STUDIES ON EPIDEMIOLOGY OF *DIROFILARIA IMMITIS* IN HOUSE DOGS IN NAGASAKI CITY, JAPAN, WITH CONSIDERATIONS ON YEARLY CHANGES IN MICROFILARIAL PREVALENCE

TSUTOMU ODA¹, OSAMU SUENAGA², AKIO MORI³, KOICHIRO FUJITA⁴, MAKOTO ZAITSU⁵, KENJI KUROKAWA⁵, TAKESHI NISHIOKA⁷, TATSUYA ITOH⁷ AND MARIKO MINE⁸ Received October 6 1993/Accepted November 8 1993

Abstract: The positive rate of *Dirofilaria immitis* infection was studied in the eastern, western, southern and northern parts of Nagasaki City 3 times between 1968 and 1983. Chronological changes in the positive rate of dogs for microfilariae in these 4 parts and the roles of epidemic factors in the changes of the positive rate were evaluated. The positive rate decreased in the northern part, where houses and buildings increased annually, whereas the number of dog owners and the density of dogs decreased. Improvements in the drainage such as side ditches, which are primary breeding sites of vector mosquitoes (*Culex p. pallens*), are assumed to have led to a decrease in the mosquito density, resulting in a decrease in the positive rate of dogs decreased also in these parts, but it remained higher than in the northern part as the number of houses was smaller, and more people kept dogs. Also, as the sewage system did not seem to be so well developed as in the northern part, more mosquitoes might be present. The high positive rates in these parts may be ascribed to these conditions.

INTRODUCTION

The adult worm of *Dirofilaria immitis* transmitted by mosquitoes usually lives in the heart of dogs. Human infections are also known in Japan (e.g., Yoshimura 1989; Suzumiya and Nawa 1990). In Nagasaki City, house dogs were infected with this worm in high rates and the main vector was *Culex pipiens pallens* (Suenaga *et al.*, 1971; Suenaga and Itoh, 1973; Suenaga *et al.*, 1980). However, the relative importance of the factors actually related to the prevalence remains unknown. Therefore we conducted an epidemiological study of *D. immitis*. Herein, the changes in microfilarial prevalence from 1968 to 1983 are reported with a consideration of the factors responsible for these changes.

PLACES AND METHODS

As Suenaga *et al.* (1971) reported, Nagasaki City is divided into 44 elementary school districts, or into 4 parts, eastern, western, southern and northern. To examine the microfilariae of *D. immitis* in each division, we sampled blood from an earlobe of a dog in April and May, 1983 when the City Health Center was conducting rabies vaccination to registered dogs. A drop of blood was taken, smeared on a slide glass, and stained with 10% Giemsa's solution. The number of microfilariae in the blood specimen was counted with a stereomicroscope. The data on sex and age of examined dogs were taken from the record of Nagasaki City Health Center.

Cx. p. pallens, the main mosquito vector, were collected by a light trap with black light (20 watts) from

^{1.} Department of General Education, the School of Allied Medical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852, Japan

^{2.} Reference Center, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852, Japan

^{3.} Department of Medical Zoology, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852, Japan

^{4.} Department of Medical Zoology, Faculty of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku 113, Japan 5. Sasebo City Health Center, 1-10 Yahata-machi, Sasebo 857, Japan

^{6.} Department of Bacteriology, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852, Japan

^{7.} Nagasaki City International Culture Hall, 7-8 Hirano-machi, Nagasaki 852, Japan

^{8.} Scientific Data Center of Atomic Bomb Disaster, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852, Japan

Dort	District		No. of dogs			No. of houses No. of dogs registered		No. of dogs per house	
	No.	Name	examined	positive	%	(A)	(B)	(B/A)	
	1	Irabayashi	3	0	0.0	9072	418	0.0461	
	2	Togiya	1	0	0.0	2524	69	0.0273	
Eastern	3	Katsuyama	3	3	100.0	2993	108	0.0361	
	4	Shinkozen	1	0	0.0	1938	27	0.0139	
	5	Kaminagasaki	4	2	50.0	4939	250	0.0506	
	6	Koshima	0		_	6528	352	0.0539	
	7	Nishizaka	49	16	32.7	2459	74	0.0301	
	8	Himi	0		- 1	3280	163	0.0497	
	9	Yagami	80	28	35.0	3448	122	0.0354	
	10	Koga	68	28	41.2	1849	103	0.0557	
	11	Toishi	56	22	39.3	1113	72	0.0647	
		Total	265	99	37.4*	40143	1758	0.0438	
	12	Inasa	69	20	29.0	5715	216	0.0378	
	13	Asahi	56	13	23.2	2571	96	0.0373	
	14	Akunoura	89	24	27.0	2787	116	0.0416	
	15	Tategami	0			989	66	0.0667	
Western	16	Kosakaki	0	_		1381	58	0.0420	
iii coteriii	17	Fukuda	74	29	39.2	2489	101	0.0406	
	18	Teguma	4	0	0.0	2063	111	0.0538	
	19	Shikimi	1	0	0.0	1482	66	0.0445	
		Total	293	86	29.4	19477	830	0.0426	
	20	Sako	19	1	5.3	3139	82	0.0261	
	21	Nita	11	2	18.2	2098	84	0.0400	
	22	Kitaohura	6	2	33.3	4668	248	0.0531	
	23	Minamiohura	17	8	47 1	2491	127	0.0510	
	24	Naminohira	24	3	12.5	1463	71	0.0485	
	25	Tomachi	149	57	38.3	5044	232	0.0460	
	26	Kogakura	46	22	47.8	1779	64	0.0360	
Southern	27	Doinokubi	49	29	59.2	4574	221	0.0483	
	28	Fukahori	64	23	42.2	3545	104	0.0293	
	29	Minami	13	5	38 5	244	16	0.0656	
	30	Mogi	57	12	21 1	2049	96	0.0469	
	21	Havasaka	0	12		1055	131	0.0670	
	32	Hivoshi	0	_	_	3/3	18	0.0525	
		Total	455	168	36.9*	33392	1494	0.0447	
	22	70000	52	11 :	20.9	2562	75	0.0202	
	24	Salvamoto	20		15 6	2005	75	0.0295	
	24	Tabaa	32	5	13.0	4051	19	0.0195	
	20	Variante	134	54 6	20.4	5070	110	0.0342	
Northern	27	I alliazato		0	20.0	5079	110	0.0217	
	20	Shiroyama			14.3	4007	100	0.0424	
	20	Nichiuroleomi	9	56	22.2	2232	00	0.0365	
	10	Nomochi	10	50	27.1	0092	400	0.0445	
	40	Nichikito	12	4	20.0	9200 4070	420	0.0404	
	41	Nishimashi	42	14	21 0	4413 6476	200	0.0300	
	44	Kowobira			57.1	0470	299	0.0402	
	40	Obzono		4	57.1	2013	 	0.0207	
	44				+	2930	101	0.0207	
	Total		555	144	25.9*	59159	2211	0.0374	
Sum total			1568	497	31.7	152171	6293	0.0421	

 Table 1
 Positive rates for microfilariae of D. immitis in dogs with the number of registered dogs per house in the districts of Nagasaki City in 1983

*Significant (P<0.01)

1972 to 1983 in 4 points in residential area: Irabayashi (Eastern part), Inasa (Western part), Tomachi (Southern part) and Sakamoto (Northern part). In addition, the collection was made in Sakamoto-machi also from 1967 to 1971. The light trap was regularly operated from 6 PM to 7 AM (one night), once a week from May to October.

RESULTS

 Microfilarial prevalence in house dogs in Nagasaki City

Table 1 shows the results of the blood examination of dogs in Nagasaki City in 1983. The positive rate for microfilariae was 31.7% for the whole city. The positive rate in the eastern or southern part was significantly higher than that in the northern part $(x^2-\text{test}, p<0.01)$. We thought that the difference in the positive rate might be related with the dog density (the number of dogs per house). To make clear this hypothesis, the numbers of dogs per house were also examined in these parts (Table 1). As explained later, the positive rate is correlated with the dog density, which was lowest in the northern part with the lowest positive rate among the 4 parts.

2. Comparison of positive rates in dogs by sex and age in the 4 parts of the city

The positive rates were compared according to sex and age in the 4 parts in Table 2. The rates were calculated only for dogs with an exact record of age. The positive rate is generally lower at any age for either sex in the northern part of the city than in the other 3 parts. This means that the lower prevalence in the northern part was not due to different age distribution nor sex ratio in the dogs examined.

3. Correlation between positive rate and dog density

We examined the correlation between positive rate and dog density in districts in Figure 1, where points were plotted only when the number of dogs examined was over 10. The microfilaria positive rate was positively correlated with dog density in the city (correlation coefficient 0.4163, 0.01).

4. Yearly changes in positive rates of the dogs in the 4 parts of the city

The yearly changes in positive rates in the 4 parts were examined by comparing the results reported by Suenaga *et al.* (1971; 1980) with the present data by the linear trend test of Armitage (1955) (Table 3). In the

Figure 1 Relation between dog density and positive rate of dogs in districts in Nagasaki City in 1983.
* Points were plotted only when the number of dogs examined was over 10.

northern part, the total positive rate of 40.5% in 1968 clearly decreased to 25.9% in 1983, while the rate increased in the eastern, western and southern parts.

In 1977 and 1983, the results of positive rates in the 4 parts were obtained in spring, but in 1968 the results were composed of data taken in spring and autumn. The positive rate calculated only for spring was 34.6%, 19.5%, 21.6% and 41.8% in the eastern, western, southern and northern parts, respectively, there being not much difference between the results obtained only in spring and those obtained in spring and autumn combined (Table 1).

 Yearly changes in the number of the registered dogs in Nagasaki City

Figure 2 shows the yearly change in the total number of dogs registered in whole Nagasaki City. The number of these dogs decreased gradually from 1968 to 1983, with some variations. Changes in numbers of dogs and houses in each of 4 parts of Nagasaki City are shown in Table 4. In each part, the decrease in the number of dogs was apparent, while the number of houses increased.

6. Yearly changes of the relation between positive rate and dog density in the 4 parts

As the numbers of houses and registered dogs in each district were available for 1968 and 1983, the dog density (number of dogs per house) was calculated. The relation between the microfilaria positive rate in dogs and the dog density in each district in 1968 was compared with that in 1983 in Figure 3. The positive rate

233

Dout	Sex	No. and 9/	Age							Tetal
Part		No. and %	0	1-2	3-4	5-6	7-8	9-10	11≦	Total
Eastern	Male	Dogs examined	0	65	40	28	18	9	7	167
		Dogs positive	0	17	12	11	10	6	6	62
		% positive	0	26.2	30.0	39.3	55.6	66.7	85.7	37.1
	Female	Dogs examined	0	31	19	16	10	7	12	95
		Dogs positive	0	7	7	8	4	4	7	37
		% positive	0	22.6	36.8	50.0	40.0	57.1	58.5	38.9
	Male	Dogs examined	1	51	43	35	13	15	16	174
		Dogs positive	0	8	21	15	7	4	6	61
Western		% positive	0	15.7	48.8	42.9	53.8	26.7	37.5	35.1
	Female	Dogs examined	0	37	33	15	12	11	8	116
		Dogs positive	0	7	6	5	1	4	2	25
		% positive	0	18.9	18.2	33.3	8.3	36.4	25.0	21.6
Cth	Male	Dogs examined	3	99	72	43	30	11	14	272
		Dogs positive	0	25	36	18	16	7	9	111
		% positive	0	25.3	50.0	41.9	53.3	63.6	64.3	40.8
Southern	Female	Dogs examined	1	54	42	32	15	19	8	171
		Dogs positive	0	10	16	14	3	7	3	53
		% positive	0	18.5	38.1	43.8	20.0	36.8	37.5	31.0
Northern	Male	Dogs examined	3	95	72	65	42	29	29	335
		Dogs positive	1	15	22	25	17	10	9	99
		% positive	33.3	15.8	30.6	38.5	40.5	34.5	31.0	29.6
	Female	Dogs examined	1	76	41	41	24	20	16	217
		Dogs positive	0	5	6	13	6	6	7	43
		% positive	0	6.6	14.6	31.7	25.0	30.0	43.8	19.8

Table 2Number and percentage of dogs positive for D. immitis microfilariaeby age and sex in 4 parts in Nagasaki City, 1983

Table 3 Yearly changes in D. immitis positive rates of dogs in 4 parts in Nagasaki City from 1968 to 1983

Part	1968*			1977*			1983			Increase $(+)$ or decrease $(-)$	
	No. of examined	dogs positive	Positive rates (%)	No. of dogs examined positive		Positive rates (%)	No. of dogs examined positive		Positive rates (%)	in prevalence 1968 to 1983	
Eastern	675	194	28.7	328	113	34.5	265	99	37.4	+**	
Western	337	68	20.2	334	98	29.3	293	86	29.4	+**	
Southern	639	137	21.4	504	178	35.3	455	166	36.9	+**	
Northern	719	291	40.5	555	174	31.4	555	153	25.9	**	

*: Cited from Suenaga et al. (1971, 1980).

**: Significant P<0.001

decreased in parallel with the decrease of the dog density in the northern part, but in the other parts the opposite tendency was generally observed. 7. Yearly changes in number of Cx. p. pallens females at 4 points

In Figure 4, the mean number of *Cx. p. pallens* females per night was shown as an annual population index. The mosquito population was not large from

234

Figure 2 Yearly changes in the total number of registered dogs in Nagasaki City.

1972 to 1983, in the eastern, western and southern parts, though population varied with year. In Sakamoto (northern part) where the mosquitoes were collected from 1967 to 1983, the density was also low since 1971.

DISCUSSION

We studied the infections of *D. immitis* in registered dogs in the eastern, western, southern and northern parts of Nagasaki City in 1968, 1977 and 1983, and found a significant difference between the northern part and the other 3 parts. In the northern part, the positive rate had decreased, whereas in the other 3 parts, it had increased markedly. As one of the factors causing this phenomenon, introduction of Ivermectin, an effective

Table 4Changes in numbers of dogs and housesin 4 parts between 1968 and 1983

•								
Part	Dog and House	1968*	1983					
Eastern	No. registered dogs (A)	3,666	1,758					
	Dog density (A/B)	0.1212	0.0438					
	No. houses (B)	30,243	40,143					
Western	No. registered dogs (A)	1,428	830					
	Dog density (A/B)	0.0932	0.0426					
	No. houses (B)	15,316	19,477					
Southern	No. registered dogs (A)	2,491	1,494					
	Dog density (A/B)	0.1034	0.0447					
	No. houses (B)	24,085	33,392					
Northern	No. registered dogs (A)	3,733	2,211					
	Dog density (A/B)	0.1050	0.0374					
	No. houses (B)	35,566	59,159					

*Cited from Suenaga et al. (1971, 1980)

Figure 3 Relation between the dog density and the positive rate for *D. immitis* in the districts of Nagasaki City in 1968 and 1983.

Figure 4 Yearly changes in the number of *Cx. p. pallens* females per night in Nagasaki City. E, W, S and N show eastern, western, southern and northern part respectively.

* The collection by light trap was not made.

preventive drug for *D. immitis*, was considered, but it can not be a reason for the decrease in the positive rate in the northern part since 1968 because its introduction was 1988. The present result showed that mosquito density was scarcely different in all the parts after 1972. But the density decreased in the northern part from 1968 to 1972, and thus, this decrease in mosquito density may be related to the decrease of the rate.

Dog density, which is an important factor responsible for infection (Wada *et al.*, 1989), decreased apparently in all 4 parts, but the positive rate decreased in the northern part and increased in the other 3 parts. As shown in Table 4, the number of houses in the northern part, which was the largest among the parts, had increased. This implies that many new residential areas had developed in this part, where it is assumed that the space to keep dogs outside was limited and there was some environmental complaint against dogs. Therefore, many dogs may have been kept within the house, and prevented from attack of the vector mosquito, Cx. p.*pallens*, which occurs in the breeding sites such as side ditches. Furthermore, when we took dog's blood, we had an impression that in the northern part more dog owners became to take measures to prevent exposure of their dogs to mosquitoes by, for example, letting them within the house at night and providing mosquito repellents. In the northern part, the increase in houses and office buildings was associated with the development of the sewage system thus decreasing drainages such as side ditches, according to the Department of Sewage System in Nagasaki City. Such improvements in the sanitary environment are considered to have been a factor in the decrease of the Cx. p. pallens. These conditions are assumed to relate to the decrease in the positive rate in the northern part.

On the other hand, the positive rate increased in eastern, western and southern parts. The density of dogs increased also in these parts, but it remained higher than in northern part as the number of houses was smaller, and more people kept dogs. In addition, it seems that the sewage system was poorly developed in these parts, because the number of houses was smaller than in northern part. From this we assumed that as the drainage has not been so well developed as in the northern part, more mosquitoes would be present in the 3 parts, though this result was not clearly shown by the data of light trap. According to dog owners, more dogs seem to be bred outdoors. Therefore it is suspected that dogs had more chance to be attacked by mosquitoes even if mosquito density was low in these parts.

As for the role of other mosquitoes in the transmission of *D. immitis*, Suenaga and Itoh (1973) reported that *Aedes albopictus* may be the secondary important vector, and *Cx. tritaeniorhynchus* may also be some bearing on the transmission in Nagasaki City. However, there is no evidence that these mosquitoes increased in the 3 parts in particular, and they are not considered to have contributed much to the increase of positive rate. The number of stray dogs may be another factor influencing the transmission. Their number, as given by the number of arrested dogs (unpublished data), decreased with years, therefore stray dogs are not an important factor for the increase of positive rate.

ACKNOWLEDGMENTS

Professor Y. Wada, Department of Medical Entomology, Institute of Tropical Medicine, Nagasaki University kindly read this manuscript and provided detailed suggestions. Dr. T. Fukuda, President of the Society of Veterinarian, in Nagasaki City and their member, veterinarians really cooperated with our research. We wish to express our sincere gratitude to these persons.

References

- 1) Armitage, P. (1955): Test for linear trends in proportions and frequencies. Biometrics 11, 375-386.
- 2) Suenaga, O., Itoh, T. and Nishioka, T. (1971): Studies on the filarial prevalence among house dogs and the mosquito vectors in Nagasaki City, Western Japan. 1. On the microfilarial prevalence among house dogs in Nagasaki City. Trop. Med., 12, 169-178. (in Japanese with English summary).
- 3) Suenaga, O., Itoh, T. and Nishioka, T. (1973): Studies on the filarial prevalence among dogs and the mosquito vectors in Nagasaki City, Western Japan. 5. On the vector mosquitoes of *Dirofilaria immitis* in Nagasaki City. Trop. Med., 15, 131-140. (in Japanese with English summary).
- 4) Suenaga, O., Nishioka, T. and Itoh, T. (1980): On the transition of canine heartworm prevalence among dogs in Nagasaki City, Western Japan. 1. The filarial prevalence among dogs in the city. Trop. Med., 22, 35-45.
- Suzumiya, J. and Nawa, Y. (1990): Three cases of pulmonary Dirofilariasis found in Miyazaki prefecture. Jpn. J. Parasit., 39, 67-71.
- 6) Wada, Y., Tsuda, Y. and Suenaga, O. (1984): Transmission dynamics of *Dirofilaria immitis* in a Southwestern part of Japan. Trop. Med., 31, 35-47.