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Abstract 

In a dynamical STEM image simulation by the Bloch-wave method, Allen et al. 

formulated a framework for calculating the cross section for any incoherent scattering process from 

the inelastic scattering coefficients: TDS for HAADF and BSE STEM, and ionization for EELS and 

EDX STEM. Furthermore, their method employed a skilful approach for deriving the excitation 

amplitude and block diagonalization in the eigenvalue equation. In the present work, we extend 

their scheme to a layer-by-layer representation for application to inhomogeneous crystals that 

include precipitates, defects and atomic displacement. Calculations for a multi-layer sample of 

Si-Sb-Si were performed by multiplying Allen et al.’s block-diagonalized matrices. Electron 

intensities within the sample and EDX STEM images, as an example of the inelastic scattering, 

were calculated at various conditions. From the calculations, 3-dimensional STEM analysis was 

considered. 
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1. Introduction 

 

The dynamical STEM image simulation was established by two individual methods: 

the multi-slice method [1-3] and the Bloch-wave method. The multi-slice method can be applied to 

calculations for various objects that include defects, but requires enormous computing time because 

parallel calculations in the STEM mode must be performed at each probe position. The Bloch-wave 

method reduces computing time and memory drastically for crystalline objects, and provides 

physical insight into the wave function. However, images of defects demand large number of partial 

incident beams. 

The simulation of high-angle annular dark-field (HAADF) STEM images by the 

Bloch-wave method was developed by Pennycook et al. [4,5]. They derived the total wave function 

from a coherent superposition of Bloch states which are excited from a series of phase-linked plane 

waves that span the full range of transverse momentum components in the STEM-focused probe. 

Watanabe et al. developed the Bloch-wave method for middle-angle annular dark-field and HAADF 

STEM images, considering both coherent Bragg scattering and thermal diffuse scattering (TDS) 

[6,7]. Furthermore, HAADF STEM simulations based on the Bloch-wave method were extended to 

layer-by-layer representation by Mitsuishi et al. [8] and Yamazaki et al. [9]. In their method, the 

combination of the different types of layers can be calculated by multiplying matrices. The 

approach was effective for precipitates or defects embedded in a crystalline matrix and for systems 

with atomic displacement. 

On the other hand, Allen et al. simulated electron energy-loss spectroscopy (EELS) and 

energy-dispersive X-ray spectroscopy (EDX) STEM images as well as HAADF and back-scattered 

electron (BSE) STEM images by calculating the cross section for inelastic scattering [10]. They 

formulated a framework for calculating the cross section for any incoherent scattering process from 

the inelastic scattering coefficient. For TDS, this includes the incoherent scattering process detected 

by ADF or BSE detectors; for ionization, this includes the scattering process detected by EELS and 

EDX detectors. Furthermore, their method employed a skilful approach for deriving the excitation 
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amplitude and block diagonalization in the eigenvalue equation. In the present work, we extend 

Allen’s scheme to a layer-by-layer representation. And from the calculations, 3-dimensional STEM 

analysis is considered, which was experimentally employed as shown in Ref. [11]. 

 

 

2. Calculation method 

 

In the STEM simulation, a wave function in a crystal is calculated by the Bethe 

equation 

 

D
kK )(2 CAC  , 

 

where C  is the matrix of eigenvectors kCg  for the Bethe matrix A  and D
k )(  is the matrix 

containing the eigenvalues. The subscript D indicates that it is diagonal. K is the averaged wave 

number in the crystal. In the representation of Allen et al. [10], the reflections in STEM mode are 

presented by 

 

lqGg  , 

 

where the capitalized vector G  denotes N physical reciprocal lattice vectors, and lq  denotes 

nearly continuous m vectors in the first Brillouin zone. The Bethe equation can be block 

diagonalized since the wave functions for different l  do not interact with each other. In the 

representation of Allen et al. [10], the Bethe equation becomes 
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Each dimension of the m sub-matrices is NN  . We may now solve the eigenvalue equation by 

solving the m individual eigenvalue problems 

 

Dl
k

lll K )]()][([2)]()][([ qqCqCqA  . 

 

The total wave function is given by 

 

),,()(),,,(
1 1

,, zz
m

l

N

k

klkl


 
  rKRrRK  ,          (1) 

 

where r  and z indicate the positions along transverse and depth directions, respectively. R 

indicates the focus position. In the representation of Allen et al. [10], the excitation amplitude kl ,  

and the Bloch wave kl ,  are presented as 

 

  

G
G qGRqGqR )(])(2exp[)()(,

lll
kkl TiC  ,     (2) 
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, ])(2exp[)(])(2exp[),,(
G
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where )( lT qG   is the contrast transfer function multiplied by the objective aperture pupil 

function. In the present work, the transfer function is defined in the same manner as in Rossouw et 
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al. [12] and the underfocus is assumed to be negative. 

Equation (1) is rewritten as a product of the r -dependent term and the z-dependent 

amplitude )(, zl G  in Darwin’s representation [13]. 
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where 

 





N

k
l

k
l

kkll ziCz
1

,, ])(2exp[)()()( qqR G
G  .               (4) 

 

The matrix form of Eq. (4) is written as 

 

αqCφ Dl
k ziz ]})(2{exp[)(  .                 

 

The dimension of the matrices C  and Dl
k zi ]})(2{exp[ q  is mNmN  , and the dimension of 

)(zφ  and α  is 1mN . When a crystal is divided into many layers as in Fig.1, the boundary 

condition between the (n-1)-th and n-th layers is 

 

                 nnnnn t αCφφ  )0()( 11  or )( 11
1


 nnnn tφCα , 

 

where nt  is the thickness of the n-th layer. The relationship between the z-dependent amplitudes of 

(n-1)-th and n-th layers becomes 
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where nz  is the depth from the n-th layer surface as shown in Fig. 1 and the scattering matrix is 

assumed as )(znP . In the block-diagonalized case, Eq. (5) is composed of sub-matrices as 
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where the dimension of the sub-matrices )]([ ln qC , Dnl
k
n zi ]})(2{exp[ q  and 

lnn z qP )]([  is 

NN   and the dimension of  
lnz qφ )(  is 1N . We may now calculate the m individual matrix 

equation. The z-dependent amplitudes and the excitation amplitudes of the n-th layer are expressed 

as 
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and 

lnnlnln t qφqCqα )]([)]([)]([ 11
1


 ,                                      (7) 

 

where the excitation amplitude of the 1st-layer )(1 lqα  is obtained from Eq. (2). The wave function 

in the n-th layer is calculated by substituting the z-dependent amplitude )(,
n

l
n zG  of Eq. (6) into 

Eq. (8). 
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If the n-th layer has a relative displacement nτ  with respect to the (n-1)-th layer, 

lnn z qP )]([  of Eq. (6) can be replaced by DnnnDn izi
l

)]2[exp()]([)](2[exp[ 1 τGPτG q     in the 

same manner as Ref. [13] also in the STEM case. The diagonal matrix Dni )]2[exp( τG   indicates 

the phase change of structure factors due to the relative displacement. In the present 

coherent-layered sample, nτ  are assumed to be zero as mentioned later. 

The cross section for inelastic scattering per unit volume in the n-th layer is calculated 

following the representation of Allen et al. [10] 
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The matrix )]([ ln qB  is composed of the z-integrated interference term ),( n
kk tB R , presented by 
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where the excitation amplitude of the n-th layer )(Rk
n  is estimated from Eq. (7). Equation (9) 

provides a framework for calculating the cross section for any incoherent scattering process via the 

matrix μ , composed of the inelastic scattering coefficients gh, . The summation of the cross 

sections of Eq. (9) with respect to n corresponds to the measurements for ADF, BSE, EELS and 

EDX STEM signals. In the present work, the contribution of the de-channelled electrons of the 

second term in Eq. (9) was neglected following Ref. [14]. 

     In the present work, the off-diagonal elements of the Bethe matrix A  were estimated using 

the atomic scattering factors by Doyle and Turner [15] and the absorption potentials by Humphreys 

and Hirsch [16]. The numbers of the physical reciprocal lattices (N) and of the nearly continuous 

vectors in the first Brillouin zone (m) were assumed to be 205 and 53, respectively, in zeroth-order 

Laue zone at [110] zone axis incidence. The accelerating voltage was assumed to be 200kV. gh,  

can be expressed as 0gh ,  in a local approximation [12,17]. The atomic scattering factor for 

inelastic scattering included in 0gh ,  was approximately estimated as Fourier coefficients of 

Lorentzian or Gaussian profiles smeared by Debye-Waller factors. The amplitude and the full-width 

at half maximum of the profiles for various elements were calculated by Oxley et al. for EDX [18] 

and EELS [19]. We estimate 0gh ,  for EDX from Ref. [18] and from the Debye temperatures ΘSi 

= 645 K and ΘSb = 211 K. 

 

 

3. Results and discussions 

 

     The sample used in the simulation was composed of a 3-layer stack along [110] in a diamond 

lattice. The 1st and 3rd layers were Si crystals and the 2nd layer was the hypothetical Sb crystal 

with a diamond structure. The lattice constants were assumed to be 5.43 Å. The thicknesses of the 

1st, 2nd and 3rd layers were 45, 10 and 45 Å, respectively. Each boundary between the layers was 
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assumed to be completely coherent. Each layer was assumed to be free of strain. 

     Figure 2 shows the dependence of the electron intensities on the spherical aberration CS 

calculated from Eq. (8). The horizontal axis x indicates the coordinate along [001] or along the 

‘dumbbell’. The vertical axis z indicates the depth from the sample surface along [110]. The atomic 

columns in the dumbbell are located at x = 0 and -1.36 Å. The centre of the STEM probe is located 

on the atomic column at x = 0. The position of the Si and Sb layers is shown at the right side of the 

figures. The simulation was performed for CS = 0.1 mm (a), 0.01 mm (b) and 0.001 mm (c). The 

Scherzer focuses were assumed to be -190 Å (a), -60 Å (b) and -19 Å (c) ])(2.1[ 2/1
SCf  , and 

the optimal cut-off apertures were assumed to be 0.76 Å-1 (a), 1.35 Å-1 (b) and 2.40 Å-1 (c) 

])(51.1[ 4/13
max

 SCp  . The STEM probe at any CS concentrated on the atomic column at x = 0 Å 

and even in the deep area of sample because of the electron channelling effect. The transverse 

resolution seems to be sufficient to separate the dumbbell columns at any CS. The electron 

intensities seem to be coherent at the boundaries between the Si and Sb layers. The resolution along 

the z direction increased, and the focal depth of field decreased with decreasing CS because the 

probe has a high-angle convergence due to the large optimal cut-off aperture. At CS = 0.001 mm, the 

depth of field attained was about 10 Å. 

     Figure 3 shows the defocus dependence of the electron intensities calculated at CS = 0.001 

mm when the centre of the STEM probe is located on the atomic column at x = 0 Å. The depths of 

the intensity maxima decreased with increasing defocus from -100 to 0 Å. The depths were 

somewhat smaller than the absolute defocus. This was reported as a prefocus effect, which is 

attributed to the potential at the atomic column [20] and to the spherical aberration. The high depth 

resolution or the narrow depth of field ~10 Å enabled us to calculate depth-sectioning STEM 

images at CS = 0.001 mm. 

     Figure 4 shows the defocus-dependence of the electron intensities calculated at CS = 0.001 

mm, when the centre of the STEM probe is located off the atomic column at x = 2.04 Å. The nearest 

atomic columns are located at x = 0 and 4.07 Å. The defocus dependence of the electron intensities 
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in Fig. 4 is similar to that in Fig. 3. However, the depth of the intensity maxima is slightly closer to 

the absolute defocus than for those of Fig. 3 because the potential at the off-column position was 

smaller than that at the column position [20]. The depth of field at the off-column position was 

slightly larger than at the column position as reported in Ref. [20]. 

     Figure 5 shows the probe line-scan simulation of SiK and SbL EDX signals at CS = 0.1 mm 

(a), 0.01 mm (b) and 0.001 mm (c). Horizontal and vertical axes indicate the probe position along 

[001] and the defocus, respectively. The two atomic columns in the dumbbell are located at x = 0 

and -1.36 Å. The transverse resolution increased with decreasing CS. The SbL-intensive area along 

the vertical decreased with decreasing CS. At CS = 0.001 mm, the SbL-intensive area is nearly equal 

to the Sb-layer thickness of 10 Å; however, the absolute defocus at the intensive area is larger than 

the depth of the Sb layer because of the prefocus effect as shown in Figs. 3 and 4. SiK intensity is 

attenuated around the SbL-intensive area in (c).  

Figure 6 shows the defocus dependence of the EDX STEM image simulations for the 

[110] zone axis calculated at CS = 0.001 mm. Intensity maximum and minimum are indicated under 

each image. In the SiK images, bright spots are observed at atomic column positions at any defocus 

with high resolution. The brightest spots are observed around Scherzer defocus (d) or (e). The SbL 

intensities at atomic column positions are dependent on the defocus. The brightest spots are 

observed at Δf = -60 Å, whose absolute value is larger than the Sb-layer position because of the 

prefocus effect as shown in Fig. 5(c). Comparison of the defocus-dependent simulations of the 

STEM images with the experimental ones enabled us to obtain quantitative 3-dimensional 

information. 

     Figure 7 shows the probe line-scan simulation of SiK and SbL EDX signals at CS = 0.001 mm 

for Sb-layer thickness of 40 Å (a), 10 Å (b) and 2 Å (c). The Sb layers are located on the centre 

along the z-direction in the Si-Sb-Si samples. The SbL-intensive area along the vertical axis 

decreased with decreasing Sb-layer thickness from (a) to (b). However, the SbL-intensive area in (c) 

is comparable with that in (b). This is because of the resolution limit by the depth of field at CS = 

0.001 mm. The SiK intensities were attenuated around the SbL-intensive area, and decreased with 
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decreasing thickness of the Sb layer. 

 

 

4. Conclusions 

 

Allen et al. skilfully formulated a framework for calculating the HAADF, BSE, EELS 

and EDX STEM images from the inelastic scattering coefficient by the Bloch wave method. We 

extended their scheme to a layer-by-layer representation for application to inhomogeneous crystals 

that include precipitates, defects and atomic displacement. Calculations were performed for a 

multi-layer sample of Si-Sb-Si by multiplying Allen et al.’s block-diagonalized matrices. Electron 

intensities within the sample and EDX STEM images were calculated at various conditions. 

Ccalculations of the STEM images revealed that 3-dimensional information can be obtained. 
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Figure captions 

 

Fig. 1. Scheme of the multi-layer sample. tn and zn are the n-th layer thickness and depth from the 

n-th layer surface, respectively. The z-dependent amplitude )0(,Gl
n  is equal to )( 1

,
1  n

l
n tG  because 

of the boundary condition between the (n-1)-th and n-th layers. 

 

Fig. 2. Calculated electron intensities in the stack composed of Si, Sb and Si layers whose 

thicknesses are 45, 10 and 45 Å, respectively. The calculations were performed in the spherical 

aberrations of 0.1 mm (a), 0.01 mm (b) and 0.001 mm (c) with Scherzer focuses and optimal cut-off 

apertures. The horizontal axis indicates coordinates along [001] or along the dumbbell. The vertical 

axis indicates the depth from the sample surface along [110]. The atomic columns in the dumbbell 
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are located at x = 0 and -1.36 Å. The centre of the STEM probe is located on the atomic column at x 

= 0 Å. The positions of the Si and Sb layers are shown at the right side of the figures. 

 

Fig. 3. Calculated electron intensities in the stack composed of Si, Sb and Si layers whose 

thicknesses are 45, 10 and 45 Å, respectively. The calculations were performed at the defocuses of 

-100 Å (a), -80 Å (b), -60 Å (c), -40 Å (d), -20 Å (e) and 0 Å (f) with spherical aberration 0.001 mm 

and optimal cut-off aperture 2.40 Å-1. The horizontal axis indicates coordinates along [001] or along 

the dumbbell. The vertical axis indicates the depth from the sample surface along [110]. The atomic 

columns in the dumbbell are located at x = 0 and -1.36 Å. The centre of the STEM probe is located 

on the atomic column at x = 0 Å. The positions of the Si and Sb layers are shown at the right side of 

the figures. 

 

Fig. 4. Calculated electron intensities in the stack composed of Si, Sb and Si layers whose 

thicknesses are 45, 10 and 45 Å, respectively. The calculations were performed at the defocuses of 

-100 Å (a), -80 Å (b), -60 Å (c), -40 Å (d), -20 Å (e) and 0 Å (f) with spherical aberration 0.001 mm 

and optimal cut-off aperture 2.40 Å-1. The horizontal axis indicates coordinates along [001] or along 

the dumbbell. The vertical axis indicates the depth from the sample surface along [110]. The centre 

of the STEM probe is located off the atomic column at x = 2.04 Å. The nearest atomic columns are 

located at x = 0 and 4.07 Å. The positions of the Si and Sb layers are shown at the right side of the 

figures.  

 

Fig. 5. Probe line-scan simulation of SiK and SbL EDX signals in the stack composed of Si, Sb and 

Si layers whose thicknesses are 45, 10 and 45 Å, respectively. The horizontal axis indicates the 

coordinate along [001] or along the dumbbell. The vertical axis indicates the objective lens defocus. 

The calculations were performed for spherical aberrations 0.1 mm (a), 0.01 mm (b) and 0.001 mm 

(c) and for optimal cut-off apertures. 
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Fig. 6. Calculated EDX STEM image simulations for [110] zone axis incidence at the defocuses of 

-100 Å (a), -80 Å (b), -60 Å (c), -40 Å (d), -20 Å (e) and 0 Å (f) with spherical aberration 0.001 mm 

and optimal cut-off aperture 2.40 Å-1. Intensity maximum and minimum are indicated under the 

each image. 

 

Fig. 7. Probe line-scan simulation of SiK and SbL EDX signals in the stacks composed of Si, Sb 

and Si whose thicknesses are 30, 40 and 30 Å in (a), and 45, 10 and 45 Å in (b), and 49, 2 and 49 Å 

in (c), respectively. The horizontal axis indicates the coordinate along [001] or along the dumbbell. 

The vertical axis indicates the objective lens defocus. The calculations were performed for spherical 

aberration 0.001 mm and optimal cut-off aperture 2.40 Å-1. 
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