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ABSTRACT

The stochastic network calculus receives much attention as
a new methodology for end-to-end performance evaluation
of networks, taking account of the effect of statistical multi-
plexing. In our previous paper, we proposed a new stochastic
network calculus for many flows from an approach like large
deviations techniques, and obtained asymptotic end-to-end
evaluation formulas for output burstiness and backlog. How-
ever, we could not obtain the asymptotic evaluation formula
for end-to-end delay in this framework.

In this paper, we enhance the calculation in the previous
paper. Concretely we enlarge the domain of the deconvolu-
tion operator. Then in addition to for the backlog and the
output burstiness in tandem networks, for the delay V() of
L flows at time ¢, using min-plus algebra, we obtain a func-
tion of d > 0 by which limsup, .. L™ 'log P(VE(t) > d)
are bounded from above. We then discuss an application of
the result to a tandem network with cross traffic and give a
numerical result.
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[Computer communication networks|: Miscellaneous;
B.8.2 [Performance and reliability]: Performance anal-
ysis and design aids
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1. INTRODUCTION

The theory of network calculus has been developed since
about 1990 to give a deterministic methodology for a worst-
case evaluation of packet networks [7, 16, 2, 5]. It allows us
estimating the end-to-end backlog and delay bounds, and it
has been used to calculate the end-to-end quality-of-service
guarantees. A merit of the network calculus is in its extend-
ability where performance bound formulas for a single node
can be easily extended to those for the end-to-end links by
using min-plus algebra. More definitely, if we let S;(¢) be
a service curve, or a service guarantee, at node ¢ along the
route of a flow with n nodes, then S(t) = Sy % Sa*- - - Sy (¢)
provides a service curve for the entire route of the flow, where
* is a convolution operator. The min-plus algebra is an use-
ful tool, so it has been studied for various purposes [9, 15].

On the other hand, a drawback of the deterministic worst-
case evaluation is in the overestimation for actually neces-
sary network resources, especially when traffic load is low,
the number of flows is large, and the number of nodes is
large. It is because the effect of statistical multiplexing is
disregarded. To overcome this weak point, a stochastic net-
work calculus has been discussed [1, 4, 5, 6, 14]. Importing
statistical evaluation methods to the network calculus, it
takes account of the effect of statistical multiplexing. For
example, in [6], an advanced calculus is proposed to derive
a probabilistic evaluation of the cumulative departures from
a given stochastic arrivals and stochastic service curves.

In [13], the authors proposed another new stochastic net-
work calculus by applying a technique used in the large de-
viations [8]. Large deviations theory and techniques have
been used in queueing systems with many flows (see, for ex-
ample, [3, 10, 12, 17]). In the paper, to derive a new network
calculus, the technique is applied to a discrete-time tandem
network with n nodes and L flows.

Let AL(t7 s) be the total arrivals to the network during
time interval (s,¢] and Ef(t, s) the total offered services at
note 4 during (s,t¢]. Given these processes, the cumulative
departures from the network D" (t,s) during interval (s,¢]
and the total backlog in the network Q*(¢) at time ¢ can be
derived. For processes ar (t,s), i (t,s), D" (t,s) and Q™ (t),
we denote by Xe(t,s), —g;g(t,s), 59(1?,5) and Q°(t), re-
spectively, the limits of their cumulant generating functions
when L — oo. In [13], we showed that for a positive 6 in an
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Figure 1: Tandem network with n nodes

interval
D'(t,5)<A’ 8°(t,s) and Q°(t)=A" ©3’(t,¢),

where ge(t, s) = gi * gi,l ® ek gi)(t, s) and operators *
and @ are convolution and deconvolution ones for bi-variate
functions. From these results, for large L, we can do the
asymptotic end-to-end evaluation for the backlog and the
output burstiness. However, we cannot do the evaluation
for the delay in this framework.

In this paper, we enhance the calculus in [13] to make an
asymptotic evaluation possible for the delay as well as the
backlog and the output burstiness. Concretely, we extend
the domain of the deconvolution operator @ from {(¢, s)|0 <

s < t} to {(t,s)|t,s > 0}. This enable us to define 2o

S (t,s) for any t,s > 0, and then we obtain an evaluation
formula for the end-to-end delay V¥ (t) at time t as

P(VE(t) > d) <
By (L,d) exp (L oienzfv 2’0 ge(t —d, t)}>

where By (L,d) is a function varying slower than the expo-
nential as L increases and d is a positive number.

As an example, we apply the evaluation to a tandem net-
work with cross traffic. In the network, the amounts of the
arrival traffic flows are limited by leaky buckets. We provide
an evaluation formula for the upper bounds above and give
a numerical result for the end-to-end delay in a three node
tandem network.

To be self-contained and easy to read, this paper includes
the part that overlaps with the previous paper[13].

The remaining of the paper is constructed as follows. In
Section 2, we discuss a deterministic network calculus for
a tandem network as preliminary. In Section 3, we derive
a stochastic network calculus on the the limits of the cu-
mulant generating functions of arrivals and services, and
the asymptotic evaluation formula for the end-to-end total
queue, delay and output burstiness. In Section 4, we discuss
an application of the results to a tandem network with cross
traffic, and give a numerical result. In Appendix, we present
some proofs of the properties used in Section 4.

2. PRELIMINARIES

We consider a discrete-time tandem network with n nodes
illustrated in Figure 1. Time t takes discrete values as
0,1,2,---. Let A™(t) be the cumulative arrivals to the
network during time interval (0, ¢], and S;(¢), i =1,2,...,n,
be the cumulative offered services at node ¢ during (0,¢]. In
this section, we consider A™**(¢) and S;(t) are given ordinary
(i.e., non-random) non-decreasing functions with A™**(0) =

Si(t) = 0. In the next section, we will interpret these func-
tions as sample paths of corresponding stochastic processes
in the network model.

We denote by A;(t) and D;(¢) the cumulative arrivals at
and departures from node i during (0, ¢], and by Q;(t) and
Vi(t) the backlog and the delay in node ¢ at time ¢. Then,
we have

Ait) = A™(), 1)

Qi(t) = max {A;(t) — Ai(7) = (S:(t) - Si(m)} ()

Di(t) = Ai(t) — Qi(t) and 3)

Vi(t) = min{z|A;(t —z) < D;(t),0<z <t} (4)
fori=1,2,...,n, and

Al(t) = Difl(t) for 1= 2,3,...,TL. (5)

The cumulative departures from the network during (0, ¢] is
given by D"*(t) = D, (t)

Equations (1) ~ (5) determine functions A;(t), D;i(t), Qi (t)
and V;(t) for ¢ = 1,2,...,n, uniquely. From the definitions,
it is clear that A;(t), Qi(t), D:(t) and V;(t) are nonnegative
with A,(O) = Q,(O) = Dl(O) = V;(O) = 0, and Al(t) and
D;(t) are non-decreasing.

Combining (2) and (3), we have

Di(t) = min {Ai(7) + 8i(t) — Si(7)}- (6)
Since D;(t) < Ai(t), we have
< Ai(t) — Di(s)
= Ai(t) - Ogljgs{Ai(T) + Si(s) — Si(7)}
= max {Ai() — Ai(r) — Si(s) + Si(7)}.

0<r<

D; (t) — D; (S)

If we set for any ¢ and s

Ai(tys) = Ai(t) — Ai(s), (7)
Ei(t’s) = Si(t) — Si(s), and (8)
Di(t,s) = Ds(t) — Di(s), )

then the above inequality is rewritten as

Di(t,s) < Orélgé(s{zi(tj) - S;(s,m)} (10)

This is a little bit simpler expression than before. Using
(7)~(9), the relations (2), (5) and (4) are also rewritten as

Qu(t) = gax {Ai(t,m) = 5.6, 7) ()
Ai(t,s) = Di_1(t,s), and (12)

Vi(t) = min{z|A;(t —z) — Di(t) <0,0 <z <t}

= min {x ’ Orgai(t{Ai (t—z)— Ai(1)
=S8i(t) +Si(1)} £0,0<x < t}
= min {x ] max {Ai(t - 2,7) = Si(t,7)} <0,
0<z< t} (13)

respectively. For the cumulative arrivals to the network and
the cumulative departures from the network, we introduce



similar expressions to (7)~(9) as
A (ts) = A™Y(t) — A"'(s) and (14)
D" (t,s) = D"(t) — D"(s), (15)

and write the total backlogs and the total delay of the net-
work at time ¢ as

Q1) = A™ () = D™ (1),

= A™'(t,0) = D"(t,0) and (16)
VEet(4) = min{z| A" (t —2,0) < D"(t,0), 0 < z < t}.
(17)

To develop a new network calculus, we introduce operators
x and @ for functions f(t,s) and g¢(t,s) of two variables ¢
and s, as follows:

fxg(t,s)= glilét{f(tﬂ') +g(r,8)} for0<s<t, (18)
and
f®g(t7 S) = Oril?i(s{f(t T) _9(57 T)} for any t,s > 0. (19)

Note that the domains of the two operators are different. We
call % the convolution operator and @ the deconvolution one
since these definitions are similar to those of the convolution
and deconvolution ones used in [1, 2, 4, 5, 6, 7, 14]. In
the previous paper [13], we defined another deconvolution
operator on the same domain as the convolution operator.
Here, to deal with the delay, we enlarge the domain and this
requires some changes in our discussions.

The convolution operator * is associative in the sense that
for three functions f(t,s), g(¢,s) and h(t, s)

(f*g)*h(tvs) = f*(g*h)(t7s)'

Hence, (f % g) * h(t,s) or f = (g = h)(t,s) can be written
as f x g« h(t,s). If the function f(t,s) has an incremental
property, i.e. it is written as f(t,s) = f(¢,0) — f(s,0) for
any t,s > 0, then

J(8.0) = g% f(5,0) = f(t,0) — min {g(s,7) + f(7,0)}
= max {£(t,7) — g(s,7)}

0<7<s
= foglts) (20)
Using these operators, we can rewrite (6), (11), (13) and
(10) as

D;(t) = D;(t,0) = S; x A;(t,0), (21)

Qit) = A; @ Si(t,t), (22)

Vi(t) = min{z|A4; @ Si(t —z,t) <0,0<z <t} (23)
and

Di(t,s) < A; @ Si(t, s), (24)

respectively. These equalities and inequality for node ¢ can
be extended to those for the whole network as stated in the
following lemma.

Lemma 1. Fort and s such that 0 < s <t, we have

—=net —net  —met

D™ (t) = D"(t,0) = 5" x« A" (t,0), (25)
Q™ (t) = A" 05" (t,1), (26)

Viet(t) = min{z|A™ 08 (t—2,t) <0,0 <z <t}
(27)

and
D" (t,5) <A™ 05" (t,5), (28)
where
gt (t,8) = Sp % Sp_1 %% S1(t,s) (29)
- s:sogsrlngh}.gsn:t{sn ($n;8n—1) + -+ + 51 (s1, 50)}-
(30)
Proof. Since D"**(t) = Dy(t), we have D"**(t) zﬁnet(t7 0)=

D, (t,0). On the other hand, from (21) and (12)
bi(t, O) = §Z * Zi(t, 0) = gl * 51'_1(15, 0)
Using this relation repeatedly, we have

D™ (t) = D" (£,0) = D (t,0) = Sy % Dp_1(¢,0)

= S, %Sn_1%Dp 2(t,0)= ---
<o =8, %8, 1%---%Sax Di(t,0)

—net —met

= ?n*§n71*-~~*§1*21(t70)25 *A (t,O)

This proves (25). Applying the above representation to (16)
and (17), and using relation (20), we have

Q" (t) = A" (t,0) — D"(t,0)

—net —net —net —net —net

= A (t0)-S «xA (t,0)0=A 0S5 (t1),
and
VEet(t) = min{x| A" (t — 2,0) — S« A"(£,0) < 0,
0<z<t}

—net

= min{z |Znet @S
This proves (26) and (27). Using the inequality D"°*(¢) <
A"°*(¢) and relations (25) and (20), we have
D" (t,s) = D"'(t) — D"(s)
< A™H(E) — DM(s) = A" (£,0) — 8"« A" (s,0)
= A 05" t,s).

(t—z,t) <0,0 <z <t}

A

This proves (28). The representation (30) is a direct conse-
quence of the definition of the convolution operator (18). O

From the relation (25), gt (t, s) might be interpreted as
the cumulative services through the network offered dur-
ing (s, t] though it does not have the incremental property,

namely 5" (t,s) # gt (t,0) — gt (s,0), in general.

3. STOCHASTIC NETWORK CALCULUS
FOR MANY FLOWS

We consider the same discrete-time tandem network with
n nodes as in the previous section. In addition, we assume
that the traffic through the network consists of L flows and
that arrivals to the network and services at each node are
not deterministic but stochastic. For time ¢ > 0, let A" (t)
and SF(t), i = 1,2,...,n, be random variables representing
the total arrivals to the network and the total services at
node i, respectively, during time interval (0,¢] for L flows.
Furthermore, let D¥(t) be the total departures from the
network of I flows during (0,¢], and Q*(t) and V*(t) the
total backlog and the total delay of L flows in the network
at time ¢t. Sample paths of the processes {A”(t)}, {SF ()},



{QY®)}, {VE(®)} and {D*(t)} correspond to A™*(t), S;(t),
Q' (t), V"°'(t) and D"°*(t), respectively, in the previous
section.

For a pair of times ¢ and s, we introduce bi-variate func-

tions ZL(t, s), giL(t, s) and BL(t, s) as in (14), (8) and (15),
namely we let ZL(L s) = AL (t) — AL (s), ?iL(t, s) = SE@t) -
Sk (s) and D" (t,s) = D (t) — D¥(s). Then from Lemma 1,

we have

QFt) = A" 05" (t,1), (31)
VE(#) = min{z|A" 0§ (t—2,t) <0,0<z <t}
(32)
and
D (t,s) <A 25 (t,s) (33)
with probability one, where
S (t,s) =Sk« xSy (t,s) for0<s<t. (34)
We let
Whit,s) =A" 05" (¢, s). (35)
Then (31), (32) and (33) are rewritten as
Q1) = Wh(t.p), (36)
VE(t) = min{z| W (t—2,t) <0,0< 2 <t} and(37)
D (t,5) < W' (2, s). (38)

Note that the random variable 7" (t—,t) is non-increasing
as a function of x. Then, if WL(t —d,t) > 0 then all z
satisfying WL(t —x,t) < 0,0 <z <t is greater than d,
namely, VE(t) > d. If VE(t) > d then W (t — d,t) > 0
since if W (t—d,t) < 0 then V(t) < d from the definition.
Hence, for any ¢ and d such that 0 < d < t, V() > d if and
only if W (t —d,t) > 0. Thus, from (36), (37) and (38), we
have the following relations for y,d > 0:

PQ"(t)>Ly) = PW'(t1)> Ly), (39)
PWVE(#)>d) = PW"(t—d,t)>0) and (40)
P(D"(t,5) > Ly) < P(W'(ts) > Ly). (41)
From the definitions (1 ) d (19) of the convolution and

deconvolution operators, W ( s) itself is written as

w" (t,s)
—L
= Oglsggs{fl (t, 50)

— min
50<s1<-<sp=s

{?ﬁ(sn,an) + .- +§1L(81, so)}}

(A" (¢, 50)

= max
0<sp<s1<-<sp=s

S ($nysn1) — - — S1(s1,80)}.  (42)

Hereafter, in this section, we regard times ¢ and s are
arbitrarily chosen so that ¢,s > 0 and fixed through dis-
cussions. Statements, equalities and inequalities including

80,81, ,Sn—1 Or 8y, should be understood to hold for any
choice of sg, $1,+ , Sn—1, Sn, satisfying the relation 0 < so <
s1 < -+ < sp—1 < sp = s, except for the cases stated

otherwise.

For the sequences of random variables {ZL (t,s0)}r=1,2, -
and {S7 (si,8i—1)}r=1.2...., i = 1,2, -+ ,n, we make the fol-
lowing assumptions. Note that log E[eex] is the cumulant
generating function (cgf) of random variable X.

Al. The random variables ZL(t,so) and gf(si,sifl), i=
1, .- ,n, are mutually independent.

A2. For each § € R, when L — oo, the sequences

{L71 logE[eezL(t’sw]} and

L=1,2,-

{—L71logE[eie?iL(si’S“l)]} ,i=1,---,n,

L=1,2, -

have limits as extended real numbers (i.e., allowing
+00). We denote the limits as

Xe(t, s0) = Llim L' log E[egzL(t’SO)] and (43)

<L
Si(siysi-1) = = lim L™ log Efe” " (t5i-1],

i=1,--,n. (44)

A3. The sets Zz, ,,=1{0 : |je(t,so)| < 00} N (0,00) and

—0 3
Zgi(smsz—ﬂ = {9 : |Sz (Sia 3i71)| < OO} n (0’ OO), v
1,---,n, are all non-empty.

From the monotonicity of the logarithmic and exponen-
tial functions, it is easily checked that the set Zz. ., is
an open or semi-closed interval of the form (0,67 ) or
(0,0%(¢,5,)] With some positive number &z, . ) or with
A(t,sg) — 0°- The set Zg (. .. |y is also such an interval.
Hence, under assumptions A2 and A3, the intersection

ZWits) = N ) [ Zsyepey  (45)

0<50<-<sp=s 1<i<n

is a non-empty interval, too.
We have the following lemma.

Lemma 2. Under assumptions A1, A2 and A3, the se-
quence
T L
{L71 lOgE[eQW (t,s)}}
L=1,2,...

with 0 € Zyg, ) has a finite limit We(t,s) as L — oo, and
the limit is given by

Wit s) = A 08,s), (46)
{A°(t, 50)

= max
0<s9<--<sn=s

—8($ny8n_1) — - — 1 (s1,50)}  (47)

where

0

S (t,s)zgi*gi,l*---*gf(t,s). (48)

Proof. First we show that, when L — oo, the superior limit

of L™ log E[eGWL<t’S)] is bounded from above by the right
hand side of (47) and the inferior limit of it is bounded from
below by the same quantity.



Since 6 > 0, from (42), using the monotonicity of the expo-
nential function and the inequality max(z1,z2) <
x1 + x2 for 1,2 > 0, we have

GOWL(t,s)

—L <L =L
_ max (A7 (t50) =Sy (snysp—1)— =57 (s1,50))
0<s59<---<sp=s

—L <L <L
E (A7 (8,50) =Sy (snysn—1) = =57 (s51,%0))

0<s59<--<sp=s

IN

with probability one. Taking expectation on both sides,

E[@HWL(t,s)]
L <L <L
< 3 B[P0 S lonen 1) =BT (o))
0<so<-Ssn=s
< (s+D)"-
max  E[e?@ B0 =5 (s sno1) = =5} (s1.50)]

0<s0<--<sp=s

From assumption A1, the expectation in the right hand side
above can be written in a product form

— L =L =L
E[eGA (t,SO)]E[e*t‘)sn(sn,sn_m] E[e*GSl (81780))].

Then using the monotonicity of the logarithmic function,
the above inequality is rewritten as

L 'log E[eeWL(t’s)] < L 'log(s+1)"

L
max {L_llogE[ee(A (t:50)]
0<s50<--<sp=s

<L
+ L og Ble /ntmen—t]
+L " log E[e‘f’@f(“’s")]} :

If we let L — oo, from assumptions A2 and A3, each term
in the braces above converges to a finite limit. Hence by
taking superior limit on both sides we have

limsup L™ log E[GGWL 9] <
L—oo
—0 =0 =0
max {A"(t,80) = Sp(8n,Sn—1)— - —81(s1,50)}

0<sp<---<sp=s

On the other hand, from (42), for arbitrarily chosen
(0,81, ,8n), we have

—L —L —L =L
W7 (t,s) > A7(t,s0) — Sy (Sn,Sn—1) — -+ — Sy (51, S0)

with probability one. Then for 0 € ZW(LS), we have
E[eGWL(t,s)] > E[eG(ZL(t,sg)fgﬁ(s",sn,l)7<~7§f(sl,so))].

From assumption Al, the right hand side is written in a
product form. Then, taking logarithm and dividing by L we
have

. —L
L og E[e” 9] > L7 log E[e”* (0]
=L
+ L log Ele™0%n(smomn—1)]
e logE[e—ﬁf(ShSO)]_

As L — oo, from assumptions A2 and A3, each term in the
right hand side converges to a finite limit. Then by taking
inferior limit on both sides, we have

liminf L™ log E[eGWL(t’S)] >
L—oo
Ze(t, s0) — g:(sm Sp—1) — -t — gi)(sl, 50)-

Since the inequality holds for any choice of (so, s1, -, $n),
we have

L
liminf L™ log B[’ (9] >
L—oo

max {Xe(t,so)—gi(sn,sn,1)—~~~—§?(51,so)}.

0<sp<-Ssp=s

Thus, both the superior limit and the inferior limit of

L7 'log E[eGWL(t’S)] are bounded by the right hand side of
(47). This proves (47). The representation (46) is led from
(47) in the reverse way of (42). O

Theorem 1. Under assumptions A1, A2 and A3 for s =
t > 0, we have, for y >0,

limsup L™ " log P(Q™(t) > Ly)
L—oo
—0
< inf {—0y+W (0} 49)
GGZW(t,t){ )} (

Under assumptions A1, A2 and A3 for 0 < d < t, we have

limsup L™ " log P(VE(t) > d)
L—oo
< inf

B GGZW(t—d,t)

W (t—d,t). (50)

Under assumptions A1, A2 and A8 for 0 < s < t, we have,
fory >0,

limsup L~ log P(D" (t, s) > Ly)

L—oo
< inf {-0y+W(t,5)}.  (51)

- QGZW(t,S)

Proof. We apply the Chernoff’s bound (or the Markov
inequality, see p.240 of [5]) to the tail probability

P(WL(t, 8)>Ly). For any 0 € Zy;, ) and y >0, we have

PR 7L
P(W"(t,s) > Ly) = P ©) > L)

T L
< 6_6LyE[€9W (t,s)}.

Taking the logarithm, dividing by L, and then taking the
superior limit on both sides, we have

limsup L™ " log P(WL(t,s) > Ly) < —0y +W9(t, s).

L—oo

Since the parameter 6 does not appear in the left hand side,
it follows that

limsup L™ " log P(WL (t,s) > Ly)

L—oo

< inf
0 Z54. )

{0y + W (t, )} (52)

We know that P(QX(t) > Ly) = P(WL(t,t) > Ly) and
P(VE(#) > d) = P(W"(t — d,t) > 0) from (39) and (40).
Hence, if considering the case of w' (t,t), the inequality (52)
proves (49), and if considering the case of wt (t —d,t) and
y = 0, the inequality (52) proves (50). Similarly, from (41)
we see that P(ﬁL(t,s) > Ly) < P(WL(t,s) > Ly). Hence
the inequality (52) also implies (51). O



Theorem 1 suggests that the tail probabilities of Q(t),
VE(t) and D" (L, s) might be evaluated by the form

P(Q"(t) > Ly) <
Bg(L,y)exp (L o inf

W(t,t)

{0y +W'(t, t)}) , (53)
PV () >d) <

By (L,d)exp (L inf

—=0
W’ (t—d,t 54
vezt ( )}> (54)
and

P(D"(t,s) > Ly) <
inf
W(t,s)

Bp(L,y) exp <L9€ {0y +W9(t78)}> , (55)

where Bp(L,y), Bv(L,d) and Bg(L,y) are some functions
varying slower than the exponential as L increases.

4. APPLICATION TO A NETWORK WITH
CROSS TRAFFIC
Node 1

Node 2 Node n

Lforwarding flows

X

L8, LB, L,

La, cross flows Laycross flows La, cross flows

Figure 2: Tandem network with cross traffic

We apply the bound (54) to a network with cross traffic
depicted in Figure 2. In the network, there are L forwarding
flows and M; cross traffic flows at node i. We denote the
L forwarding flows as {A1(t)}, {A2(t)}, ,{AL(t)} and
the M; cross traffic flows at node i as {A§;°°(¢) }, {A55°°°(¢) },
AR (1)} We set o = M; /L, the ratio of the number
of the cross traffic flows at node i to that of the forwarding
traffic flows, and is kept constant when we move L (and M;)
to infinity later. The link capacity, i.e., the offered service
per unit time, at node 7 is constant in time and equal to
C; = B; L. When we move L later, ; is kept constant. At
the service, the cross traffic is served with higher priority
than the forwarding traffic.

Here, for brevity of the model, we assume that flows (both
forwarding flows and cross traffic flows) are mutually inde-
pendent and subjecting to a common probabilistic law. We
denote by {A(t)} the arrival process of a typical flow, and
make the following assumptions.

C1. The arrival process {A(t)} is nondecreasing and has
stationary increments with probability one.

C2. The arrival process {A(t)} is a greedy process which
is limited by a leaky bucket, namely, the cgf A%(t) =
log E[e?4®)] of A(t) is given by

n _ Pt o(pt+o)
t,0)=1log |1+ —— -1
n"(t,0) = log +pt+a(e ) (56)

- vy

where p is the average flow rate and o is the burst size.

If the arrival process {A(¢)} is just limited by a leaky
bucket, namely, A(t,s) = A(t) — A(s) < p(t — s) + o holds
with probability one for any ¢, s such that 0 < s < ¢, then the
cgf A%(t) of {A(t)} satisfies the inequality A% (t) < n*(t,0)
from [11]. The assumption C2 is that the equation A%(t) =
0T (t,0) holds.

Under assumptions C1 and C2, the cgf A’ (t,s) of A(t,s),
is given as

A’(t,s) =n(t—s) for 0 € (0,00), (57)
where
nt(t,0) ift>0
n(t) = 0 ift=0 (58)
-nt(-t,0) ift<o0.

The function n™(¢,6) is concave on t for each fixed 6 and
convex on 6 for each fixed ¢ (see Appendix).

In this network model, the cumulative arrivals to the net-
work is given by the sum of cumulative arrivals of the L
forwarding traffic flows, A (t) = A1 (t)+ Az(t) +-- -+ AL(t),
and the cumulative services at node i for the forwarding
traffic is given by

L _ o {Vli,cross
SH) = max {Cir = AFE @), (59)
where A°°"°%(¢) is the cumulative arrivals of the cross traf-
fic flows in node 4 at time ¢, i.e., AMTOF(t) = AT (1) +
AGBP=E(t) +- - -+ AG;E (t). The representation (59) is derived
from the relation

S,L(t) — Clt _ {Aé\/fi,CrOSS(t) _ QMi,CrOSS(t)}

k3

with the backlog Q"™**(t) of the cross traffic in node i at
time ¢, which is given, analogously to (2), by

Qi\h ,Cross (t)

= max
0<r<t

{Adeees@) - aMe=(r) — Cit - 1)}

We denote the increment of arrivals in forwarding traffic as
ar (t,s)= AT (t)— A% (s). Then its cgf is given by L times of
A’(t,s), ie. LA (t,s), since L flows {A;(t)}, {A2(t)}, -,
{AL(t)} are mutually independent and subjecting to a com-
mon probabilistic law. So the limit (43) is also given by

A (t,s). Similarly, we denote the increment of arrivals in
the cross traffic during (s,t] at node ¢ as wai’cross(t,s) =
AMiveross () AMieross(6) Then its cgf is given by M; Ze(t7 s).
Hence, the function Z?’Cmss (t,s) =limp oo L™ {M; A’ (t,s)
is given by «; A (t,s), and then

}

ATt s) = ain(t —5,0)  for 0 € (0, 00). (60)
From (59), the increment of services giL (t,s) = SE(t) —
SE(s) during (s, t] at node i is given by
<L _ . _ pAM;,cross
Sy (t,s) = OrSnTz?)ét{Cl 1 — A (r1)}
— max {Cz To — Aﬁwi’cmss(Tg)}. (61)

0<7m3<s

From the independence assumption of input flows and the
equations (57) and (60), we can easily see that assumptions



Al, A2 and A3 are satisfied with Zz, ., = (0,00) and
Z5,(s;,5:_1) = (0,00). Hence the results of the preceding
section can be applied with Zy;, ., = (0, 00).

However, the function gf (t,s) in (61) seems too compli-

cated to evaluate W (t—d, t) in (54), because two maximiza-
tion operations prevent us from calculating its cgf. Here we
introduce two alternatives.

AL _ ) . 7*].\/[i,cross
SE(t,s) = Srél?%(t{(fl (r—s)— A (r, s)} and (62)
= e i ,Cross +
Sfts) = [Cilt—9) - A" s)] (63)

where [z]T = max{0,z}. Unfortunately, they do not satisfy

the incremental property. So they are difficult to understand
as increments of some single variable functions representing
cumulative services. However, the function SF (¢, s) provides

the same function Wg(t7 s) as giL (t,s) as shown below, and
the function SF(t,s), which is naturally led from SF(t,s),

provides a calculable substitute for W9 (t,s). Their proper-
ties stated below will be proved in Appendix.

The three functions S, (t, ), SE(t, s) and SE(¢, s) satisfy
the inequalities

Sit,s) < SF(t,s) and SF(t,s) > SE(t,s) (64)

with probability one (see Appendix), and by taking a con-

volution with ZiL (t, s) they can represent the cumulative de-
partures DF(t) at node i as

DE(t) =5 AL (t,0) = 8L« AL (t,0) > SL « AL (£,0) (65)

(see Appendix), where Z,-L (t,s) = AF(t) — AL (s), as usual.
Using these properties we easily see that

Wht,s) =A" 0 8%(t,s) < A" @ $"(t,s)  (66)

with probability one and that
Wits)=A 08¢ts) <A 08%ts)  (67)

(see Appendix), where ST(t,s) and S%(t,s) are functions
defined by (34) and by (48) via (44) using S¥(t,s) instead
of S (t,s), and ST(t,s) and S°(t,s) are functions similarly
defined from S¥(t,s). From (63), it is easily checked that

*95'5(51',51'71)]

Si(t,s)

— Llim L 'log Ele
o —0,cross +
(80t~ 5) = AT (1, ) (68)

Y

(see Appendix). Hence, under conditions C1 and C2, from
(60), it is given as

Su'f(t, $) > [B:0(t —s) — ain(t — s, 0)]+. (69)

This inequality together with (57) enables us to calculate an

upper bound of We(t, s) from the inequality (67). In fact,
the right hand side of (51) can be evaluated as

inf {—9y + max {Zg(t, 50)

0€(0,00) 0<sp < <sp=s

{n(t — s0,0)
—[B16(s1 — s0) — a1n(s1 — s0,0)] " — -+

o= [Bn0(sn — $n—1) — ann(sn — sn—1,9)]+} } .
(70)

< inf {—9y + max
0€(0,00) 0<sp<---<sp=s

Discussions on numerical calculations: First we note
that, for a fixed € and t > 0, the function ¢;(t) = B3:0t —
a;n(t,0) is a convex function of ¢ since 7(t,6) is a concave
function of t. Its positive part [p:(t)]T = [B:0t — cin(t,0)]"
is also a convex function. At t = 0, ¢;(0) = 0, and ¢;(t)
approaches to the line (8; — a;p)0t — a;00 as ¢ becomes
large. Here the coefficient 8; — a;p is interpreted as the
average link capacity for the forward traffic per flow, because
C; — Mip = L(B; — aip) is the average link capacity that
is offered to the forward traffic at node i in the long run.
Hence, for the network to be stable, 3; —a;p must be greater
than p for any 1.

Exploiting the concavity of 7(t,6) and the convexity of
@i(t), for t > 0 and each given 6, the maximum in the
maximization of (70) can be numerically calculated by an
iteration using a usual numerical technique such as the bi-
section method or the Newton method. On the other hand,
for given t,so, -, sn(= s), the function to be taken infi-
mum on 6 in (70) is not convex, in general, because of the
existence of operations [x]*. So, there might exist multiple
local minima. However, the number of such local minima
is at most 2n. So, it is not very difficult to find infimum
numerically.

Consider the special case where n nodes are homogeneous
and a; and (; are common, namely §; = 8 and «; = « for
t=1,2,--- ,n. From the convexity of ¢;(¢), the maximum
in (70) is attained by so, s1, -, Sn(= s) such that
S — S0

§1 —80 =82 —81="'""=8n — Spn-1—=
n

Hence the right hand side of (70) is reduced to

inf {—Hy—l— max {n(t—so,Q)

0€(0,00) 0<so<t

_ [(5_50) ﬂ@—nan(s_nso,@)rr}}. (71)

This inf-max problem can be easily solved numerically by
using a usual numerical technique.

When we evaluate the total delay by (50) and (67), the
above formula is further reduced to

inf { max {n(tdso,e)

0€(0,00) | 0<s0<t

- {(t—'a’o) BO—nan (T@)T}} (72)
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Figure 3: The upper bound of the tail probability of
delay in the three-node tandem network

A numerical example: Now we apply the inequality
(54) to a specific case of the network depicted in Figure 2.
We consider a homogeneous case where the parameters are
set asn =3, L =10, La = 50, LB = 2.5Gbps, p = 40Mbps
and o = 4Mbits. The link utilization in each node is 96%
(((10 + 50) x 40 x 105)/(2.5 x 10°) = 0.96). The time ¢
of P(V(t) > d) is chosen to be sufficiently large so that
P(V(t) > d) indicates a stationary probability.

Figure 3 shows a numerical result calculating the expo-
nential part of (54). The ordinate is the logarithm of (54)
to base 10 and the abscissa is the delay threshold d. The
three curves with letters “1 node”, “2 nodes” and “3 nodes”
attached correspond to the delay distribution through one
node, that through two nodes and that through three nodes,
respectively. The three perpendicular broken lines show the
maximum delays for i nodes, i = 1,2, 3 under the restriction
by a leaky bucket.

In practical applications, the evaluation (54) may not be
accurate in two reasons. The first is, as is usually seen in
asymptotic evaluations, that the coefficient function Bg (L, y)
is not known. We only know the exponential part. The
second is that our model uses the greedy process which is
limited by a leaky bucket as the input process. Usually,
it is only known that the input process is limited by the
leaky bucket, and the input process is not identified. So,
the new findings we can obtain from the numerical results
are somehow limited. However, at least, we can point out
the following facts. In the greedy input case, the maximum
delay increases as the number of nodes increases, but the up-
per bound of the probability P(V (t) > d) decreases faster
than the exponential as the delay threshold d increases in
spite of the high link utilization of 96%.
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APPENDIX

Here we give a proof for the concavity of the function
n* (¢, 0) given in (56) and proofs for the properties (64), (65),
(66) and (67) of the functions SF (¢, s) and SF (¢, s) presented
in Section 4. For brevity of notation, we set &;(7) = 8 LT —
A= (7) and & (1, 72) = €(11) — &(72).

Proof of the concavity of n*(¢,0) in (56): The func-
tion nt(t,0) is rewritten as

nt(t,0) = 6(pt+ o) —log [pt + o] + log [pt + 0’679(pt+0’>:| .

Then it is easily checked that 7%(0,6) = 0 and lim;— oo
{77+ (t,0) — 0(pt + 0')} = 0. So, roughly speaking, the func-



tion n* (¢, 0) grows along a straight line 8(pt + o) as t — oo.
Its first and second derivatives on t are given as

9 + ) p—a@pe“g(”””)

t,0) = 0p— d
at (t,0) p pt+o pt + ge—f(pi+o) an
82 2
%7#(1579) = - 3 - “o(pt1o))\2

(pt +0)?(pt + oe0lrt+9))

{02 {1 — 20(pt + o)e T _ e*”(m*")}

—0(pt+o)

+20pt {1 —e — O(pt + g)e Pt

—%92 (pt + 0)2679“’””) H .

It is easily checked that the first derivative is positive and
the second derivative is negative for ¢t > 0, because h;(z) =
1—2ze ™ —e® >0and ho(z) =" —1—z— 12> >0
for x > 0. Hence, as a function of ¢, n(t, ) is increasing
and concave. On the other hand, the first derivative on 0 is
given by

2 4
8977(

It is positive and increasing. Hence, as a function of 6,
nt(¢,0) is increasing and convex.

- pt(pt + o)
)= _Lette)
pt + o'e*e(PH’U)

Proof of (64): The first inequality of (64) is proved as
follows.

—L
Si(t s) = max &(n) — max &(m)
= x| max &(r), max 66| - max ()

= max | 0, Sr<nellX 5,(7-1)—01<nax 5@(7'2)]

max _0 max & (1) — &(3)]

IN

s<T

2 &(r,5) =

Sk (t,s).

Considering the cases 7 = s and 7 = ¢ in the right hand side
of (62), we have the inequality

S'iL(t, $) > max [O,Ei(t,s)} = SiL(t, s).
This proves the second inequality of (64).

Proof of (65): The second equality in (65) is proved as
follows. From (21) and (61),

DE(t) = 5F + A%(1,0) = min {AL )+ 57 (¢, s)}

0<s<t
= Orgnsirslt{Af( )+Or<nax fz(ﬂ)—oglax 51(72)}
—& 7—2)}

= max &(m1)— max max {—AZL(S)—&-&(E)}

= max &(71)+ min max {A
0<m <t 0<s<t0<m™2<s

o< <t 0<s<t 0<m2<s
= ma Gln) = max, max {=AH() + ()}
= max, &(m) - max, {_Ai (72)4-51-(72)} (73)

(since AF (o) < AfF(s) for 2 < s).

Let 71 be the value of 71 which attains the maximum in
the first term, and 75 be the minimum value of 72 which
attains the maximum in the second term. Then we can
show that 75 < 7{. Because, if contrary, i.e. 79 > 77, then
AF(13) > AF(7]), and hence

—AL(73) 4 &i(13)2— AT (77) + &(11)2— AL (13) + &i(73).

The first inequality comes from the definition of 75 and the
second inequality comes from the definition of 7{". These
inequalities imply that 72 = 71 (< 75) also attains the max-
imum in the second term of (73), and it contradicts with the
minimum assumption of 75. Then (73) can be rewritten as

Df(t)

0<1o<t | T2<7T1 <t

min { e )+ ¥ -6

min {AiL(T2)+ max f(TlaT2)}

0<7m2<t To<T1 <t
— i L : = Sl <Ay
= oinéngt {Az (7—2) + Sz (Tl7 TQ)} Sl * Al (t’ 0)

This proves the second equality in (65).
The inequality in (65) is derived from the second inequal-
ity of (64) and the property of the convolution operator.

Proof of (66) and (67):
cumulative departures during (s,t] at node ¢ as Ef (t,s) =
DF(t)— DF(s), as usual. Using the second equality DF(t) =
5Z-L (t,0) = Sk *Zf(t, 0) in (65) repeatedly, we can show that
DE(t) = ST « ZL(t,O) as in the proof of (25) in Lemma 1.
Since D*(t) = 5"« ZL(t,O), we see that S5 x ZL(t,O) =

We denote the increment of

St A" (t,0). Hence from the relation (20),
Wi(t,s) = A" 08 (t,s) = A (t,0) - §" x A" (s,0)
= A"(t,0) — 8" « A"(5,0) = A" 0 8% (¢, 5).

This proves the equality of (66).

Similarly, using the inequality DF(t) > SE Z,-L (t,0)
Sk *55_1 (t,0) in (65) repeatedly, we can show that D™ (t)
SE s« A" (t,0). Hence, S” + A" (t,0) = DX (t) > SE« A" (t,0).
Then from the relation (20),

s) = A"(t,0)
St XL(S, 0)

\Y

-gt *ZL(S,O)
=A" 2 8", s).

Wi(t,s) = A 08" (t,
L

A (t,0) —

IN

This proves the inequality of (66).
The relation (67) is easily derived from (66).

Proof of (68):
follows.

Si(t,s) =

The representation (68) is derived as

- Llirn L~ log E[e” "7 ® S)]

— _ lim L—l lOgE efémax[O,BiL(tfs) A]wl Crogs(t,s):l
L—oo
> max{O — lim L_llogE[ —88: L(t=) =6 AT e, ﬂ}

= max {O 08:(t — s) — Ae CrOSS(t,s)} .



