DRUG SENSITIVITY OF *VIBRIO CHOLERAE* AND *SHIGELLA* SPECIES IN THE WORLD

NAOMI HIGA¹, MASAAKI IWANAGA^{1,2}, AKIYOSHI UTSUNOMIYA³, THICUMPORN KUYYAKANOND⁴, NOIKASEUMSY SITHIVONG⁵, EDDY BAGUS WASITO⁶, CLAUDIA TOMA¹, AND TETSU YAMASHIRO² Received July 20, 1995/Accepted August 16, 1995

Abstract: Recently isolated *Vibrio cholerae* and *Shigella* pecies from 6 countries were examined for their drug sensitivities. The sensitivities of *V. cholerae* were characterized by a narrow inhibitory concentration ranges without any resistant strain. However, the sensitivities of *Shigella* species were variable and mostly resistant to tetracycline and ampicillin. Japanese isolates of *Shigella* species were relatively more sensitive to tetracycline and ampicillin than the isolates from the other countries.

Indonesian isolates of *Shigella* species were relatively more resistant than those of the other countries, even to the new antimicrobials such as ofloxacin and cefdinir, and a highly resistant strain against ofloxacin was found.

INTRODUCTION

Cholera and bacillary dysentery (Shigellosis) are the most notorious illness among diarrheal diseases in the world. It has generally been said that Shigella species are mostly resistant to traditional antibiotics such as tetracycline and ampicillin (Carlson et al., 1983), while Vibrio cholerae are sensitive to them, although emergence of tetracycline resistant Vibrio cholerae has occasionally been reported (Glass et al., 1980; Ramamurthy et al., 1992; Towner et al., 1980; Yamamoto et al., 1995). However, the drug sensitivities of the pathogenic organisms are variable from place to place where they are isolated, and from time to time of isolation. Therefore, the drug sensitivities should intermittently be examined for better understanding of the epidemiological feature. This paper described the drug sensitivities of V. cholerae and Shigalla species recently isolated from a variety of places in the world.

MATERIALS AND METHODS

Bacterial strains: V. cholerae were collected from Argentina, Indonesia, Laos, India, Bangladesh and Thailand in total of 159 strains. The isolates from the former 3 countries are *V. cholerae* O1 El Tor and those from the latter 3 countries are *V. cholerae* O139 synonym Bengal. The strains of *Shigella* species were collected from Bolivia, Dominican Republic, Indonesia, Laos, Kenya and Japan in total of 191 strains. All strains were isolated during the period between 1992 and 1995.

Drugs examined: Ampicillin (ABPC), Tetracycline (TC), Erythromycin (EM), and Ofloxacin (OFLX) were examined for all isolates. Additionally, Polymyxin B (PLB) for *V. cholerae* and Cefdinir (CFDN) for *Shigella* were examined.

Sensitivity tests: Minimum inhibitory concentration (MIC) of the drugs were examined by plate dilution technique. Heart infusion agar plates containing the drug at the serial 2-fold concentrations from $0.025\mu g/ml$ to $100\mu g/ml$ were prepared. The organisms to be examined were cultured in heart infusion broth over night and the culture fluids were diluted 1 : 10 with normal saline solution for the inoculum (ca. $10^7/ml$). They were inoculated by using microplanter (Sakuma Co. MITP#00257) and determination of MIC was made after incubation at 37 C for 24 hours.

¹⁾ Department of Bacteriology, Faculty of Medicine, University of the Ryukyus, Okinawa 903-01, Japan.

²⁾ Research Institute of Comprehensive Medicine, Faculty of Medicine, University of the Ryukyus, Okinawa 903-01, Japan.

³⁾ Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852, Japan.

⁴⁾ Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.

⁵⁾ National Institute of Hygiene and Epidemiology, Vientiane, People's Democratic Republic of Laos.

⁶⁾ Department of Microbiology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia.

RESULTS

V. cholerae: The drug concentration ranges to inhibit the growth of organisms were 3.13 to 12.5μ g/ml of ABPC, 0.2 to 0.4 of TC, 0.4 to 12.5 mostly 3.13 to 6.25 of EM, and less than 0.05 of OFLX. Except PLB, there was no resistant *V. cholerae* strain. The sensitivity pattern was characterized by a narrow inhibitory concentration ranges of each drug. There was no variability depending on the place of isolation (Table 1). *V. cholerae* O139 were resistant to PLB like *V. cholerae* O1 El Tor with the MlCs more than 25 μ g/ml, mostly 100 μ g/ml.

Shigella species: Being diffrent from V. cholerae most isolates of Shigella species were highly resistant to TC and ABPC. However, the sensitivity pattern is different from the place to place of isolation (Table 2). The isolates of Japan were relatively sensitive to these traditional antibiotics. The Indonesian isolates have a tendency to become resistant even against OFLX, and actually there was one strain with the MIC of OFLX at 100 μ g/ml. In these sensitivity pattern, a new oral cephem CFDN has a considerably good anti-Shigella activity. Visual impression of these different sensitivities is shown in Figure 1.

 MIC_{50} and MIC_{90} account for the variety of drug sensitivity of *Shigella* and the resembling sensitivity of *V. cholerae* (Table 3).

DISCUSSION

Results of the present studies revealed that recently isolated cholera vibrios have almost the same drug sensitivity pattern to *V. cholerae* O1 isolated in the past 3 decades (Iwanaga *et al.*, 1982; Iwanaga *et al.*, 1979). Although *V. cholerae* O139, a new cholera vibrio, is known to be resistant to co-trimoxazole (Yam *et al.*, 1994), there must be no difficulties in the antimicrobial therapy for cholera at present. No resistant *V. cholerae* strain against the traditional antibiotics was found in this study. The sensitivity of *V. cholerae* O139 against PLB was different from the previous report by Sarkar et al. in which they described that the MICs were 15 to 50 μ g/ml (Sarkar *et al.*, 1993).

On the contrary, *Shigella* species showed a variety of drug sensitivities as being expected. It is interesting that the isolates of Japan are relatively more sensitive to tetracycline and ampicillin than those of the other countries. Japanese isolates were obtained from the epidemics in two separated areas of Okinawa. The cases were indigenous and not imported ones. The

consumption rate of tetracycline and ampicillin in Japan supposed to be lower than in the other countries. This may be one of the reasons why Japanese isolates are relatively sensitive to these drugs. The resistant rate of Shigella against these traditional antibiotics in the recent may have reached maximum, because this kind of sensitivity pattern has been constantly seen in the past decades (Smollan and Block, 1990; Voogd et al., 1992). We can not account for the reason why Indonesian isolates have a tendency to be resistant to the new antimicrobials such as cefdinir and ofloxacin. Ofloxacin, (a new quinolone) and cefdinir (a new oral cephem) are excellent to inhibit the growth of Shigella. but ofloxacin is not preferable to use in the pediatric cases and cefdinir is expensive. Erythromycin (macrolide) is basically not effective to inhibit the growth of enterobacteriaceae. Actually, high MICs against Shigella are shown in the present study. However, there were many facts in the past that erythromycin was effective for the treatment of shigellosis regardless the drug sensitivities (Saito et al., 1964; Ukai et al., 1965). Recently, moreover, it is widely recognized that erythromycin is effective to panbronchiolitis infected with Pseudomonas aerginosa (Unertl et al., 1986). Therefore, it may be beneficial to use erythromycin for diarrheal diseases due to bacterial enteritis. Erythromycin is the first choice of drug for Campylobacter diarrhea and is known to be effective to Vibrio diarrhea (Burans et al., 1989; Kobari et al., 1967). If eryhromycin is effective to shigellosis, there is a good possibility that it is also effective to E.coli diarrhea. Clinical trials and the study to clarify the mechanism of erythromycin activities are required.

This study was supported by a grant-in aid for scientific research from the Ministry of Education, Science, and Culture of Japan (No. 07922097).

REFERENCES

- Burans, J.P., Podgore, J., Mansour, M.M., Farah, A.H., Abbas, S., Abu-Elyazeed, R. and Woody, J. N. (1989): Comparative trial of erythromycin and sulphatrimethoprim in the treatment of tetracycline-resistant *Vibrio cholerae* O1, Trans R. Soc. Trop. Med. Hyg., 83, 836-838
- 2) Carlson, J. R., Thornton, S.A., DuPont, H.L., West, A.H. and Mathewson, J.J. (1983): Comparative in vitro activities of ten antimicrobial agents against bacterial enteropathogens, Antimicrob. Agents. Chemother., 24,509-13
- Glass, R.I., Hug, I., Alim, A.R.M.A. and Yunus, M. (1980): Emergence of Multiply Antibiotic-Resistant Vibrio cholerae in Bangladesh, J. Infecti. Dis., 142,939-942

V.cholerae O	cholerae O1 V.cholerae O139											
Argentina	PLB	TC	ABPC	OFLX	EM		India	PLB	TC	ABPC	OFLX	EM
0.025≧	0	0	0	40	0	-	0.025≧	0	0	0	8	0
0.05	0	0	0	0	0		0.05	0	0	0	0	0
0.1	0	0	0	0	0		0.1	0	0	0	0	0
0.2	0	0	0	0	0		0.2	0	8	0	0	0
0.4	0	40	0	0	0		0.4	0	0	0	0	0
0.8	0	0	0	0	0		0.8	0	0	0	0	1
1.6	0	0	0	0	0		1.6	0	0	0	0	0
3.13	0	0	13	0	1		3.13	0	0	8	0	7
6.25	0	0	27	0	39		6.25	0	0	0	0	0
12.5	Ő	0	0	0	0		12.5	0	0	0	0	0
25	Ő	0	ů 0	0	0		25	1	0	0	0	0
50	Ő	ů 0	Õ	0	0		50	0	0	0	0	0
100	0 ·	0	ů 0	0	0		100	7	0	0	0	0
100<	40	Õ	Õ	Õ	Ő		100<	0	Ő	0	0	0
total	40	40	40	40	40	-	total	8	8	8	8	8
Indonesia	PLB	TC	ABPC	OFLX	EM		Bangladesh	PLB	TC	ABPC	OFLX	EM
0 025≥	0	0	0	76	0	•	0.025≧	0	0	0	13	0
0.05	Ő	0	0	2	0		0.05	0	0	0	0	0
0.1	Ő	0	0	-	0		0.1	0	0	0	0	0
0.2	Ő	15	Õ	ů 0	0		0.2	0	12	0	0	0
0.4	Ő	63	ů	Õ	1		0.4	0	1	0	0	0
0.8	Ő	0	Õ	ů 0	1		0.8	0	0	0	0	1
1.6	0 0	ů	ů	Õ	0		1.6	0	0	1	0	4
3 13	Ô	Ő	8	Ô	16		3.13	0	0	11	0	8
6.25	0	Õ	61	ů	59		6.25	Õ	0	1	0	0
12 5	0	Õ	9:	ů	1		12.5	0	0	0	0	0
25	2	Õ	ů 0	Õ	Ô		25	Õ	0	0	0 0	0
50	10	Õ	ů N	ů.	ů		50	2	Ô	Õ	Õ	Õ
100	27	ů 0	ů N	Õ	ů		100	11	0 0	ů	ů	ů 0
100 <	39	0	0	0	ů 0		100<	0	Ő	ů	0	0
						-			10	 10		10
total	78	18	78	18	18		total	13	15	15	15	15
Laos	PLB	TC	ABPC	OFLX	EM	_	Thailand	PLB	ТС	ABPC	OFLX	EM
0.025≧	0	0	0	41	0		$0.025 \ge$	0	0	0	31	0
0.05	0	0	0	0	0		0.05	0	0	0	0	0
0.1	0	0	0	0	0		0.1	0	1	0	0	0
0.2	0	4	0	0	0		0.2	0	29	0	0	1
0.4	0	37	0	0	0		0.4	0	1	0	0	1
0.8	0	0	0	0	0		0.8	0	0	0	0	0
1.6	0	0	0	0	0		1.6	0	0	3	0	7
3.13	0	0	2	0	8		3.13	0	0	28	0	20
6.25	1	0	39	0	33		6.25	0	0	0	0	2
12.5	0	0	0	0	0		12.5	0	0	0	0	0
25	0	0	0	. 0	0		25	1	0	0	0	0

100 <

total

100 <

tota1

Table 1 MICs of 5 antimicrobial agents against V. cholerae O1 and O139

Shigella spp												
Bolivia	CFDN	TC	ABPC	OFLX	EM		Laos	CFDN	TC	ABPC	OFLX	EM
0.025≧	0	0	0	2	0	•	0.025≧	0	0	0	0	0
0.05	0	0	0	61	0		0.05	0	0	0	10	0
0.1	37	0	0	5	0		0.1	3	0	0	3	0
0.2	24	0	0	0	Ő		0.2	6	ů	Ô	0	Ő
0.4	6	0	0	Ô	ů		0.4	4	,° 0	Û,	ů	Õ
0.8	0 0	12	1	ů	ů		0.8	0	1	1	0	Õ
1.6	Ő	6	8	Ô	ů		1.6	Õ	Ô	0	0	0
3 13	ů 0	1	7	ů	ů		3 13	Ô	Õ	3 3	0	Õ
6 25	1	2	3	ů	4		6.25	Ő	Õ	3	0	Ô
12 5	0	õ	Õ	0	3		12 5	0	0	0	0	0
25	0	4	1	0	33		25	0	0	0	0	5
20 50	0	4	1	0	13		20 50	0	6	0	0	J 4
100	0	24	24	0	13		100	0	5	0 9	0	4
100	0	10	24	0	10		100	0	5 1	4	0	ა 1
	68	68	69	68	 		100 <	12	12		12	1
	00	00	00	08	00			15	13	13	13	13
Dominica	CFDN	TC	ABPC	OFLX	EM		Kenya	CFDN	TC	ABPC	OFLX	EM
0.025≧	0	0	0	0	0		$0.025 \ge$	0	0	0	2	0
0.05	0	0	0	17	0		0.05	0	0	0	8	0
0.1	8	0	0	4	0		0.1	6	0	0	0	0
0.2	9	2	0	0	0		0.2	4	0	0	0	0
0.4	4	5	0	0	0		0.4	0	0	0	0	0
0.8	0	1	0	0	0		0.8	0	2	1	0	0
1.6	0	1	0	0	0		1.6	0	0	1	0	0
3.13	0	0	3	0	1		3.13	0	0	0	0	0
6.25	0	0	2	0	8		6.25	0	0	3	0	0
12.5	0	0	1	0	6		12.5	0	0	0	0	0
25	0	0	0	0	2		25	0	0	0	0	8
50	0	4	0	0	3		50	0	1	0	0	1
100	0	5	0	0	1		100	0	6	2	0	1
100 <	0	3	15	0	0		100 <	0	1	3	0	0
	21	21	21	21	21			10	10	10	10	10
Indonesia	CFDN	TC	ABPC	OFLX	EM		Japan	CFDN	TC	ABPC	OFLX	EM
0.025≧	2	0	0	0	0		0.025≧	0	0	0	0	0
0.05	0	0	0	15	0		0.05	0	0	0	20	0
0.1	18	0	0	9	0		0.1	1	0	0	12	0
0.2	18	0	0	17	0		0.2	28	0	0	0	0
0.4	4	2	0	4	1		0.4	3	Ő	ů	1	Ő
0.8	2	3	3	0	0		0.8	1	8	ů 0	0	Ő
1.6	1	1	7	ů 0	1		1.6	0	25	1	0 0	0
3 13	Ô	0	5	0	0		2 13	0	0	26	0	0
6.25	1	0	6	0	2		6.25	0	0	20 6	0	0
12 5	L L	0 0	0 A	0 0	2 7		19.5	0	0	0	0	0 0
25	U A	1	0	0	/ 10		14.0 0E	0	0	0	U O	U 1
20 E0	0	4 1	0	0	11		20	U	U	0	U	1
00 100	U A	7 T	U 10	U 1	11		0U	U	U	0	U	8
100 -	U	24 11	12	1	4		100	U	U	0	U	24
		11	13	U	1			0	0	0	U	0
	46	46	46	46	46			33	33	33	33	33

Table 2 MICs of 5 antimaicrobial agents against Shigella spp.

162

Figure 1 Visual expression of the sensitivities for Shigella

Table 3 Variability and Constancy of MIC

		Bolivia	Dominica	Indonesia	Laos	Kenya	Japan
CFDN	MIC ₅₀	0.1	0.2	0.2	0.2	0.1	0.2
	MIC ₉₀	0.2	0.4	0.4	0.4	0.2	0.4
TC	MIC ₅₀	100	50	100	50	100	1.6
	MIC ₉₀	100 <	100 <	100 <	100	100	1.6
ABPC	MIC ₅₀	100	100 <	100	6.25	6.25	3.13
	MIC ₉₀	100 <	100 <	100 <	100 <	100 <	6.25
OFLX	MIC ₅₀	0.05	0.05	0.1	0.05	0.05	0.05
	MIC ₉₀	0.05	0.1	0.4	0.1	0.05	0.1
EM	MIC 50	25	12.5	25	50	25	100
	MIC ₉₀	100	50	100	100	50	100

V. cholerae O1 & O139

Shigella spp.

	Argentina	Indonesia	Laos	India	Bangladesh	Thailand
MIC ₅₀	100 <	100	100	100	100	100
MIC ₉₀	100 <	100	100	100	100	100
MIC ₅₀	0.4	0.4	0.4	0.2	0.2	0.2
MIC ₉₀	0.4	0.4	0.4	0.2	0.2	0.2
MIC ₅₀	6.25	6.25	6.25	3.13	3.13	3.13
MIC ₉₀	6.25	12.5	6.25	3.13	3.13	3.13
MIC_{50}	0.025≧	0.025≧	0.025≧	0.025≧	0.025≧	0.025≧
MIC ₉₀	0.025≧	0.025≧	0.025≧	0.025≧	0.025≧	0.025≧
MIC ₅₀	6.25	6.25	6.25	3.13	3.13	3.13
MIC ₉₀	6.25	6.25	6.25	3.13	3.13	3.13
	MIC ₅₀ MIC ₉₀ MIC ₅₀ MIC ₅₀ MIC ₅₀ MIC ₅₀ MIC ₅₀ MIC ₅₀	$\begin{tabular}{ c c c c } & Argentina \\ \hline MIC_{50} & 100 < \\ MIC_{90} & 100 < \\ MIC_{50} & 0.4 \\ \hline MIC_{90} & 0.4 \\ \hline MIC_{50} & 6.25 \\ \hline MIC_{90} & 6.25 \\ \hline MIC_{90} & 0.025 \ge \\ \hline MIC_{50} & 6.25 \\ \hline MIC_{90} & 6.25 \\ \hline \ \ MIC_{90} & 6.25 \\ \hline \ \ MIC_{90} & 6.25 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{tabular}{ c c c c c } \hline Argentina & Indonesia \\ \hline MIC_{50} & 100 < & 100 \\ \hline MIC_{90} & 100 < & 100 \\ \hline MIC_{50} & 0.4 & 0.4 \\ \hline MIC_{90} & 0.4 & 0.4 \\ \hline MIC_{50} & 6.25 & 6.25 \\ \hline MIC_{90} & 6.25 & 12.5 \\ \hline MIC_{50} & 0.025 \ge & 0.025 \ge \\ \hline MIC_{90} & 0.25 \ge & 0.025 \ge \\ \hline MIC_{90} & 6.25 & 6.25 \\ \hline MIC_{90} $	$\begin{tabular}{ c c c c c } \hline Argentina & Indonesia & Laos \\ \hline MIC_{50} & 100 < 100 & 100 \\ \hline MIC_{90} & 100 < 100 & 100 \\ \hline MIC_{50} & 0.4 & 0.4 & 0.4 \\ \hline MIC_{90} & 0.4 & 0.4 & 0.4 \\ \hline MIC_{50} & 6.25 & 6.25 & 6.25 \\ \hline MIC_{90} & 6.25 & 12.5 & 6.25 \\ \hline MIC_{50} & 0.025 \ge & 0.025 \ge & 0.025 \ge \\ \hline MIC_{90} & 0.25 \ge & 0.025 \ge & 0.025 \ge \\ \hline MIC_{50} & 6.25 & 6.25 & 6.25 \\ \hline MIC_{90} & 6.25 & 6.25 & 6.25 \\ \hline MIC_{90} & 6.25 & 6.25 & 6.25 \\ \hline MIC_{90} & 6.25 & 6.25 & 6.25 \\ \hline MIC_{90} & 6.25 & 6.25 & 6.25 \\ \hline \end{tabular}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

- Iwanaga, M., Mori, K. and Kaviti, J. N. (1982): Vibrio cholerae O1 Isolated in Kenya, J. Clin. Microbiol., 16, 742 -743
- Iwanaga, M., Shigeno, H., Hayashi, T., Utsunomiya, A. and Naito, T. (1979): Drug Sensitivity of El Tor Vibrio, Trop. Med., 21, 11-20
- 6) Kobari, K., Uylangco, C., Vasco, J., Takahira, Y. and Shimizu, N.(1967): Observations on Cholera Treated Orally and Intravenously with Antibiotics, Bull. Wld. Hlth. Org., 37, 751-762
- Ramamurthy, T., Pal. A., Pal, S.C. and Nair, G.B. (1992): Taxonomical Implications of the Emergence of High Frequency of Occurrence of 2,4-Diamino-6,7-Diisopropylpteridine-Resistant Strains of Vibrio cholerae from Clinical Cases of Cholera in Calcutta, India, J. Clin. Microbiol., 30, 742-743
- Saito, M., Yamaguchi, T. and Sato, H. (1964): Clinical Use of Erythromycin Estolate against Bacillary Dysentery, J. Jpn. A. Inf. Dis., 38, 327-332
- 9) Sarkar, B. L., De, S.P., Sircar, B.K., Garg, S., Nair, G.B. and Deb, B.C. (1993): Polymyxin B sensitive strains of *Vibrio cholerae* non-O1 from recent epidemic in India, Lancet, 341, 1090.
- 10) Smollan, G. and Block, C. (1990): Development of antimicrobial drug resistance among Shigellas isolated

at an Israeli hospital from 1977 through 1990, Public Health Rev., 18, 319-327

- Towner, K. J., Pearson, N.J., Mhalu, F.S. and O'Grady, F. (1980): Resistance to antimicrobial agents of *Vibrio cholerae* El Tor strains isolated during the fourth cholera epidemic in the United Republic of Tanzania, Bull. Wld. Hlth. Org., 58, 747-751
- 12) Ukai, S., Hori, K., Yanagishita, T., Takayama, Y., Miyaji, H., Ono,Y. and Okajima, S. (1965): Treatment of Bacillary Dysentery with Erythromycin Estolate (Ilosone), J. Jpn. A. Inf. Dis., 39, 330-335
- Unertl, K., Lenhart, F.P. and Ruckdeschel, G. (1986): Treatment of bronchopulmonary infections in patients during artificial respiration with imipenem/cilastatin, Immun. Infekt., 14, 229-231
- Voogd, C. E., Schot, C. S., van Leeuwen, W. J. and van Klingeren, B. (1992): Monitoring of antibiotic resistance in shigellae isolated in The Netherlands 1984-1989, Eur. J. Clin. Microbiol. Infect. Dis., 11, 164-167
- Yam, W. C., Yuen, K. Y., Wong, S.S. and Que, T.L. (1994): Vibrio cholerae O139 susceptible to vibriostatic agent O/129 and co-trimoxazole, Lancet, 344, 404-405
- 16) Yamamoto, T., Nair, G.B., Albert, M. J., Parodi, C. C. and Takeda, Y. (1995): Survey of In Vitro Susceptibilities of *Vibrio cholerae* O1 and O139 to Antimicrobial Agents, Antimicrob. Agents. Chemother., 39, 241-244