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ABSTRACT
The stochastic network calculus receives much attention as
a new methodology for end-to-end performance evaluation
of networks, taking account of the effect of statistical multi-
plexing. In our previous paper, we proposed a new stochastic
network calculus for many flows from an approach like large
deviations techniques, and obtained asymptotic end-to-end
evaluation formulas for output burstiness and backlog. How-
ever, we could not obtain the asymptotic evaluation formula
for end-to-end delay in this framework.

In this paper, we enhance the calculation in the previous
paper. Concretely we enlarge the domain of the deconvolu-
tion operator. Then in addition to for the backlog and the
output burstiness in tandem networks, for the delay V L(t) of
L flows at time t, using min-plus algebra, we obtain a func-
tion of d > 0 by which lim supL→∞ L−1 log P (V L(t) > d)
are bounded from above. We then discuss an application of
the result to a tandem network with cross traffic and give a
numerical result.

Categories and Subject Descriptors
G.3 [Probability and statistics]: Queueing theory; C.2
[Computer communication networks]: Miscellaneous;
B.8.2 [Performance and reliability]: Performance anal-
ysis and design aids

General Terms
Theory, Performance

Keywords
Stochastic network calculus, Queuing theory, Large devia-
tions techniques
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1. INTRODUCTION
The theory of network calculus has been developed since

about 1990 to give a deterministic methodology for a worst-
case evaluation of packet networks [7, 16, 2, 5]. It allows us
estimating the end-to-end backlog and delay bounds, and it
has been used to calculate the end-to-end quality-of-service
guarantees. A merit of the network calculus is in its extend-
ability where performance bound formulas for a single node
can be easily extended to those for the end-to-end links by
using min-plus algebra. More definitely, if we let Si(t) be
a service curve, or a service guarantee, at node i along the
route of a flow with n nodes, then S(t) = S1 ∗S2 ∗ · · · ∗Sn(t)
provides a service curve for the entire route of the flow, where
∗ is a convolution operator. The min-plus algebra is an use-
ful tool, so it has been studied for various purposes [9, 15].

On the other hand, a drawback of the deterministic worst-
case evaluation is in the overestimation for actually neces-
sary network resources, especially when traffic load is low,
the number of flows is large, and the number of nodes is
large. It is because the effect of statistical multiplexing is
disregarded. To overcome this weak point, a stochastic net-
work calculus has been discussed [1, 4, 5, 6, 14]. Importing
statistical evaluation methods to the network calculus, it
takes account of the effect of statistical multiplexing. For
example, in [6], an advanced calculus is proposed to derive
a probabilistic evaluation of the cumulative departures from
a given stochastic arrivals and stochastic service curves.

In [13], the authors proposed another new stochastic net-
work calculus by applying a technique used in the large de-
viations [8]. Large deviations theory and techniques have
been used in queueing systems with many flows (see, for ex-
ample, [3, 10, 12, 17]). In the paper, to derive a new network
calculus, the technique is applied to a discrete-time tandem
network with n nodes and L flows.

Let A
L
(t, s) be the total arrivals to the network during

time interval (s, t] and S
L
i (t, s) the total offered services at

note i during (s, t]. Given these processes, the cumulative

departures from the network D
L
(t, s) during interval (s, t]

and the total backlog in the network QL(t) at time t can be

derived. For processes A
L
(t, s), S

L
i (t, s), D

L
(t, s) and QL(t),

we denote by Aθ
(t, s), −S−θ

i (t, s), Dθ
(t, s) and Qθ(t), re-

spectively, the limits of their cumulant generating functions
when L →∞. In [13], we showed that for a positive θ in an



Figure 1: Tandem network with n nodes

interval

Dθ
(t, s)≤Aθ ® Sθ

(t, s) and Qθ(t)=Aθ ® Sθ
(t, t),

where Sθ
(t, s) = Sθ

n ∗ Sθ
n−1 ∗ · · · ∗ Sθ

1(t, s) and operators ∗
and ® are convolution and deconvolution ones for bi-variate
functions. From these results, for large L, we can do the
asymptotic end-to-end evaluation for the backlog and the
output burstiness. However, we cannot do the evaluation
for the delay in this framework.

In this paper, we enhance the calculus in [13] to make an
asymptotic evaluation possible for the delay as well as the
backlog and the output burstiness. Concretely, we extend
the domain of the deconvolution operator ® from {(t, s)|0 ≤
s ≤ t} to {(t, s)|t, s ≥ 0}. This enable us to define Aθ ®
Sθ

(t, s) for any t, s ≥ 0, and then we obtain an evaluation
formula for the end-to-end delay V L(t) at time t as

P (V L(t) > d) ≤
BV (L, d) exp

„
L inf

θ∈ZV

Aθ ® Sθ
(t− d, t)}

«

where BV (L, d) is a function varying slower than the expo-
nential as L increases and d is a positive number.

As an example, we apply the evaluation to a tandem net-
work with cross traffic. In the network, the amounts of the
arrival traffic flows are limited by leaky buckets. We provide
an evaluation formula for the upper bounds above and give
a numerical result for the end-to-end delay in a three node
tandem network.

To be self-contained and easy to read, this paper includes
the part that overlaps with the previous paper[13].

The remaining of the paper is constructed as follows. In
Section 2, we discuss a deterministic network calculus for
a tandem network as preliminary. In Section 3, we derive
a stochastic network calculus on the the limits of the cu-
mulant generating functions of arrivals and services, and
the asymptotic evaluation formula for the end-to-end total
queue, delay and output burstiness. In Section 4, we discuss
an application of the results to a tandem network with cross
traffic, and give a numerical result. In Appendix, we present
some proofs of the properties used in Section 4.

2. PRELIMINARIES
We consider a discrete-time tandem network with n nodes

illustrated in Figure 1. Time t takes discrete values as
0, 1, 2, · · · . Let Anet(t) be the cumulative arrivals to the
network during time interval (0, t], and Si(t), i = 1, 2, . . . , n,
be the cumulative offered services at node i during (0, t]. In
this section, we consider Anet(t) and Si(t) are given ordinary
(i.e., non-random) non-decreasing functions with Anet(0) =

Si(t) = 0. In the next section, we will interpret these func-
tions as sample paths of corresponding stochastic processes
in the network model.

We denote by Ai(t) and Di(t) the cumulative arrivals at
and departures from node i during (0, t], and by Qi(t) and
Vi(t) the backlog and the delay in node i at time t. Then,
we have

A1(t) = Anet(t), (1)

Qi(t) = max
0≤τ≤t

{Ai(t)−Ai(τ)− (Si(t)− Si(τ))} (2)

Di(t) = Ai(t)−Qi(t) and (3)

Vi(t) = min{x |Ai(t− x) ≤ Di(t), 0 ≤ x ≤ t} (4)

for i = 1, 2, . . . , n, and

Ai(t) = Di−1(t) for i = 2, 3, . . . , n. (5)

The cumulative departures from the network during (0, t] is
given by Dnet(t) = Dn(t)

Equations (1)∼ (5) determine functions Ai(t), Di(t), Qi(t)
and Vi(t) for i = 1, 2, . . . , n, uniquely. From the definitions,
it is clear that Ai(t), Qi(t), Di(t) and Vi(t) are nonnegative
with Ai(0) = Qi(0) = Di(0) = Vi(0) = 0, and Ai(t) and
Di(t) are non-decreasing.

Combining (2) and (3), we have

Di(t) = min
0≤τ≤t

{Ai(τ) + Si(t)− Si(τ)}. (6)

Since Di(t) ≤ Ai(t), we have

Di(t)−Di(s) ≤ Ai(t)−Di(s)

= Ai(t)− min
0≤τ≤s

{Ai(τ) + Si(s)− Si(τ)}
= max

0≤τ≤s
{Ai(t)−Ai(τ)− Si(s) + Si(τ)}.

If we set for any t and s

Ai(t, s) = Ai(t)−Ai(s), (7)

Si(t, s) = Si(t)− Si(s), and (8)

Di(t, s) = Di(t)−Di(s), (9)

then the above inequality is rewritten as

Di(t, s) ≤ max
0≤τ≤s

{Ai(t, τ)− Si(s, τ)}. (10)

This is a little bit simpler expression than before. Using
(7)∼(9), the relations (2), (5) and (4) are also rewritten as

Qi(t) = max
0≤τ≤t

{Ai(t, τ)− Si(t, τ)} (11)

Ai(t, s) = Di−1(t, s), and (12)

Vi(t) = min{x |Ai(t− x)−Di(t) ≤ 0, 0 ≤ x ≤ t}

= min


x
˛̨
˛ max
0≤τ≤t

{Ai(t− x)−Ai(τ)

−Si(t) + Si(τ)} ≤ 0, 0 ≤ x ≤ t

ff

= min


x
˛̨
˛ max
0≤τ≤t

{Ai(t− x, τ)− Si(t, τ)} ≤ 0,

0 ≤ x ≤ t

ff
(13)

respectively. For the cumulative arrivals to the network and
the cumulative departures from the network, we introduce



similar expressions to (7)∼(9) as

A
net

(t, s) = Anet(t)−Anet(s) and (14)

D
net

(t, s) = Dnet(t)−Dnet(s), (15)

and write the total backlogs and the total delay of the net-
work at time t as

Qnet(t) = Anet(t)−Dnet(t),

= A
net

(t, 0)−D
net

(t, 0) and (16)

V net(t) = min{x |Anet
(t− x, 0) ≤ D

net
(t, 0), 0 ≤ x ≤ t}.

(17)

To develop a new network calculus, we introduce operators
∗ and ® for functions f(t, s) and g(t, s) of two variables t
and s, as follows:

f ∗ g(t, s) = min
s≤τ≤t

{f(t, τ) + g(τ, s)} for 0 ≤ s ≤ t, (18)

and

f®g(t, s) = max
0≤τ≤s

{f(t, τ)−g(s, τ)} for any t, s ≥ 0. (19)

Note that the domains of the two operators are different. We
call ∗ the convolution operator and ® the deconvolution one
since these definitions are similar to those of the convolution
and deconvolution ones used in [1, 2, 4, 5, 6, 7, 14]. In
the previous paper [13], we defined another deconvolution
operator on the same domain as the convolution operator.
Here, to deal with the delay, we enlarge the domain and this
requires some changes in our discussions.

The convolution operator ∗ is associative in the sense that
for three functions f(t, s), g(t, s) and h(t, s)

(f ∗ g) ∗ h(t, s) = f ∗ (g ∗ h)(t, s).

Hence, (f ∗ g) ∗ h(t, s) or f ∗ (g ∗ h)(t, s) can be written
as f ∗ g ∗ h(t, s). If the function f(t, s) has an incremental
property, i.e. it is written as f(t, s) = f(t, 0) − f(s, 0) for
any t, s ≥ 0, then

f(t, 0)− g ∗ f(s, 0) = f(t, 0)− min
0≤τ≤s

{g(s, τ) + f(τ, 0)}
= max

0≤τ≤s
{f(t, τ)− g(s, τ)}

= f ® g(t, s). (20)

Using these operators, we can rewrite (6), (11), (13) and
(10) as

Di(t) = Di(t, 0) = Si ∗Ai(t, 0), (21)

Qi(t) = Ai ® Si(t, t), (22)

Vi(t) = min{x |Ai ® Si(t− x, t) ≤ 0, 0 ≤ x ≤ t} (23)

and

Di(t, s) ≤ Ai ® Si(t, s), (24)

respectively. These equalities and inequality for node i can
be extended to those for the whole network as stated in the
following lemma.

Lemma 1. For t and s such that 0 ≤ s ≤ t, we have

Dnet(t) = D
net

(t, 0) = S
net ∗A

net
(t, 0), (25)

Qnet(t) = A
net ® S

net
(t, t), (26)

V net(t) = min{x |Anet ® S
net

(t− x, t) ≤ 0, 0 ≤ x ≤ t},
(27)

and

D
net

(t, s) ≤ A
net ® S

net
(t, s), (28)

where

S
net

(t, s) = Sn ∗ Sn−1 ∗ · · · ∗ S1(t, s) (29)

= min
s=s0≤s1≤···≤sn=t

{Sn(sn, sn−1) + · · ·+ S1(s1, s0)}.
(30)

Proof. Since Dnet(t)=Dn(t), we have Dnet(t)=D
net

(t, 0)=
Dn(t, 0). On the other hand, from (21) and (12)

Di(t, 0) = Si ∗Ai(t, 0) = Si ∗Di−1(t, 0).

Using this relation repeatedly, we have

Dnet(t) = D
net

(t, 0) = Dn(t, 0) = Sn ∗Dn−1(t, 0)

= Sn ∗ Sn−1 ∗Dn−2(t, 0) = · · ·
· · · = Sn ∗ Sn−1 ∗ · · · ∗ S2 ∗D1(t, 0)

= Sn ∗ Sn−1 ∗ · · · ∗ S1 ∗A1(t, 0) = S
net ∗A

net
(t, 0).

This proves (25). Applying the above representation to (16)
and (17), and using relation (20), we have

Qnet(t) = A
net

(t, 0)−D
net

(t, 0)

= A
net

(t, 0)− S
net ∗A

net
(t, 0) = A

net ® S
net

(t, t),

and

V net(t) = min{x |Anet
(t− x, 0)− S

net ∗A
net

(t, 0) ≤ 0,

0 ≤ x ≤ t}
= min{x |Anet ® S

net
(t− x, t) ≤ 0, 0 ≤ x ≤ t}.

This proves (26) and (27). Using the inequality Dnet(t) ≤
Anet(t) and relations (25) and (20), we have

D
net

(t, s) = Dnet(t)−Dnet(s)

≤ Anet(t)−Dnet(s) = A
net

(t, 0)− S
net ∗A

net
(s, 0)

= A
net ® S

net
(t, s).

This proves (28). The representation (30) is a direct conse-
quence of the definition of the convolution operator (18). 2

From the relation (25), S
net

(t, s) might be interpreted as
the cumulative services through the network offered dur-
ing (s, t] though it does not have the incremental property,

namely S
net

(t, s) 6= S
net

(t, 0)− S
net

(s, 0), in general.

3. STOCHASTIC NETWORK CALCULUS
FOR MANY FLOWS

We consider the same discrete-time tandem network with
n nodes as in the previous section. In addition, we assume
that the traffic through the network consists of L flows and
that arrivals to the network and services at each node are
not deterministic but stochastic. For time t > 0, let AL(t)
and SL

i (t), i = 1, 2, . . . , n, be random variables representing
the total arrivals to the network and the total services at
node i, respectively, during time interval (0, t] for L flows.
Furthermore, let DL(t) be the total departures from the
network of L flows during (0, t], and QL(t) and V L(t) the
total backlog and the total delay of L flows in the network
at time t. Sample paths of the processes {AL(t)}, {SL

i (t)},



{QL(t)}, {V L(t)} and {DL(t)} correspond to Anet(t), Si(t),
Qnet(t), V net(t) and Dnet(t), respectively, in the previous
section.

For a pair of times t and s, we introduce bi-variate func-

tions A
L
(t, s), S

L
i (t, s) and D

L
(t, s) as in (14), (8) and (15),

namely we let A
L
(t, s) = AL(t)−AL(s), S

L
i (t, s) = SL

i (t)−
SL

i (s) and D
L
(t, s) = DL(t)−DL(s). Then from Lemma 1,

we have

QL(t) = A
L ® S

L
(t, t), (31)

V L(t) = min{x |AL ® S
L
(t− x, t) ≤ 0, 0 ≤ x ≤ t}

(32)

and

D
L
(t, s) ≤ A

L ® S
L
(t, s) (33)

with probability one, where

S
L
(t, s) = S

L
n ∗ · · · ∗ S

L
1 (t, s) for 0 ≤ s ≤ t. (34)

We let

W
L
(t, s) = A

L ® S
L
(t, s). (35)

Then (31), (32) and (33) are rewritten as

QL(t) = W
L
(t, t), (36)

V L(t) = min{x |W L
(t− x, t) ≤ 0, 0 ≤ x ≤ t} and (37)

D
L
(t, s) ≤ W

L
(t, s). (38)

Note that the random variable W
L
(t−x, t) is non-increasing

as a function of x. Then, if W
L
(t − d, t) > 0 then all x

satisfying W
L
(t − x, t) ≤ 0, 0 ≤ x ≤ t, is greater than d,

namely, V L(t) > d. If V L(t) > d then W
L
(t − d, t) > 0

since if W
L
(t−d, t) ≤ 0 then V L(t) ≤ d from the definition.

Hence, for any t and d such that 0 < d ≤ t, V L(t) > d if and

only if W
L
(t− d, t) > 0. Thus, from (36), (37) and (38), we

have the following relations for y, d > 0:

P (QL(t) > Ly) = P (W
L
(t, t) > Ly), (39)

P (V L(t) > d) = P (W
L
(t− d, t) > 0) and (40)

P (D
L
(t, s) > Ly) ≤ P (W

L
(t, s) > Ly). (41)

From the definitions (18) and (19) of the convolution and

deconvolution operators, W
L
(t, s) itself is written as

W
L
(t, s)

= max
0≤s0≤s

n
A

L
(t, s0)

− min
s0≤s1≤···≤sn=s

{SL
n(sn, sn−1) + · · ·+ S

L
1 (s1, s0)}

o

= max
0≤s0≤s1≤···≤sn=s

{AL
(t, s0)

−S
L
n(sn, sn−1)− · · · − S

L
1 (s1, s0)}. (42)

Hereafter, in this section, we regard times t and s are
arbitrarily chosen so that t, s ≥ 0 and fixed through dis-
cussions. Statements, equalities and inequalities including
s0, s1, · · · , sn−1 or sn should be understood to hold for any
choice of s0, s1, · · · , sn−1, sn satisfying the relation 0 ≤ s0 ≤
s1 ≤ · · · ≤ sn−1 ≤ sn = s, except for the cases stated
otherwise.

For the sequences of random variables {AL
(t, s0)}L=1,2,···

and {SL
i (si, si−1)}L=1,2,···, i = 1, 2, · · · , n, we make the fol-

lowing assumptions. Note that log E[eθX ] is the cumulant
generating function (cgf) of random variable X.

A1. The random variables A
L
(t, s0) and S

L
i (si, si−1), i =

1, · · · , n, are mutually independent.

A2. For each θ ∈ R, when L →∞, the sequences
n

L−1 log E[eθA
L

(t,s0)]
o

L=1,2,···
and

n
−L−1 log E[e−θS

L
i (si,si−1)]

o
L=1,2,···

, i = 1, · · · , n,

have limits as extended real numbers (i.e., allowing
±∞). We denote the limits as

Aθ
(t, s0) = lim

L→∞
L−1 log E[eθA

L
(t,s0)] and (43)

Sθ
i (si, si−1) = − lim

L→∞
L−1 log E[e−θS

L
i (si,si−1)],

i = 1, · · · , n. (44)

A3. The sets ZA(t,s0)≡{θ : |Aθ
(t, s0)| < ∞} ∩ (0,∞) and

ZSi(si,si−1)≡{θ : |Sθ
i (si, si−1)| < ∞} ∩ (0,∞), i =

1, · · · , n, are all non-empty.

From the monotonicity of the logarithmic and exponen-
tial functions, it is easily checked that the set ZA(t,s0) is

an open or semi-closed interval of the form (0, δA(t,s0)) or

(0, δA(t,s0)] with some positive number δA(t,s0) or with
δA(t,s0) = ∞. The set ZSi(si,si−1) is also such an interval.

Hence, under assumptions A2 and A3, the intersection

ZW(t,s) =
\

0≤s0≤···≤sn=s

ZA(t,s0)

\

1≤i≤n

ZSi(si,si−1) (45)

is a non-empty interval, too.
We have the following lemma.

Lemma 2. Under assumptions A1, A2 and A3, the se-
quence

n
L−1 log E[eθW

L
(t,s)]

o
L=1,2,...

with θ ∈ ZW(t,s) has a finite limit Wθ
(t, s) as L →∞, and

the limit is given by

Wθ
(t, s) = Aθ ® Sθ

(t, s), (46)

= max
0≤s0≤···≤sn=s

{Aθ
(t, s0)

−Sθ
n(sn, sn−1)− · · · − Sθ

1(s1, s0)} (47)

where

Sθ
(t, s) = Sθ

n ∗ Sθ
n−1 ∗ · · · ∗ Sθ

1(t, s). (48)

Proof. First we show that, when L →∞, the superior limit

of L−1 log E[eθW
L

(t,s)] is bounded from above by the right
hand side of (47) and the inferior limit of it is bounded from
below by the same quantity.



Since θ > 0, from (42), using the monotonicity of the expo-
nential function and the inequality max(x1, x2) ≤
x1 + x2 for x1, x2 ≥ 0, we have

eθW
L

(t,s)

= max
0≤s0≤···≤sn=s

eθ(A
L

(t,s0)−S
L
n (sn,sn−1)−···−S

L
1 (s1,s0))

≤
X

0≤s0≤···≤sn=s

eθ(A
L

(t,s0)−S
L
n (sn,sn−1)−···−S

L
1 (s1,s0))

with probability one. Taking expectation on both sides,

E[eθW
L

(t,s)]

≤
X

0≤s0≤···≤sn=s

E[eθ(A
L

(t,s0)−S
L
n (sn,sn−1)−···−S

L
1 (s1,s0))]

≤ (s + 1)n ·
max

0≤s0≤···≤sn=s
E[eθ(A

L
(t,s0)−S

L
n (sn,sn−1)−···−S

L
1 (s1,s0))].

From assumption A1, the expectation in the right hand side
above can be written in a product form

E[eθA
L

(t,s0)] E[e−θS
L
n (sn,sn−1)] · · · E[e−θS

L
1 (s1,s0))].

Then using the monotonicity of the logarithmic function,
the above inequality is rewritten as

L−1 log E[eθW
L

(t,s)] ≤ L−1 log(s + 1)n

+ max
0≤s0≤···≤sn=s

n
L−1 log E[eθ(A

L
(t,s0)]

+ L−1 log E[e−θ(S
L
n (sn,sn−1)] + · · ·

+L−1 log E[e−θ(S
L
1 (s1,s0)]

o
.

If we let L → ∞, from assumptions A2 and A3, each term
in the braces above converges to a finite limit. Hence by
taking superior limit on both sides we have

lim sup
L→∞

L−1 log E[eθW
L

(t,s)] ≤

max
0≤s0≤···≤sn=s

{Aθ
(t, s0)−Sθ

n(sn, sn−1)−· · ·−Sθ
1(s1, s0)}.

On the other hand, from (42), for arbitrarily chosen
(s0, s1, · · · , sn), we have

W
L
(t, s) ≥ A

L
(t, s0)− S

L
n(sn, sn−1)− · · · − S

L
1 (s1, s0)

with probability one. Then for θ ∈ ZW(t,s), we have

E[eθW
L

(t,s)] ≥ E[eθ(A
L

(t,s0)−S
L
n(sn,sn−1)−···−S

L
1 (s1,s0))].

From assumption A1, the right hand side is written in a
product form. Then, taking logarithm and dividing by L we
have

L−1 log E[eθW
L

(t,s)] ≥ L−1 log E[eθA
L

(t,s0)]

+ L−1 log E[e−θS
L
n(sn,sn−1)] + · · ·
+ L−1 log E[e−θS

L
1 (s1,s0)].

As L →∞, from assumptions A2 and A3, each term in the
right hand side converges to a finite limit. Then by taking
inferior limit on both sides, we have

lim inf
L→∞

L−1 log E[eθW
L

(t,s)] ≥

Aθ
(t, s0)− Sθ

n(sn, sn−1)− · · · − Sθ
1(s1, s0).

Since the inequality holds for any choice of (s0, s1, · · · , sn),
we have

lim inf
L→∞

L−1 log E[eθW
L

(t,s)] ≥

max
0≤s0≤···≤sn=s

{Aθ
(t, s0)−Sθ

n(sn, sn−1)−· · ·−Sθ
1(s1, s0)}.

Thus, both the superior limit and the inferior limit of

L−1 log E[eθW
L

(t,s)] are bounded by the right hand side of
(47). This proves (47). The representation (46) is led from
(47) in the reverse way of (42). 2

Theorem 1. Under assumptions A1, A2 and A3 for s =
t > 0, we have, for y > 0,

lim sup
L→∞

L−1 log P (QL(t) > Ly)

≤ inf
θ∈ZW(t,t)

{−θy +Wθ
(t, t)}. (49)

Under assumptions A1, A2 and A3 for 0 < d ≤ t, we have

lim sup
L→∞

L−1 log P (V L(t) > d)

≤ inf
θ∈ZW(t−d,t)

Wθ
(t− d, t). (50)

Under assumptions A1, A2 and A3 for 0 < s ≤ t, we have,
for y > 0,

lim sup
L→∞

L−1 log P (D
L
(t, s) > Ly)

≤ inf
θ∈ZW(t,s)

{−θy +Wθ
(t, s)}. (51)

Proof. We apply the Chernoff’s bound (or the Markov
inequality, see p.240 of [5]) to the tail probability

P (W
L
(t, s)>Ly). For any θ ∈ ZW(t,s) and y≥0, we have

P (W
L
(t, s) > Ly) = P (eθW

L
(t,s) > eθLy)

≤ e−θLyE[eθW
L

(t,s)].

Taking the logarithm, dividing by L, and then taking the
superior limit on both sides, we have

lim sup
L→∞

L−1 log P (W
L
(t, s) > Ly) ≤ −θy +Wθ

(t, s).

Since the parameter θ does not appear in the left hand side,
it follows that

lim sup
L→∞

L−1 log P (W
L
(t, s) > Ly)

≤ inf
θ∈ZW(t,s)

{−θy +Wθ
(t, s)}. (52)

We know that P (QL(t) > Ly) = P (W
L
(t, t) > Ly) and

P (V L(t) > d) = P (W
L
(t − d, t) > 0) from (39) and (40).

Hence, if considering the case of W
L
(t, t), the inequality (52)

proves (49), and if considering the case of W
L
(t− d, t) and

y = 0, the inequality (52) proves (50). Similarly, from (41)

we see that P (D
L
(t, s) > Ly) ≤ P (W

L
(t, s) > Ly). Hence

the inequality (52) also implies (51). 2



Theorem 1 suggests that the tail probabilities of QL(t),

V L(t) and D
L
(t, s) might be evaluated by the form

P (QL(t) > Ly) ≤
BQ(L, y) exp

 
L inf

θ∈ZW(t,t)

{−θy +Wθ
(t, t)}

!
, (53)

P (V L(t) > d) ≤
BV (L, d) exp

 
L inf

θ∈ZW(t−d,t)

Wθ
(t− d, t)}

!
(54)

and

P (D
L
(t, s) > Ly) ≤

BD(L, y) exp

 
L inf

θ∈ZW(t,s)

{−θy +Wθ
(t, s)}

!
, (55)

where BD(L, y), BV (L, d) and BQ(L, y) are some functions
varying slower than the exponential as L increases.

4. APPLICATION TO A NETWORK WITH
CROSS TRAFFIC

Figure 2: Tandem network with cross traffic

We apply the bound (54) to a network with cross traffic
depicted in Figure 2. In the network, there are L forwarding
flows and Mi cross traffic flows at node i. We denote the
L forwarding flows as {A1(t)}, {A2(t)}, · · · · · · , {AL(t)} and
the Mi cross traffic flows at node i as {Across

i1 (t)}, {Across
i2 (t)},

· · · , {Across
iMi

(t)}. We set αi = Mi/L, the ratio of the number
of the cross traffic flows at node i to that of the forwarding
traffic flows, and is kept constant when we move L (and Mi)
to infinity later. The link capacity, i.e., the offered service
per unit time, at node i is constant in time and equal to
Ci = βi L. When we move L later, βi is kept constant. At
the service, the cross traffic is served with higher priority
than the forwarding traffic.

Here, for brevity of the model, we assume that flows (both
forwarding flows and cross traffic flows) are mutually inde-
pendent and subjecting to a common probabilistic law. We
denote by {A(t)} the arrival process of a typical flow, and
make the following assumptions.

C1. The arrival process {A(t)} is nondecreasing and has
stationary increments with probability one.

C2. The arrival process {A(t)} is a greedy process which
is limited by a leaky bucket, namely, the cgf Aθ(t) =

log E[eθA(t)] of A(t) is given by

η+(t, θ) ≡ log

»
1 +

ρt

ρt + σ
(eθ(ρt+σ) − 1)

–
, (56)

where ρ is the average flow rate and σ is the burst size.

If the arrival process {A(t)} is just limited by a leaky
bucket, namely, A(t, s) ≡ A(t) − A(s) ≤ ρ(t − s) + σ holds
with probability one for any t, s such that 0 ≤ s ≤ t, then the
cgf Aθ(t) of {A(t)} satisfies the inequality Aθ(t) ≤ η+(t, θ)
from [11]. The assumption C2 is that the equation Aθ(t) =
η+(t, θ) holds.

Under assumptions C1 and C2, the cgf Aθ
(t, s) of A(t, s),

is given as

Aθ
(t, s) = η(t− s) for θ ∈ (0,∞), (57)

where

η(t) =

8
<
:

η+(t, θ) if t > 0
0 if t = 0

−η+(−t, θ) if t < 0.
(58)

The function η+(t, θ) is concave on t for each fixed θ and
convex on θ for each fixed t (see Appendix).

In this network model, the cumulative arrivals to the net-
work is given by the sum of cumulative arrivals of the L
forwarding traffic flows, AL(t) = A1(t)+A2(t)+ · · ·+AL(t),
and the cumulative services at node i for the forwarding
traffic is given by

SL
i (t) = max

0≤τ≤t

n
Ci τ −AMi,cross

i (τ)
o

, (59)

where AMi,cross
i (t) is the cumulative arrivals of the cross traf-

fic flows in node i at time t, i.e., AMi,cross
i (t) = Across

i1 (t) +
Across

i2 (t)+ · · ·+Across
iMi

(t). The representation (59) is derived
from the relation

SL
i (t) = Ci t−

n
AMi,cross

i (t)−QMi,cross
i (t)

o

with the backlog QMi,cross
i (t) of the cross traffic in node i at

time t, which is given, analogously to (2), by

QMi,cross
i (t)

= max
0≤τ≤t

n
AMi,cross

i (t)−AMi,cross
i (τ)− Ci(t− τ)

o
.

We denote the increment of arrivals in forwarding traffic as

A
L
(t, s)=AL(t)−AL(s). Then its cgf is given by L times of

Aθ
(t, s), i.e. LAθ

(t, s), since L flows {A1(t)}, {A2(t)}, · · · ,
{AL(t)} are mutually independent and subjecting to a com-
mon probabilistic law. So the limit (43) is also given by

Aθ
(t, s). Similarly, we denote the increment of arrivals in

the cross traffic during (s, t] at node i as A
Mi,cross
i (t, s) =

AMi,cross
i (t)−AMi,cross

i (s). Then its cgf is given by MiAθ
(t, s).

Hence, the function Aθ,cross
i (t, s) ≡ limL→∞ L−1{MiAθ

(t, s)}
is given by αiAθ

(t, s), and then

Aθ,cross
i (t, s) = αi η(t− s, θ) for θ ∈ (0,∞). (60)

From (59), the increment of services S
L
i (t, s) = SL

i (t) −
SL

i (s) during (s, t] at node i is given by

S
L
i (t, s) = max

0≤τ1≤t
{Ci τ1 −AMi,cross

i (τ1)}

− max
0≤τ2≤s

{Ci τ2 −AMi,cross
i (τ2)}. (61)

From the independence assumption of input flows and the
equations (57) and (60), we can easily see that assumptions



A1, A2 and A3 are satisfied with ZA(t,s0) = (0,∞) and

ZSi(si,si−1) = (0,∞). Hence the results of the preceding

section can be applied with ZW(t,s) = (0,∞).

However, the function S
L
i (t, s) in (61) seems too compli-

cated to evaluateWθ
(t−d, t) in (54), because two maximiza-

tion operations prevent us from calculating its cgf. Here we
introduce two alternatives.

ŜL
i (t, s) = max

s≤τ≤t

n
Ci (τ − s)−A

Mi,cross
i (τ, s)

o
and (62)

S̆L
i (t, s) =

h
Ci (t− s)−A

Mi,cross
i (t, s)

i+
, (63)

where [x]+ = max{0, x}. Unfortunately, they do not satisfy
the incremental property. So they are difficult to understand
as increments of some single variable functions representing
cumulative services. However, the function ŜL

i (t, s) provides

the same function Wθ
(t, s) as S

L
i (t, s) as shown below, and

the function S̆L
i (t, s), which is naturally led from ŜL

i (t, s),

provides a calculable substitute for Wθ
(t, s). Their proper-

ties stated below will be proved in Appendix.

The three functions S
L
i (t, s), ŜL

i (t, s) and S̆L
i (t, s) satisfy

the inequalities

S
L
i (t, s) ≤ ŜL

i (t, s) and ŜL
i (t, s) ≥ S̆L

i (t, s) (64)

with probability one (see Appendix), and by taking a con-

volution with A
L
i (t, s) they can represent the cumulative de-

partures DL
i (t) at node i as

DL
i (t) = S

L
i ∗A

L
i (t, 0) = ŜL

i ∗A
L
i (t, 0) ≥ S̆L

i ∗A
L
i (t, 0) (65)

(see Appendix), where A
L
i (t, s) = AL

i (t) − AL
i (s), as usual.

Using these properties we easily see that

W
L
(t, s) = A

L ® ŜL(t, s) ≤ A
L ® S̆L(t, s) (66)

with probability one and that

Wθ
(t, s) = Aθ ® Ŝθ(t, s) ≤ Aθ ® S̆θ(t, s) (67)

(see Appendix), where ŜL(t, s) and Ŝθ(t, s) are functions

defined by (34) and by (48) via (44) using ŜL
i (t, s) instead

of S
L
i (t, s), and S̆L(t, s) and S̆θ(t, s) are functions similarly

defined from S̆L
i (t, s). From (63), it is easily checked that

S̆θ
i (t, s) ≡ − lim

L→∞
L−1 log E[e−θS̆L

i (si,si−1)]

≥
h
βi θ(t− s)−Aθ,cross

i (t, s)
i+

(68)

(see Appendix). Hence, under conditions C1 and C2, from
(60), it is given as

S̆θ
i (t, s) ≥ [ βi θ(t− s)− αiη(t− s, θ)]+. (69)

This inequality together with (57) enables us to calculate an

upper bound of Wθ
(t, s) from the inequality (67). In fact,

the right hand side of (51) can be evaluated as

inf
θ∈(0,∞)


−θy + max

0≤s0≤···≤sn=s

n
Aθ

(t, s0)

−S̆θ
n(sn, sn−1)− · · · − S̆θ

1 (s1, s0)
off

≤ inf
θ∈(0,∞)


−θy + max

0≤s0≤···≤sn=s
{η(t− s0, θ)

−[ β1 θ(s1 − s0)− α1η(s1 − s0, θ)]
+ − · · ·

· · · − [ βn θ(sn − sn−1)− αnη(sn − sn−1, θ)]
+¯
ff

.

(70)

Discussions on numerical calculations: First we note
that, for a fixed θ and t > 0, the function ϕi(t) ≡ βiθt −
αiη(t, θ) is a convex function of t since η(t, θ) is a concave
function of t. Its positive part [ϕi(t)]

+ = [βiθt− αiη(t, θ)]+

is also a convex function. At t = 0, ϕi(0) = 0, and ϕi(t)
approaches to the line (βi − αiρ)θt − αiθσ as t becomes
large. Here the coefficient βi − αiρ is interpreted as the
average link capacity for the forward traffic per flow, because
Ci − Miρ = L(βi − αiρ) is the average link capacity that
is offered to the forward traffic at node i in the long run.
Hence, for the network to be stable, βi−αiρ must be greater
than ρ for any i.

Exploiting the concavity of η(t, θ) and the convexity of
ϕi(t), for t > 0 and each given θ, the maximum in the
maximization of (70) can be numerically calculated by an
iteration using a usual numerical technique such as the bi-
section method or the Newton method. On the other hand,
for given t, s0, · · · , sn(= s), the function to be taken infi-
mum on θ in (70) is not convex, in general, because of the
existence of operations [ x ]+. So, there might exist multiple
local minima. However, the number of such local minima
is at most 2n. So, it is not very difficult to find infimum
numerically.

Consider the special case where n nodes are homogeneous
and αi and βi are common, namely βi = β and αi = α for
i = 1, 2, · · · , n. From the convexity of ϕi(t), the maximum
in (70) is attained by s0, s1, · · · , sn(= s) such that

s1 − s0 = s2 − s1 = · · · = sn − sn−1 =
s− s0

n
.

Hence the right hand side of (70) is reduced to

inf
θ∈(0,∞)

(
−θy + max

0≤s0≤t

(
η(t− s0, θ)

−
h
(s− s0) β θ − n α η

“s− s0

n
, θ
”i+ffff

. (71)

This inf-max problem can be easily solved numerically by
using a usual numerical technique.

When we evaluate the total delay by (50) and (67), the
above formula is further reduced to

inf
θ∈(0,∞)

(
max

0≤s0≤t

(
η(t− d− s0, θ)

−
»
(t− s0) β θ − n α η

„
t− s0

n
, θ

«–+))
. (72)



Figure 3: The upper bound of the tail probability of
delay in the three-node tandem network

A numerical example: Now we apply the inequality
(54) to a specific case of the network depicted in Figure 2.
We consider a homogeneous case where the parameters are
set as n = 3, L = 10, Lα = 50, Lβ = 2.5Gbps, ρ = 40Mbps
and σ = 4Mbits. The link utilization in each node is 96%
(((10 + 50) × 40 × 106)/(2.5 × 109) = 0.96). The time t
of P (V (t) > d) is chosen to be sufficiently large so that
P (V (t) > d) indicates a stationary probability.

Figure 3 shows a numerical result calculating the expo-
nential part of (54). The ordinate is the logarithm of (54)
to base 10 and the abscissa is the delay threshold d. The
three curves with letters “1 node”, “2 nodes” and “3 nodes”
attached correspond to the delay distribution through one
node, that through two nodes and that through three nodes,
respectively. The three perpendicular broken lines show the
maximum delays for i nodes, i = 1, 2, 3 under the restriction
by a leaky bucket.

In practical applications, the evaluation (54) may not be
accurate in two reasons. The first is, as is usually seen in
asymptotic evaluations, that the coefficient function BQ(L, y)
is not known. We only know the exponential part. The
second is that our model uses the greedy process which is
limited by a leaky bucket as the input process. Usually,
it is only known that the input process is limited by the
leaky bucket, and the input process is not identified. So,
the new findings we can obtain from the numerical results
are somehow limited. However, at least, we can point out
the following facts. In the greedy input case, the maximum
delay increases as the number of nodes increases, but the up-
per bound of the probability P (V (t) > d) decreases faster
than the exponential as the delay threshold d increases in
spite of the high link utilization of 96%.
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APPENDIX
Here we give a proof for the concavity of the function

η+(t, θ) given in (56) and proofs for the properties (64), (65),

(66) and (67) of the functions ŜL
i (t, s) and S̆L

i (t, s) presented
in Section 4. For brevity of notation, we set ξi(τ) = βiLτ −
AMi,cross

i (τ) and ξi(τ1, τ2) = ξ(τ1)− ξ(τ2).

Proof of the concavity of η+(t, θ) in (56): The func-
tion η+(t, θ) is rewritten as

η+(t, θ) = θ(ρt + σ)− log [ρt + σ] + log
h
ρt + σe−θ(ρt+σ)

i
.

Then it is easily checked that η+(0, θ) = 0 and limt→∞˘
η+(t, θ)− θ(ρt + σ)

¯
= 0. So, roughly speaking, the func-



tion η+(t, θ) grows along a straight line θ(ρt + σ) as t →∞.
Its first and second derivatives on t are given as

∂

∂t
η+(t, θ) = θρ− ρ

ρt + σ
+

ρ− σθρe−θ(ρt+σ)

ρt + σe−θ(ρt+σ)
, and

∂2

∂2t
η+(t, θ) = − ρ2

(ρt + σ)2(ρt + σe−θ(ρt+σ))2
·

»
σ2
n

1− 2θ(ρt + σ)e−θ(ρt+σ) − e−2θ(ρt+σ)
o

+2σρt
n

1− e−θ(ρt+σ) − θ(ρt + σ)e−θ(ρt+σ)

−1

2
θ2(ρt + σ)2e−θ(ρt+σ)

ff–
.

It is easily checked that the first derivative is positive and
the second derivative is negative for t > 0, because h1(x) ≡
1 − 2xe−x − e−2x > 0 and h2(x) ≡ ex − 1 − x − 1

2
x2 > 0

for x > 0. Hence, as a function of t, η(t, θ) is increasing
and concave. On the other hand, the first derivative on θ is
given by

∂

∂θ
η+(t, θ) =

ρt(ρt + σ)

ρt + σe−θ(ρt+σ)
.

It is positive and increasing. Hence, as a function of θ,
η+(t, θ) is increasing and convex.

Proof of (64): The first inequality of (64) is proved as
follows.

S
L
i (t, s) = max

0≤τ1≤t
ξi(τ1)− max

0≤τ2≤s
ξi(τ2)

= max

»
max

0≤τ1≤s
ξi(τ1), max

s≤τ1≤t
ξ(τ1)

–
− max

0≤τ2≤s
ξi(τ2)

= max

»
0, max

s≤τ1≤t
ξi(τ1)− max

0≤τ2≤s
ξi(τ2)

–

≤ max

»
0, max

s≤τ1≤t
ξi(τ1)− ξi(s)

–

= max
s≤τ≤t

ξi(τ, s) = ŜL
i (t, s).

Considering the cases τ = s and τ = t in the right hand side
of (62), we have the inequality

ŜL
i (t, s) ≥ max

ˆ
0, ξi(t, s)

˜
= S̆L

i (t, s).

This proves the second inequality of (64).

Proof of (65): The second equality in (65) is proved as
follows. From (21) and (61),

DL
i (t) = S

L
i ∗A

L
i (t, 0) = min

0≤s≤t

n
AL

i (s) + S
L
i (t, s)

o

= min
0≤s≤t


AL

i (s) + max
0<τ1≤t

ξi(τ1)− max
0<τ2≤s

ξi(τ2)

ff

= max
0<τ1≤t

ξi(τ1) + min
0≤s≤t

max
0<τ2≤s

n
AL

i (s)− ξi(τ2)
o

= max
0<τ1≤t

ξi(τ1)− max
0≤s≤t

max
0<τ2≤s

n
−AL

i (s) + ξi(τ2)
o

= max
0<τ1≤t

ξi(τ1)− max
0<τ2≤t

max
τ2≤s≤t

n
−AL

i (s) + ξi(τ2)
o

= max
0<τ1≤t

ξi(τ1)− max
0<τ2≤t

n
−AL

i (τ2) + ξi(τ2)
o

(73)

(since AL
i (τ2) ≤ AL

i (s) for τ2 ≤ s).

Let τ∗1 be the value of τ1 which attains the maximum in
the first term, and τ∗2 be the minimum value of τ2 which
attains the maximum in the second term. Then we can
show that τ∗2 ≤ τ∗1 . Because, if contrary, i.e. τ∗2 > τ∗1 , then
AL

i (τ∗2 ) ≥ AL
i (τ∗1 ), and hence

−AL
i (τ∗2 ) + ξi(τ

∗
2 )≥−AL

i (τ∗1 ) + ξi(τ
∗
1 )≥−AL

i (τ∗2 ) + ξi(τ
∗
2 ).

The first inequality comes from the definition of τ∗2 and the
second inequality comes from the definition of τ∗1 . These
inequalities imply that τ2 = τ∗1 (< τ∗2 ) also attains the max-
imum in the second term of (73), and it contradicts with the
minimum assumption of τ∗2 . Then (73) can be rewritten as

DL
i (t) = min

0<τ2≤t


max

τ2≤τ1≤t
ξi(τ1) + AL

i (τ2)− ξi(τ2)

ff

= min
0<τ2≤t


AL

i (τ2) + max
τ2≤τ1≤t

ξi(τ1, τ2)

ff

= min
0<τ2≤t

n
AL

i (τ2) + ŜL
i (τ1, τ2)

o
= ŜL

i ∗A
L
i (t, 0).

This proves the second equality in (65).
The inequality in (65) is derived from the second inequal-

ity of (64) and the property of the convolution operator.

Proof of (66) and (67): We denote the increment of

cumulative departures during (s, t] at node i as D
L
i (t, s) =

DL
i (t)−DL

i (s), as usual. Using the second equality DL
i (t) =

D
L
i (t, 0) = ŜL

i ∗AL
i (t, 0) in (65) repeatedly, we can show that

DL(t) = ŜL ∗ A
L
(t, 0) as in the proof of (25) in Lemma 1.

Since DL(t) = S
L ∗ A

L
(t, 0), we see that S

L ∗ A
L
(t, 0) =

ŜL ∗A
L
(t, 0). Hence from the relation (20),

W (t, s) = A
L ® S

L
(t, s) = A

L
(t, 0)− S

L ∗A
L
(s, 0)

= A
L
(t, 0)− ŜL ∗A

L
(s, 0) = A

L ® ŜL(t, s).

This proves the equality of (66).

Similarly, using the inequality DL
i (t) ≥ S̆L

i ∗ A
L
i (t, 0) =

S̆L
i ∗DL

i−1(t, 0) in (65) repeatedly, we can show that DL(t) ≥
S̆L ∗A

L
(t, 0). Hence, S

L ∗A
L
(t, 0) = DL(t) ≥ S̆L ∗A

L
(t, 0).

Then from the relation (20),

W (t, s) = A
L ® S

L
(t, s) = A

L
(t, 0)− S

L ∗A
L
(s, 0)

≤ A
L
(t, 0)− S̆L ∗A

L
(s, 0) = A

L ® S̆L(t, s).

This proves the inequality of (66).
The relation (67) is easily derived from (66).

Proof of (68): The representation (68) is derived as
follows.

S̆θ
i (t, s) = − lim

L→∞
L−1 log E[e−θS̆L

i (t,s)]

= − lim
L→∞

L−1 log E

»
e
−θ max

h
0,βiL(t−s)−A

Mi,cross
i (t,s)

i–

≥ max


0,− lim

L→∞
L−1 log E

»
e−θβiL(t−s)−θA

Mi,cross
i (t,s)

–ff

= max
n

0, θβi(t− s)−Aθ,cross
i (t, s)

o
.


