution (CAR) are 

requirements of capability maturity model (CMM) levels 4 and 5, respectively. They 

indicate the necessity of process improvement based on objective evidence obtained from 

statistical analysis of metrics. However, it is difficult to achieve these requirements in 

practice, and only a few companies have done so successfully. Evidence-based 
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risk-management methods have been proposed for the control of software processes, but 

are not fully appreciated, compared to clinical practice in medicine. Furthermore, there is 

no convincing answer as to why these methods are difficult to incorporate in software 

processes, despite the fact that they are well established in some business enterprises and 

industries. In this paper, we challenge this issue, point out a problem peculiar to software 

processes, and develop a generally applicable method for identifying the risk of failure 

for a project in its early stages. The proposed method is based on statistical analyses of 

process measurements collected continuously throughout a project by a risk assessment 

and tracking system (RATS). Although this method may be directly applicable to only a 

limited number of process types, the fundamental idea might be useful for a broader range 

of applications. 

 

Keywords logistic model, risk assessment, software process, statistical analysis, yore, 

temodori
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1.Introduction 

The software application field has been expanding dramatically, and the software 

development process has become more complex, resulting in an ever-increasing demand 

for reliable software. (De Lacalle et al., 2002; Maydl, 2004; Ingham et al., 2005)  The 

environment in which software development currently takes place is more challenging 

than conducive to success, and the demand for skilled and experienced managers is 

increasing (Pfahl et al, 2003; Ellis et al, 2004). Moreover, software development 

technology changes every few years, thereby limiting the availability of expert managers. 

Consequently, it is becoming increasingly difficult to develop a product of the required 

quality within a specified time frame (Kang et al, 2005), which may have serious effects 

on software manufacturers, vendors, and users. Therefore, how to produce a high-quality 

system in a timely manner is one of the most critical and important themes of project 

management.  

 

Discussing this issue, Bieman (2004) argued: “The only hope for making informed design 

decisions leading to systems that remain high-quality and adaptable is to improve the 

ability of designers to prognosticate. Rather than use a crystal ball, comprehensive studies 

of how existing systems have evolved in the past can provide solid evidence into the 
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connection between early design decisions and the evolving adaptability and quality of 

software systems. ……We can improve our ability to perform relevant prognostication 

only with a much deeper understanding of how systems have evolved.” 

 

This argument seems relevant to a recent software glitch that troubled the Tokyo Stock 

Exchange in Japan. In December 2005, a simple input error led a brokerage firm to lose 

US$400 million in a few hours. ( Williams 2005).  Those who noticed the error tried to 

correct it from their terminals, but the system controlling the trade did not accept the 

correction. It is generally thought that the glitch was partly because the software 

engineers who developed the system did not foresee the simple input error. Conversely, 

the software engineers insisted that the product-testing period has been gradually 

shortening over the past 10 years (Hirayama et al, 2004; Kang et al, 2005), and suggested 

this as the real cause of the glitch. If this is indeed true, software vendors should be 

willing to pay more for more sufficient testing. 

 

To address this issue and improve prognostication requires solid evidence about the 

current situation, and the development of a plan for moving forward. We propose the 

following method: collect data on various prognostic variables throughout the system 
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development process, including testing periods, before release; collect follow-up data 

after release to identify any bugs in the system within a prescribed period of time; and 

develop a list of critical prognostic variables to distinguish between successful and failed 

systems by a comprehensive statistical analysis. If the testing period were then detected 

as statistically significant in the analysis, this would indicate that this factor is indeed 

partly responsible for product glitches.  

 

1.1. The Risk Assessment and Tracking System  

Since 1994, the Software Research Associate (SRA) has started several actions to 

implement the above idea.  In 2004, it combined these strategies into one, called the risk 

assessment and tracking system (RATS), which aims to identify and track risks to detect 

and resolve problems in the earlier stages of system development. Figure 1 shows a 

graphical representation of RATS. Our proposed risk-management strategy, described 

above, is implemented as follows: 

(1) Identify risks based on initial data. 

(2) Evaluate initial risks. 

(3) Determine what level of management will be in charge of the project. 

(4) Track data on progress and quality. 
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(5) Identify risks based on the tracking data. 

(6) Evaluate progressive risks. 

Steps (3)–(6) are repeated continuously throughout the life of the project. 
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Fig. 1. RATS system for risk management 

 

Processes such as this are not novel, but are usually difficult to establish because they 

often place a large burden on project members, especially project managers, making 

implementation impractical. To avoid placing an additional burden on project members, 

we have linked risk management and progress management. Specifically, our system 

automatically analyzes and evaluates risk as information about project progress and 

quality is inputted. 

 1.2 Risk visualization 
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Figure 2 shows the results of evaluating risk automatically. Each point in the graph 

represents the risk level of each project. The horizontal line denotes the field risk of 

revealing their risk level, calculated using an equation based on an engineering 

perspective, and the vertical line represents the management risk of revealing their 

damage level from failure based on an administrative perspective.  In RATS, this result is 

a starting point. Then, changes in the risk level are tracked throughout the project. 

Consequently, risk visibility, early detection, and resolution become possible, while there 

is no increase in the burden placed on project management.       
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Fig. 2. Scatter plot for field risk vs. management risk to determine the management level in charge of the 

project 

 

Next, we forecast the project progress based on the accumulated data in RATS. To this 

end, we apply comprehensive statistical analyses to identify any characteristics specific 

to the software process that might be preventing the effective use of software metrics for 

process improvement. 
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1.3 Challenges from a previous work 

Figure 3 shows a scatter plot diagram for the estimated gross profit at the start of a project 

vs. the actual gross profit at project completion. The graph reveals that there were three 

big projects whose profits were ultimately far below initial estimates. Identifying such 

projects heading toward failure at an early stage is the first challenge this study addresses. 

To do so, a multiple regression model can be used to analyze the relationships among the 

process measurements within the first month and the estimated and actual gross profits 

(Kojima et al., 2005). Kojima et al. (2005) also discussed how to correct process 

measurement estimates to obtain a corrected actual profit. Although the multiple 

regression method works well for most applications (Khoshgoftaar et al 1994, Liu 2006, 

Khoshgoftaar et al 2006), it is vulnerable to outliers, or extremely large measurements, 

and thus is not sufficient for many large projects.  The challenges to applying this method, 

revealed by Kojima et al. (2005), are summarized below: 
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Fig. 3. Scatter plot of the estimated profit at the start of the project vs. the actual profit at the end of the 

project 

 

(1) To establish a reliable model for predicting failed projects, a considerable number of 

projects with available variables is required. However, missing data are common, 

which severely limits the number of projects available for the analysis; 

(2) Although some statistical methods, such as the logistic model, Cox proportional 

hazards model, and multiple regression model, are useful for most practical 

applications, it remains unclear how and when those methods can be effectively 

applied to software process improvements; 
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(3) Extreme values are considered statistical “outliers”, which are usually viewed as 

obstacles in statistical analyses, but they may in fact be preferable in the case of 

project prediction, because they could represent large profits. However, it is difficult 

to accommodate both normal size projects and extremely large projects 

simultaneously in a multiple regression model; 

(4) Although Kojima et al. (2005) successfully analyzed their data using the 

log-transformation of original measurements, even this method does not always 

produce reliable results when applied to broader applications, due again to the 

vulnerability of the multiple regression method to extremely large values. 
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Fig. 4. Scatter plot of the number of client reviews returned vs. the number of delayed specifications 
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Figure 4 shows a scatterplot of the relationship between the number of client reviews 

returned (CRR) and the number of specifications delayed (SPD) in the first month. The 

straight line is the regression line determined using the least-square method. The 

coefficient of determination, or the square of the correlation coefficient, is 0.98, or nearly 

equal to 1, indicating that nearly all of the observed points (CRR, SPD) should be on the 

line. In other words, SPD is almost completely determined by CRR; in fact, the extremely 

large measurement shown in the upper right-hand corner of the graph is nearly on the line. 

However, most of the points in the lower left-hand corner (i.e., more than 100 points) are 

not on or near the line, indicating that even a regression equation with a coefficient of 

determination of nearly 1 may lead to misleading predictions. 

 

The cause of the confusion is the extreme value in the upper right-hand corner. In medical 

applications, these are termed outliers and are usually analyzed separately, because those 

measurements only come from subjects with abnormal conditions. However, in software 

processes such measurements could represent large profits, and they are not regarded as 

abnormal. In other words, projects with extremely large measurements should not be 

removed from a statistical analysis for risk assessment. This is one of the special 

characteristics of software measurements. 
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Fig. 5. Scatter plot including three measurements that were excluded in Fig. 4. 

 

Figure 5 shows another example of the problem. The scatterplot, obtained by adding 

projects excluded in Figure 4 due to missing values in some variables, now shows 

extreme measurements in the lower right-hand and middle-left regions of the graph. The 

regression line lies between these extreme points to minimize total deviation. Therefore, 

even a small number of extreme measurements may diminish the relationship among 

most measurements and lead to misleading results. 
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In summary, if all measurements are used in a regression analysis, extreme values may 

inappropriately influence the relationships among most of the measurements, but if they 

are excluded, the results will be useless in practice. This dilemma is one of the major 

problems to be addressed by the software risk assessment and process improvement 

required by CMM levels 4 and 5. The main objective of this study is to develop a 

countermeasure to surmount these difficulties and propose a more stable and widely 

applicable statistical method for risk assessment. 

 

2. Methods  

The most important factor of any statistical analysis is the response variable, which 

essentially determines the practical usefulness of the statistical model and the results. It is 

typically the most interesting and important variable. For instance, the response variable 

in cancer clinical trials is usually the survival period after surgery, instead of the reduction 

ratio of the cancer, because the former is more important than the latter. The response 

variable chosen by Kitchenham et al. (2004) was: 

Productivity = Adjusted Size/Effort 

where Effort is the estimated size of the project in staff hours and Adjusted Size is the total 

effort to develop an application, measured in staff hours, defined only by those measures 
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that have a significant relationship with effort so that the expected value is one (see Table 

1 of their paper for more details). Productivity was chosen as the dependent variable, 

because the objective of the study was to compare the productivity among countries. 

 

2.1  Profit rate and risk of failure 

The aim of our study is to predict the risk of failure of a project at an early stage so that 

any necessary countermeasures can be taken to reduce the risk. Therefore, we first define 

the failure of a project based on the profit rate, as follows: 

Profit rate = Amount of Profit/Amount of Income 

There are three types of profit rates: minimum, estimated, and actual. The minimum profit 

rate is a fixed value determined by the administrator and applied to all projects, normally 

between 25 and 35%. The estimated profit rate is determined by the project manager for 

each project when the contract is established, and is usually greater than or equal to the 

minimum profit rate, but may be lower than that when considering political factors. The 

actual profit rate is determined at the end of the project according to the above equation. A 

project is considered to have failed if the actual profit rate is less than the minimum profit 

rate and also below the estimated profit rate. We introduce a variable, Yore (literally 

meaning a twist, a technical term used by most Japanese software companies to indicate a 
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deficit project), defined as Yore=1 when a project fails and Yore=0 otherwise. 

 

Compared to the productivity used by Kitchenham et al. (2004), which assumes virtually 

any positive value, the dependent variable in this study is dichotomous, that is, it takes 

only two values, failure or success. Therefore, the statistical method and the application 

of the study are completely different from that of Kojima et al (2005) and Kitchenham et 

al. (2004). 

 

2.2  Data 

The following variables are used in the statistical analysis: 

UTD1: The number of unit tests delayed in the first month 

QAR1: The number of Q&As remaining in the first month 

CRR1: The number of client reviews returned in the first month 

IRR1: The number of internal reviews returned in the first month 

SPD1: The number of specifications delayed in the first month 

BOC1: The number of bugs that occurred in the first month 

SPC1: The number of specifications changed in the first month 

SPA1: The number of specifications added in the first month 



16 

GeneTotal: The sum of the scores for eight risk-related items and seven administrative 

items evaluated by a project manager 

LogGT: Logarithmic transformation of GeneTotal 

TMDratio: Ratio of CRR1+SPC1 to the Person-Months estimate 

Sratio: Ratio of SPD1+ SPC1+SPA1 to the Person-Months estimate 

Rratio: Ratio of QAR1+CRR1+IRR1 to the Person-Months estimate 

The first eight variables, UTD1–SPA1, were all measurements evaluated by a project 

manager in the first month after starting the project. GeneTotal is a simple sum of the 

levels (1, 2, 3, 4, or 5) of eight risk-related items, such as client risk and vendor risk, and 

eight management-related items, such as the number of staff hours and the estimated size. 

LogGT is the log-transformation of GeneTotal. TMDratio is a variable proposed by an 

experienced SE manager as a most effective measurement for predicting the risk of 

failure. TMD stands for “Temodori”, a widely used Japanese technical term to indicate 

“reworking the same process reluctantly”. Sratio and Rratio represent the rate of troubles 

in the specifications and reviews, respectively. These variables are reported weekly and 

summarized every four weeks. Of the 106 projects that participated in RATS, 48 had 

some missing variables; therefore, 58 projects were used for the following multivariate 

statistical analysis.  
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2.3 Statistical methods 

The logistic model is applied to determine the most significant variables for 

distinguishing between successful and failed projects (Moore and McCabe 1998). Since 

the number of projects available for statistical analysis was small and the number of 

variables was large, we used both asymptotic tests and exact tests. The asymptotic test 

applied here was the maximum likelihood method based on the Central Limit Theorem, 

which is valid with a large sample size, but only an approximation with a small sample 

size. The exact test was based on non-parametric permutations, and was valid with even a 

small sample size. 

 

The maximum likelihood method can manage several variables simultaneously, making it 

particularly suitable when determining the most effective combination of variables 

among a number of possibilities. Conversely, the exact test can manage only a few 

variables simultaneously, but the results are precise and reliable. Therefore, the strategy 

in this study was to screen variables first using the maximum likelihood method, and then 

confirm the results using the exact test. The maximum likelihood method and exact test 

were performed using JMP (2006) and LogXact (2006), respectively. 
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We examined the risk of Yore and the relationships between estimated risk and the amount 

of profit, as follows: 

Difference = Estimated Profit – Actual Profit 

A negative value of Difference indicates that the project produced a smaller profit than 

initially estimated. The projects were divided into six groups according to the estimated 

risk, and then the average risk and the sum of Difference for each group was calculated. 

Each of the five higher risk groups consisted of ten projects; the lowest risk group had 

eight projects. 

 

3. Results 

3.1 Stepwise logistic analysis  

Table 1 shows the significance of each variable based on the scores of the maximum 

likelihood method. The degree of freedom of the chi-square value was 1 for each variable, 

and the significant variables included GeneTotal, LogGT, CRR1, SPC1, TMDratio, and 

Rratio. TMDratio had the highest chi-square value (12.61, p=0.0004), and was the first to 

be entered into the model. In contrast, Sratio was not significant (p=0.7186). 
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Table 1. Significance of each variable 

Variable Chi-Square P-value 
GeneTotal 5.97 0.0146 
LogGT 4.65 0.031 
UTD1 0.03 0.8563 
QAR1 3.66 0.0559 
CRR1 3.93 0.0473 
IRR1 3.78 0.0519 
SPD1 3.01 0.0828 
BOC1 0.34 0.5609 
SPC1 6.87 0.0088 
SPA1 0.35 0.5558 
TMDratio 12.61 0.0004 
Sratio 0.13 0.7186 
Rratio 4.46 0.0346 

 

Table 2. Significance of each variable after entering TMDratio 

Variable Chi-Square P-value 
GeneTotal 3.19 0.0739 
LogGT 2.47 0.1163 
UTD1 0.26 0.6123 
QAR1 0.68 0.4104 
CRR1 0.15 0.6981 
IRR1 0.13 0.7204 
SPD1 0 0.9808 
BOC1 0.13 0.7159 
SPC1 0.24 0.6248 
SPA1 0.15 0.702 
TMDratio 5.29 0.0214 
Sratio 0.03 0.8592 
Rratio 0.74 0.3883 
   

 

Table 2 shows the significance of each variable as a pair with TMDratio. The chi-square 

values denote the contribution of each variable independently of TMDratio. None of them 

was significant. Only GeneTotal approached significance (p=0.074). Since the sample 
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size was small and the results approximate, we incorporated it into the model.  

Table 3. Final results of the stepwise variable selection 

Variable Estimate Chi-square P-value 
GeneTotal 0.0304 2.95 0.0857
LogGT  0 0.9649 
UTD1  0.28 0.5976 
QAR1  0 0.9439 
CRR1  0.55 0.4582 
IRR1  0.42 0.5151 
SPD1  0.23 0.6279 
BOC1  0.18 0.6677 
SPC1  0.18 0.6695 
SPA1  0.03 0.8634 
TMDratio 1.72 4.76 0.0291
Sratio  0.06 0.8008 
Rratio  0.06 0.8134 

 

Table 4. Exact p-values and estimates 

 Variable Estimate P-value 
(a) TMDratio 1.7287 0.0012 
(b) GeneTotal 0.0309 0.0155 
(c) TMDratio 1.3841 0.0311 
  GeneTotal 0.0305 0.0797 
(d) Sratio 0.0111 0.4485 
(e) Rratio 0.3374 0.0718 

 

Table 3 shows the final results of the stepwise logistic analysis. Table 4 shows the exact 

significance of (a) TMD ratio, (b) GeneTotal, (c) the two variables together.  For 

reference, the exact P-values of Sratio and Rratio were also tabulated in (d) and (e), 

respectively. The p-values of the two variables, TMD ratio (0.0291) and GeneTotal 

(0.0857), and the estimate of the regression coefficient for GeneTotal (0.0304) were 
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similar to those shown in Table 3. The estimate of the regression coefficient for TMDratio 

(1.3841) was, however, considerably different from that in Table 3 (1.72). 

 

3.2 Goodness of fit 

Table 5. Goodness of fit of the logistic model 

Estimated 
probability 

Failure (Yore = 1)  Success (Yore = 0)   
Obs. Expected Cumulat. Obs. Expected Cumulat. Total

<0.039 0 0.1538 0.0000 5 4.8462 0.1538 5
<0.052 0 0.2279 0.0000 5 4.7721 0.3817 5
<0.104 1 0.5276 1.0000 5 5.4724 0.9092 6
<0.113 0 0.6536 1.0000 6 5.3464 1.5628 6
<0.149 2 0.7734 3.0000 4 5.2266 2.3362 6
<0.174 1 0.9529 4.0000 5 5.0471 3.2891 6
<0.220 0 1.2325 4.0000 6 4.7676 4.5216 6
<0.300 3 1.6275 7.0000 3 4.3725 6.1491 6
<0.418 2 2.2333 9.0000 4 3.7667 8.3824 6
<0.999 4 4.6176 13.0000 2 1.3824 13.0000 6
Total 13 13 45 45  58

“Obs.” and “Cumulat.” stand for observed and cumulative frequencies, respectively. 

 

Table 5 shows a goodness-of-fit of the logistic model using the two variables TMDratio 

and GeneTotal as covariables. First, the probability of failure, or the probability of Yore = 

1, was calculated for each project using the logistic equation with the estimated 

regression coefficients for the two variables (Moore and McCabe, 1998; Hosmer and 

Lemeshow, 1989). The probability was referred to as the estimated probability. Then, the 

58 projects were sorted by the estimated probability, from the lowest to the highest. In the 
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table, Observed Yore=1 includes the 13 failed projects, and Observed Yore=0 included 

the 45 successful ones. The sum of the estimated probabilities of the smallest five projects 

was 0.1538, which was regarded the expected number of the Yore=1 projects. The 

difference, 5 – 0.1538 = 4.8462, is the expected number of Yore=0 projects. These figures 

are shown in the first row. The sum of the estimated probabilities of the highest six 

projects was 4.6176 (shown in the penultimate row), with a difference of 6 – 4.6176 = 

1.3824. The other rows were calculated similarly. 

 

Table 6. Average risk and the sum of Difference between the estimated and the actual profit. 

Ave. Risk Difference 
0.62 -39934 
0.27 -38845 
0.17 -8245 
0.12 8037 
0.08 24407 
0.04 5596 

  

Fig. 6. Cumulative estimated probability vs. the cumulative observed frequency of Yore=1 
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Figure 6 shows the scatterplot of the cumulative estimated probability vs. the cumulative 

observed frequency of Yore=1. The estimated and observed risk values agreed well with 

each other, indicating the appropriateness of the model. 

 

3.3 Profit by risk level 

Table 6 tabulates the average risk and the sum of Difference for the projects by risk. The 

highest risk group had an average risk of 0.62 and a sum of Difference of –39934. Figure 

7 is a bar chart representation of Table 6. It shows clear relationships between the 

estimated risk and the profit or loss.  

 
Fig. 7. Bar chart presentation of Table 6. The highest risk group is denoted by “1,”  

the next highest by “2,” and the lowest by “6.” 
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4.Discussion 

4.1 Statistical analysis 

One of our objectives was to develop a sound statistical method for evaluating risks that 

can accommodate both normal and large-sized projects simultaneously, since the linear 

regression method is not very reliable in some situations. Outliers in a regression analysis 

(in this case, large-sized projects), are influential factors such that the removal of them 

from the data set would significantly change the relationships among the endpoint and the 

explanatory variables.  

Some tools to identify outliers in a linear regression analysis, such as Cook’s distance, are 

available in most statistical software (JMP 2006). To accommodate outliers in a linear 

regression analysis requires special care (Barnett 1998), which may not always be 

applicable. To simply reduce the influence of the individual measurements, we proposed 

transforming the continuous endpoint, such as profit, to a binary variable such as “Yore.” 

Then statistical analyses present an estimated risk of failure, instead of profit, for each 

project.   

 

4.2 Prognostic factors 
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TMDratio was the most significant prognostic variable for predicting the risk of failure. 

GeneTotal was also significant as a single variable, but only marginally significant after 

TMDratio is entered in the model. GeneTotal is a metric for quantifying the risk of failure 

in a subjective manner determined by the manager at the start of the project. By contrast, 

TMDratio is determined one month after project initiation. The fact that TMDratio was 

still highly significant after GeneTotal was first entered indicates that TMDratio has a 

significant contribution to failure risk, independent of GeneTotal. In other words, the 

value of TMDratio may not be completely predictable at the start of a project because it is 

partly caused by events that occur after the start of the project. 

 

TMDratio is the ratio of the sum of CRR1 (the number of client reviews returned in the 

first month) and SPC1 (the number of specifications changed in the first month) to the 

Person-Months estimate. Since both CRR1 and SPC1 are strongly linked to the clients, 

the results provide some evidence that the loss of profit of failed projects with a high 

TMDratio may be partly attributable to clients. 

 

Since GeneTotal is marginally significant even jointly with TMDratio, it would lower the 

risk of failure to take a preventive measure to reduce the GeneTotal value before the start 



26 

of a project. GeneTotal is defined as the sum of 15 variables. Therefore, to determine the 

most effective measure, all 15 variables should be analyzed independently to identify the 

most significant variables among them, using the same statistical analysis. However, this 

analysis would require a much larger sample size for reliable results. 

 

Sratio was not significant, which is surprising because the design specification is 

typically the most important to process control. In fact, the chi-square value of Sratio was 

less than that of any of its components, SPD1, SPC1, and SPA1, indicating that the three 

variables should be treated independently in risk analyses for failure prediction. Rratio 

was also only marginally significant in the exact test. These unexpected negative results 

suggest that finding effective prognostic variables requires more accumulation of data 

from various application fields to provide a more comprehensive and deeper 

understanding of the process. 

 

4.3 Feedback to managers 

It was discussed that effective countermeasures would have been possible to save some of 

the higher risk projects at their initial stages, that would have reduced the overall loss.  

The results were sent back to the managers who submitted raw data.  To apply the results 
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obtained from the statistical analysis to a new project, we would first estimate the risk of 

Yore for each project using the logistic equation to identify those at higher risk. Then, any 

effective measure could be performed to reduce risk in an early stage. The risk should be 

re-evaluated using data collected after the treatment. If the risk is still too high, still other 

measures should be considered. The strategy is partly implemented in RATS and under 

further investigation.  

 

5. Conclusion  

To identify and track risks in order to detect and resolve problems in the earlier 

stages of the software development process, Software Research Associates (SRA) began 

the so-called “the risk assessment and tracking system” (RATS) in 1994.  To implement 

the idea and to improve its ability to perform relevant prognostication, we developed a list 

of critical prognostic variables to distinguish successful and failed projects based on a 

comprehensive statistical analysis of the accumulated data in RATS. The endpoint Yore is 

introduced to indicate a deficit project in terms of the profit. Since the linear regression 

method is not very reliable with extremely large projects, to evaluate the risk of failure we 

developed a sound statistical method that can accommodate both normal-sized and large 

projects simultaneously. To reduce the influence of the individual measurements, we 
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proposed transforming a continuous endpoint, such as profit, into a binary endpoint, such 

as Yore.  The logistic model found the TMD ratio to be the most effective variable for 

distinguishing between the two endpoints. TMD stands for “temodori”, a widely used 

Japanese technical term that means “reworking the same process reluctantly”. The next 

useful variable was GeneTotal, defined as the sum of the levels of eight risk-related items 

and eight management-related items. The statistical analyses present an estimated risk of 

failure, instead of profit, for each project. 

Our results should be interpreted with caution because this is an exploratory study 

with a small sample size. If a large number of projects were available for analysis, it 

would be interesting to apply our method independently to groups of different size (i.e., 

small, intermediate, and large), and see if it produces similar results. If not, some 

amendments to adjust for project size should be developed to improve the applicability of 

our method. 
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