Letter to the Editor

Olopatadine hydrochloride inhibits scratching behavior induced by a proteinase-activated receptor 2 agonist in mice

Ayumi Yoshizaki and Shinichi Sato

Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan

Address correspondence to: Dr. Shinichi Sato, Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.

Phone: 81-95-819-7333

Fax: 81-95-849-7335

E-mail: <u>s-sato@nagasaki-u.ac.jp</u>

Proteinase-activated receptors (PARs), a group of G protein-coupled receptors, are activated by the cleavage of their N-terminal domain by serine proteinases [1, 2]. The proteolytic cleavage of the N-terminal region of PARs unmasks a new N-terminal sequence that acts as a tethered ligand that binds and activates the receptor itself [1]. The PAR₂ subtype is highly expressed in the skin, is activated by trypsin and mast cell tryptase, and can be activated without the need for proteolysis by synthetic PAR₂ agonists, such as SLIGRL-NH₂ [1, 3]. Tryptase and PAR₂ are up-regulated on sensory nerves in the skin from atopic dermatitis patients [2]. Indeed, intradermal injections of SLIGRL-NH₂ evoke dose-dependent scratching in mice [4]. In addition, PAR₂ agonists induce the release of neuropeptide, such as substance P, from primary afferent neuron [5]. Pretreatment of mice with a histamine H₁ receptor antagonist, pyrilamine, has no effect on PAR₂-mediated scratching [4]. These results indicate that PAR₂ signaling induces itching independently of histamine H₁ receptor signaling.

Olopatadine hydrochloride ((Z)-11-(3-dimethylaminopropylidene)-6,11-dihydrodinenz [b,e]oxepin-2-acetic acid monohydrochloride) is a second-generation antihistamine. Olopatadine inhibits ear swelling and cytokine production in a murine chronic contact hypersensitivity model, while other antihistamines do not suppress them, suggesting that olopatadine exerts additional biological effects besides its blockade of histamine H_1 receptor [6]. In this study, we examined the effect of olopatadine on PAR₂ agonist-induced scratching behavior in mice.

Scratching behavior with a PAR₂ agonist was induced on the shaved neck of 6-8 weeks old C57BL/6 mice (Jackson Laboratory, Bar Harbor, ME, USA) by subcutaneously injecting 50 µl of a PAR₂ agonist 2f-LIGRL-amide (1 mg/ml in phosphate-buffered saline (PBS); Calbiochem, Dermstadt, Germany). Injected mice were individually transferred to cages for observation from one hour before subcutaneous injection for acclimatization. Room temperature was maintained at 22 to 25°C. Scratching behavior was counted as once when a hind leg of the animal touched the shaved area and returned to the ground, as previously described [4]. The number of scratching behavior was counted from -10 to 40 minutes

defining the time of administering the PAR₂ agonist as 0 minutes. The total number of scratching was the sum of scratching behavior from 0 to 30 minutes. Subcutaneous administration of PBS alone induced no scratching behavior in mice (data not shown). The skin sections stained with hematoxylin and eosin which was excised from shaved neck after 30 minutes of treatment with the PAR₂ agonist or PBS were used for histological evaluation. We also examined expression levels of preprotachykinin A mRNA, the precursor for substance P, in the skin using quantitative real time polymerase chain reaction according to the manufacturer's instructions (Applied Biosystems, Forester City, CA, USA). In addition, immunohistochemical analysis of substance P using anti-substance P monoclonal antibodies (Santa Cruz Biotechnology, Santa Cruz, CA, USA) was done. Plasma levels of substance P were measured by a specific ELISA (R&D Systems, Mineapolis, MN, USA).

Olopatadine was orally given once at 1, 3, 10, or 30 mg/kg through a tube together with 1 ml of PBS 30 minutes before subcutaneous injection of the PAR₂ agonist. Pyrilamine (Sigma-Aldrich, St. Louis, MO, USA), a histamine H₁ receptor antagonist, was used to confirm that the PAR₂ agonist-induced scratching behavior is not mediated by histamine H₁ receptor. Pyrilamine (10 mg/kg) was subcutaneously injected into the hip of mice 30 minutes before the administration of the PAR₂ agonist. Furthermore, we examined the effect of olopatadine on the itch evoked by 150 μ g of substance P (Peptide Institute, Osaka) treatment as the method for the PAR₂ agonist treatment. Mice orally given only PBS served as a control group.

The PAR₂ agonist induced scratching behavior just after the administration and its effect continued until 30 minutes after the administration (Figure 1A). The number of scratching behavior reached the maximum 5 minutes after the PAR₂ agonist administration at all groups and then decreased with time. Pretreatment with olopatadine significantly decreased the number of scratching behavior in mice treated at all doses compared with that in control mice. In addition, inhibition of the number of scratching behavior was almost dependent on the dose of olopatadine. According to the skin hematoxylin and eosin staining pictures, the PAR₂

3

agonist treatment induced substantial cutaneous edema compared with PBS treatment, which was inhibited by olopatadine administration (Figure 1C). By contrast, the number of scratching behavior in the pyrilamine-pretreated group was comparable to that in the control group, suggesting that the inhibitory effect of olopatadine on the PAR₂ agonist-induced scratching behavior is not mediated by histamine H_1 receptor. Similar results were obtained for the total number of scratching that was the sum of scratching behavior from 0 to 30 minutes (Figure 1B).

Plasma levels of substance P increased by the PAR₂ agonist treatment (Figure 2B), though there were no significant differences in the skin preprotachykinin A mRNA expression levels (Figure 2A). However, secreted substance P could not be detected in the PAR₂ agonist- or PBS-treated skin. Although this discrepancy is unclear, it might be due to short half-life of substance P and/or high solubility of substance P in organic solvent, such as formaldehyde, and water which were used for the fixation and staining of skin samples [7]. Olopatadine preadministration inhibited elevation of plasma substance P levels induced by the PAR₂ treatment (Figure 2B). Furthermore, substance P treatment induced scratching behavior, which was inhibited by olopatadine pretreatment (Figure 2C).

Histamine is the important mediator of itching in allergic skin diseases [2]. However, it is well recognized in the routine clinical setting that itching of atopic dermatitis, nasal congestion in allergic rhinitis, and bronchial asthma do not always respond to H_1 antihistamines. Our finding that H_1 antihistamine, pyrilamine did not inhibit scratching induced by the PAR₂ agonist suggests that H_1 antihistamine-resistant itching is mediated in part by PAR₂ signaling. Furthermore, the significant inhibitory effect on PAR₂-induced itching by olopatadine suggests that olopatadine may be effective for H_1 antihistamine-resistant itching.

Many studies have shown that olopatadine has various pharmacological and biological activities besides its histamine H₁ receptor antagonistic activity [6]. In particular, olopatadine suppresses release of neuropeptides, including substance P and calcitonin gene-related peptide,

4

from afferent neurons. Increased expression of substance P in the spinal dorsal horn following repeated hapten application is inhibited by olopatadine [8]. Olopatadine also attenuates the enhancement of capsaicin-induced substance P release by bradykinin from cultured dorsal root ganglion neurons [9]. Moreover, olopatadine decreases plasma levels of substance P in patients with atopic dermatitis, while cetiridine and fexofenadine do not decrease them [10]. In this study, olopatadine inhibited the PAR₂ agonist-induced substance P secretion. Furthermore, olopatadine decreased substance P-induced scratching behavior. Collectively, the inhibitory effect on PAR₂-induced itching by olopatadine may be related to the inhibition of substance P release and substance P-induced itching by olopatadine, which is downstream of PAR₂ signaling.

Conflict of interest

None.

References

[1] Shpacovitch V, Feld M, Hollenberg MD, Luger TA, Steinhoff M. Role of protease-activated receptors in inflammatory responses, innate and adaptive immunity. J Leukoc Biol 2008;83:1309-22.

[2] Paus R, Schmelz M, Biro T, Steinhoff M. Frontiers in pruritus research: Scratching the brain for more effective itch therapy. J Clin Invest 2006;116:1174-86.

[3] Steinhoff M, Corvera CU, Thoma MS, Kong W, McAlpine BE, Caughey GH, Ansel JC, Bunnett NW. Proteinase-activated receptor-2 in human skin: Tissue distribution and activation of keratinocytes by mast cell tryptase. Exp Dermatol 1999;8:282-94.

[4] Shimada SG, Shimada KA, Collins JG. Scratching behavior in mice induced by the proteinase-activated receptor-2 agonist, sligrl-nh2. Eur J Pharmacol 2006;530:281-3.

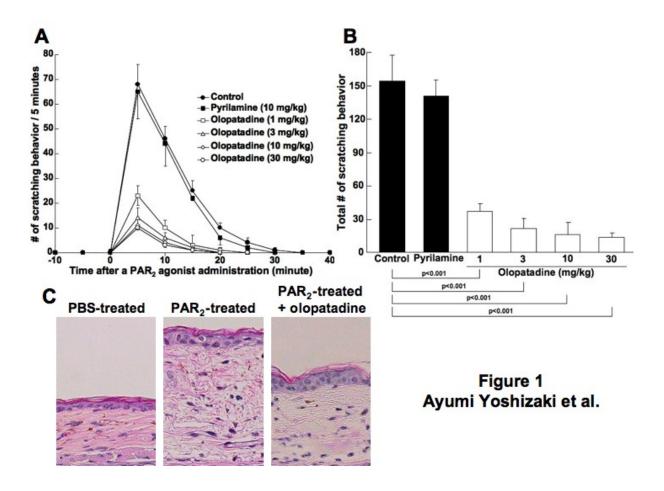
[5] Steinhoff M, Vergnolle N, Young SH, et al. Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat Med 2000;6:151-8.

[6] Tamura T, Masaki S, Ohmori K, Karasawa A. Effect of olopatadine and other histamine h1 receptor antagonists on the skin inflammation induced by repeated topical application of oxazolone in mice. Pharmacology 2005;75:45-52.

[7] Waters SM, David TP. Alterations of substance p metabolism and neuropeptidases in alzheimer's disease. J Gerontol A Biol Sci Med Sci 1995;50:B315-B9.

[8] Hamada R, Seike M, Kamijima R, Ikeda M, Kodama H, Ohtsu H. Neuronal conditions of spinal cord in dermatitis are improved by olopatadine. Eur J Pharmacol 2006;547:45-51.

[9] Tang HB, Nakata Y. Olopatadine attenuates the enhancement of capsaicin-evoked substance p release by bradykinin from cultured dorsal root ganglion neurons. Eur J Pharmacol 2006;552:78-82.


[10] Izu K, Tokura Y. The various effects of four h1-antagonists on serum substance p levels in patients with atopic dermatitis. J Dermatol 2005;32:776-81.

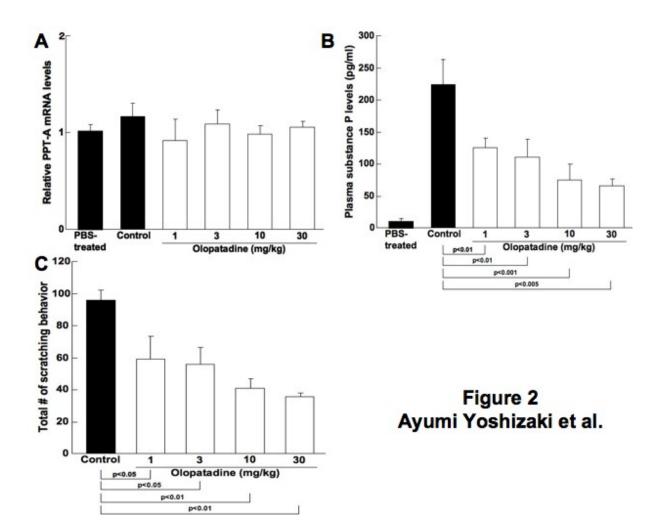

7

Figure legends

Figure 1. The time course (A) and total number (B) of the PAR₂ agonist-induced scratching behavior in either olopatadine- or pyrilamine-pretreated group. Thirty minutes before the PAR₂ agonist administration, olopatadine was orally administered once at each dose and pyrilamine was subcutaneously injected into the hip of mice. The time of administering the PAR₂ agonist was defined as 0 minutes. Mice orally given only PBS served as a control group. Representative histological sections stained with hematoxylin and eosin are shown (C). The skin sections were excised from shaved neck after 30 minutes of treatment with the PAR₂ agonist or PBS. Each group consisted of 6 mice. Values are expressed as mean \pm SD. Original magnifications, x100.

Figure 2. Levels of preprotachykinin A (PPT-A) mRNA expression in the skin (A) and substance P in the plasma samples (B) from the PAR₂ agonist- or PBS-treated mice. The skin and plasma samples were obtained after 30 minutes of treatment with the PAR₂ agonist or PBS. Effect of olopatadine on total number of scratching behavior induced by substance P. Thirty minutes before substance P administration, olopatadine was orally administrated once at each dose. Total number of scratching behavior was counted from 0 to 30 minutes defining the time of administering substance P as 0 minutes. Mice orally given only PBS served as a control group. Each group consisted of 6 mice. Values are expressed as mean \pm SD.

