Diastereoselective construction of azetidin-2-ones by electrochemical intramolecular C-C bond forming reaction

Daishirou Minato, Satoshi Mizuta, Masami Kuriyama, Yoshihiro Matsumura and
Osamu Onomura*

Graduate School of Biomedical Sciences, Nagasaki University 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

Abstract

A convenient method for synthesis of optically active azetidin-2-ones using electrochemical oxidation has been exploited. The method consists of a diastereoselective intramolecular C-C bond forming reaction between active methylene and methyne groups through an electrochemical system in which positive iodine species acted as mediators under mild conditions.

Keywords: azetidinone; electrochemical oxidation; diastereoselective; carbon-carbon bond forming reaction, cyclization

1. Introduction

Since the discovery of thienamycin (1), ${ }^{1}$ a variety of synthetic methods of $\mathbf{1}$ and its precursors 2 have been exploited (Scheme 1). ${ }^{2}$ However, new efficient synthetic methods are still of great interest because of economic reasons and the continuing need for novel β-lactamase inhibitors. In 1985, Simig and co-workers reported that the construction of N -protected azetidin-2-ones 4a-c from N -arylated or N -benzylated N-(3-oxobutyryl)aminomalonate diethyl esters 3a-c, which are equilibrated with pyrrolidine-2-ones 5a-c, was achieved by I_{2} in the presence of NaOEt (Eq. 1). ${ }^{3}$

Scheme 1.

Although this reaction is very convenient for the construction of azetidin-2-one skeleton,
there has been no report for its chiral version. We report herein a convenient electrochemical diastereoselective construction of azetidin-2-ones 4d-f possessing acetyl group at the 3-position and two alkoxylcarbonyl groups at the 4-position from easily available N-(3-oxobutyryl)aminomalonate esters 3d-f possessing a chiral auxiliary on a nitrogen atom (Scheme 2). Scheme 2 also shows our strategy for the transformation of 4d-f to enantiomerically pure 4-methoxy-3-(1'-silyloxyethyl)azetidin-2-one (2a) ${ }^{4}$ which is an important key synthetic intermediate for $\mathbf{1}$.

Scheme 2. Strategy for preparation of enantiomerically pure azetidin-2-one 4.

2. Results and discussion

2.1 Preparation of chiral pyrrolidin-2-ones 5d-f

Pyrrolidin-2-ones 5d-f were prepared in good to high yields using similar method for preparation of $\mathbf{5 a - c}$ (Eq. 2). ${ }^{3}$ The results are shown in Table 1.

Table 1. Preparation of 2- pyrrolidinones 5d-g.

entry	R*	R^{4}	condition			yield (\%) ${ }^{\text {b }}$ of 6		$\text { yield (\%) }{ }^{\text {b }}$ of 5	
			Step 1						
1	$-\xi-\begin{gathered} \mathrm{Me} \\ (R) \\ \mathrm{Ph} \end{gathered}$	Et	rt	$80^{\circ} \mathrm{C}^{\text {a }}$	toluene		79	5 d	93
2		t-Bu	$80^{\circ} \mathrm{C}^{\text {a }}$	$80^{\circ} \mathrm{C}^{\text {a }}$	toluene	6	83		88

t-Bu $\quad 80{ }^{\circ} \mathrm{C}^{\mathrm{a}}$
rt
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 6f 94 5f 87
${ }^{a}$ Temperature of bath. ${ }^{b}$ Isolated yield.

2.2 Diastereoselective construction of azetidin-2-ones 4d-f

Chemical intramolecular C-C bond forming reaction of 5d-f (Method A) and the corresponding electrochemical reaction (Method B) were examined under various conditions (Eq. 3). The results are summarized in Table 2.

5d-f

Method A

Method B
-2e, 4 F/mol
NaI (0.5 equiv) in solvent

4d-f

Table 2. Diastereoselective cyclization of pyrrolidin-2-ones 5d-f.

entry	Substrate	method ${ }^{\text {a }}$	conditions		product 4		
			solvent	temp		yield (\%) ${ }^{\text {b }}$	de (\%) ${ }^{\text {c }}$
1	5d	A	EtOH	rt	4d	0	-
2	5d	B	EtOH	a.t. ${ }^{\text {d }}$	4d	23	58
3	5d	A	MeCN	rt	4d	0	-
4	5d	B	MeCN	a.t. ${ }^{\text {d }}$	4d	41	58
5	5d	A	EtOH	$85^{\circ} \mathrm{C}^{\mathrm{e}}$	4d	30	48
6	5d	B	EtOH	$85^{\circ} \mathrm{C}^{\text {e }}$	4d	19	59
7	5d	A	MeCN	$85^{\circ} \mathrm{C}^{\text {e }}$	4d	12	48
8	5d	B	MeCN	$85^{\circ} \mathrm{C}^{\text {e }}$	4d	56	68
9	5 e	B	MeCN	a.t. ${ }^{\text {d }}$	4 e	33	79
10	5e	B	MeCN	$85^{\circ} \mathrm{C}^{\mathrm{e}}$	4e	94	80
11	5 f	B	MeCN	a.t. ${ }^{\text {d }}$	4f	67	70
12	5 f	B	MeCN	$85^{\circ} \mathrm{C}^{\text {e }}$	4f	89	74

${ }^{\text {a }}$ Method A: A solution of $5(0.5 \mathrm{mmol}), \mathrm{I}_{2}(0.5 \mathrm{mmol})$, and NaOEt $(1.5 \mathrm{mmol})$ in solvent $(5 \mathrm{~mL})$ was stirred for 1 h . Method B: $4 \mathrm{~F} / \mathrm{mol}$ of electricity was passed through a solution of 5 (0.5 mmol) and $\mathrm{NaI}(0.5 \mathrm{mmol})$ in solvent $(5 \mathrm{~mL}) .{ }^{\mathrm{b}}$ Isolated yield (\%). ${ }^{\mathrm{c}}$ Determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. ${ }^{\mathrm{d}}$ Ambient
temperature (The temperature of the reaction mixture gradually raised from rt to $\mathrm{ca} 50{ }^{\circ} \mathrm{C}$ as electricity was passed.). ${ }^{\mathrm{e}}$ Temperature of bath.

When chemical cyclization of diethyl ester $5 \mathbf{d}$ was attempted in ethanol and acetonitrile at room temperature, azetidin-2-one 4d was not obtained at all (entries 1 and 3), however increase of temperature to $85^{\circ} \mathrm{C}$ lead to formation of $\mathbf{4 d}$ in low yields with moderate diastereoselectivities (entries 5 and 7). On the other hand, electrochemical cyclization of $5 \mathbf{d}$ at ambient temperature proceeded to afford $\mathbf{4 d}$ in moderate yields (entries 2, 4, 9, and 11). Heat generated during electrochemical oxidation might affect the cyclization. Although the yield of $\mathbf{4 d}$ by electrochemical cyclization of $\mathbf{5 d}$ in ethanol was not improved at $85^{\circ} \mathrm{C}$ compared with at ambient temperature (entries 2 and 6), in acetonitrile somewhat better yield was obtained than that at ambient temperature (entries 4 and 8). The best result was obtained in acetonitrile at $85^{\circ} \mathrm{C}$ (entry 8). These optimized conditions were applicable to cyclization of di-t-butyl esters $\mathbf{5 e}$ and $\mathbf{5 f}$ to afford azetidin-2-ones $\mathbf{4 e}$ and $\mathbf{4 f}$ in high yields with good to high diastereoselectivities (entries 10 and 12). Recrystalization of $\mathbf{4 e}$ from a mixture of diethyl ether and n-hexane $(1 / 2 \mathrm{~V} / \mathrm{V})$ afforded $3 S-4 \mathbf{e}$ as a single diastereoisomer.

2.3. Reaction mechanism

Plausible reaction mechanism for electrochemical cyclization of $\mathbf{3 e}$ is shown in Scheme 3. Briefly, anodically generated positive iodine species " I " react with $3 \mathbf{e}$ to afford iodinated intermediate $\mathbf{A},{ }^{5}$ which is transformed to enolate \mathbf{B}^{6} by cathodically generated base "EGB"." Finally cyclization of \mathbf{B} affords thermodynamically stable $3 S-\mathbf{4 e}$ diastereoselectively. The reason why electrochemical reaction in Table 2 shows higher yields and diastereoselectivity than the corresponding chemical reaction might be explainable by the characteristics of "EGB". Since "EGB" on cathode simultaneously generated along with " I " " on anode in the electrochemical reaction, the electrochemical reaction holds almost neutral. On the other hand, the chemical reaction is always too basic. The strong basicity in the chemical reaction might lower the yield and daistereoselectivity of $\mathbf{4 e}$.

Scheme 3. Plausible reaction mechanism of electrochemical cyclization.

In fact, equilibration of $3 S-4 \mathbf{e}$ and $3 R-4 \mathbf{e}$ in the reaction conditions was confirmed by ${ }^{1} \mathrm{H}$-NMR (Scheme 4). Although diastereomerically pure $3 S-4 \mathbf{e}$ was not epimerized in CDCl_{3}, epimerization of $3 S-4 \mathbf{e}$ in the presence of potassium carbonate was observed to reach to the equilibrium. Although we can not deny some effect of kinetic control on the diastereoselectivities in these cyclization, thermodynamic control could rationalize the diastereoselectivities.

Scheme 4. Equilibration of $3 S-4 \mathbf{e}$ and $3 R-4 \mathbf{e}$.

2.4. Diastereoselective reduction

Diastereoselective reduction of acetyl group in 4d,e was carried out under several reaction conditions (Eq. 4). The results are summarized in Table 3.

Although NaBH_{4} majorly reduced ethoxycarbonyl group instead of acetyl group in diethyl ester $\mathbf{4 d}$ to afford $\mathbf{8}$ (entry 1), NaBH_{4} or DIBAH in THF reduced acetyl group in di-t-butyl ester $\mathbf{4 e}$ to afford $\mathbf{7 e}$ in good to high diastereoselectivity. Epimerization of $\mathbf{4 e}$ at the 3 -position was not observed under the reaction conditions.

Table 3. Diastereoselective reduction of 3-acetylazetidin-2-ones 4d,e.

entry	substrate	reductant	condition		product 7		
			solvent	temp		yield (\%) ${ }^{\text {a }}$	de (\%) ${ }^{\text {b }}$
1	4d	NaBH_{4}	MeOH	rt	7d	7	-
2	4e	NaBH_{4}	MeOH	rt	7 e	89	12
3	4e	NaBH_{4}	THF	rt	7e	85	76
4	4e	NaBH_{4}	THF	$-20{ }^{\circ} \mathrm{C}$	7 F	83	84
5	4e	DIBAH	THF	rt	7e	48	80
6	4e	DIBAH	THF	$0^{\circ} \mathrm{C}$	7 e	46	78

${ }^{a}$ Isolated yield (\%). ${ }^{b}$ Determined by ${ }^{1}$ H-NMR.

2.5. Determination of absolute stereoconfiguration for $\mathbf{7 e}$

Recrystalization of $\mathbf{7 e}$ afforded $3 S, 1^{\prime} R-7 \mathbf{e}$ as a single diastereoisoimer, whose absolute stereoconfiguration was determined to be 1 ' R by X-ray analysis (Figure 1). ${ }^{8}$

Figure 1. Absolute stereoconfiguration of 7e.

As a result, It was deduced that major isomer of $\mathbf{4 e}$ was $3 S-4 \mathbf{e}$.

2.6 Stereochemical course.

The diastereoselectivity might be explained by thermodynamical stability of 3S-4e compared with $3 R-4 \mathbf{e}$. Namely, when 1 ' R-phenylethyl group occupied the lower side of azetidine ring shown as (b) and (d) in Figure 2, there might be steric repulsion between t-butyl group and phenyl group. Additionally, steric repulsion between acetyl group and $1^{\prime} R$-phenylethyl group in $3 S-4 \mathbf{e}$ might occurr ((b) in Figure 2). On the other hand, when 1 ' R-phenylethyl group occupied the upper side of azetidine ring ((a) and (c) in Figure 2), there might be steric repulsion between acetyl group and $1^{\prime} R$-phenylethyl group in $3 R-4 \mathbf{e}$ ((c) in Figure 2). Accordingly, $3 S-4 \mathbf{e}$ shown as (a) in Figure 2 is the most stable confomation. Also, bulkier di-t-butyl ester $\mathbf{4 e}$ could be obtained with better diastereoselectivity than that of diethyl ester 4d.

(a) $3 S-4 \mathrm{e}$

(c) $3 R-4 \mathrm{e}$

(b) $3 S-4 \mathrm{e}$

(d) $3 R-4 \mathrm{e}$

Figure 2. Steric hindrance of $3 S-4 \mathbf{e}$ and $3 R-4 \mathbf{e}$.

Plausible stereochemical course for the NaBH_{4} reduction of $\mathbf{4 e}$ are shown in Scheme 5. Sodium ion chelates with the two carbonyl groups, due to this and also the steric repulsion on the re-face between the hydride ion and the tert-butyl group, the hydride attack therefore takes place on the si-face to afford 1 ' R-7e diastereoselectively. Higher diastereoselectivity in THF than MeOH seems to support chelation (entries 2 and 3 in Table 3).

Scheme 5. Plausible stereochemical course for NaBH_{4} reduction of 3S-4e.

2.7. Preparation of enantiomerically pure azetizin-2-one 2a from 1 ' R-7e

Enantiomerically pure 4-methoxy-3-(1'-silyloxyethyl)azetidin-2-one (2a) was prepared from $1^{\prime} R-7 \mathbf{e}$ by procedure shown in Scheme 6 . Namely, acetylation of $1^{\prime} R-7 \mathbf{e}$
afforded 9, which was then subjected to acid catalyzed hydrolysis to give dicarboxylic acid $\mathbf{1 0}$ in quantitative yield. Decarboxylation of 10 afforded monocarboxylic acid 11, which was then transformed into $4 R$-methoxylated azetidinone 12 in 73% yield by the non-Kolbe electrolysis. ${ }^{9,10}$ Silylation of 12 and successive hydrogenolysis of chiral auxiliary of $\mathbf{1 3}$ afforded desired azetidinone $\mathbf{2 a}$ as an enantiomerically pure form (Scheme 6).

Scheme 6. Preparation of azetidinone 2a from $1^{\prime} R$ - $7 \mathbf{e}$.

3. Conclusion

A convenient method for the synthesis of optically active azetidin-2-ones using electrochemical oxidation has been exploited. The method consists of diastereoselective intramolecular C-C bond forming reaction between active methylene and methyne groups by electrochemical mediator system in which positive iodine species act as mediators under mild conditions.

4. Experimental section

4.1. General.

Electrochemical reactions were carried out using DC Power Supply (GP 050-2) of Takasago Seisakusho, Inc. ${ }^{1} \mathrm{H}$ NMR spectra were measured on a Varian Gemini 300 and 400 spectrometer with TMS as an internal standard. ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Varian Gemini 400 spectrometer with TMS as an internal standard. IR spectra were obtained on a Shimadzu FTIR-8100A. Elemental analyses were carried in Center for Instrumental Analysis, Nagasaki University. Mass spectra were obtained on a JEOL JMS-DX 303 instrument. Specific rotations were measured with Jasco

DIP-1000. All melting points were measured on MICRO MELTING POINT APPARATUS (Yanaco) and are uncorrected.

All solvents were used as supplied without further purification. Diethyl bromomalonate, $1 R$-phenylethylamine, and $1 R$-(4-methoxyphenyl)ethylamine are commercially available. Di-t-butyl bromomalonate was prepared from di-t-butyl malonate by known procedure. ${ }^{11}$

4.2. Preparation of aminomalonate 6d-f: general procedure;

To a solution of $1 R$-phenylethylamine ($3.05 \mathrm{~g}, 25 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(2.53 \mathrm{~g}, 25 \mathrm{mmol})$ in acetonitrile (25 mL) was added diethyl bromomalonate ($8.13 \mathrm{~g}, 34 \mathrm{mmol}$). After stirring for 6 h , to the resulting mixture was poured water $(30 \mathrm{~mL})$. Organic portion of aqueous layer was extracted with dichloromethane ($3 \times 25 \mathrm{~mL}$) and washed with sat. aq. $\mathrm{NaCl}(25 \mathrm{~mL})$. After drying the organic layer over MgSO_{4}, solvent was removed in vacuo, and residue purified by silica gel column chromatography (n-hexane : $\mathrm{AcOEt}=$ $10: 1$) to afford diethyl (1R-phenylethyl)aminomalonate (6d) ${ }^{12}$ in 79% yield.

Di-tert-butyl (1R-phenylethyl)aminomalonate (6e)

yellow oil; $[\alpha]_{\mathrm{D}}{ }^{28.3}+58.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} \mathrm{CDCl}_{3}\right) \delta 1.38(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.42$ (s, 9H), 1.47 (s, 9H), 2.37 (br s, NH), 3.69 (s, 1H), 3.79 (q, $J=6.6 \mathrm{~Hz}$, 1H), 7.20-7.39 (m, 5H); IR (neat) 3350, 2978, 2932, 2342, 1750, 1734, 1475, 1493, 1475, 1455, 1395, 1140, 1007, 847, $702 \mathrm{~cm}^{-1}$; HRMS (EI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right)$ 335.2097, Found: 335.2095.

Di-tert-butyl [(1R-(4-methoxyphenyl)ethyl]aminomalonate (6f)

yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} \mathrm{CDCl}{ }_{3}\right) \delta 1.36(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) 1.42(\mathrm{~s}, 9 \mathrm{H}), 1,47(\mathrm{~s}$, 9H), 2.38 (br s, NH), 3.75 (q, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.80 (s, 3H), 6.85 (d, J=8.7Hz, 2H), 7.25 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$); $\operatorname{IR}($ neat $) \mathrm{cm}^{-1}$; HRMS (EI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{5}\left(\mathrm{M}^{+}\right) 365.2202$, Found: 365.2214.

4.3. Preparation of chiral pyrrolidin-2-ones 5d-f: General Procedure

To a solution of $\mathbf{6 d}(5.59 \mathrm{~g}, 20 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(2.02 \mathrm{~g}, 20 \mathrm{mmol})$ in toluene (30 mL) was slowly added dropwise diketene $(1.7 \mathrm{~mL}, 22 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After the solution was stirred at $80^{\circ} \mathrm{C}$ for 1 h , the solvent was removed in vacuo at room temperature. The
residue was purified by silica gel column chromatography (n-hexane : $\mathrm{AcOEt}=1: 1$) to afford diethyl 3-hydroxy-3-methyl-1-(1'R-phenylethyl) pyrrolidin-5-one-2,2-dicarboxylate (5d) in 93% yield.

Diethyl

3-hydroxy-3-methyl-1-(1'R-phenylethyl) pyrrolidin-5-one-2,2-dicarboxylate (5d) (a mixture of two diastereomers)
white solid; mp 56-61 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz} \mathrm{CDCl}{ }_{3}\right) \delta 0.93$ and $0.99(2 \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, $3 \mathrm{H}), 1.27$ and $1.31(2 \mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.49$ and $1.50(2 \mathrm{~s}, 3 \mathrm{H}), 1.81$ and $1.84(2 \mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.55-2.80(\mathrm{~m}, 2 \mathrm{H}), 3.68-4.40(\mathrm{~m}, 5 \mathrm{H}), 4.75$ and $4.93(2 \mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.10-7.40 (m, 5H); IR (neat): 3400, 2984, 2940, 1736, 1707, 1686, 1410, 1269, 1231, 1079, 1098, 1053, $704 \mathrm{~cm}^{-1}$; HRMS (EI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{6}\left(\mathrm{M}^{+}\right) 363.1682$, Found: 363.1684.

Di-tert-butyl 3-hydroxy-3-methyl-1-(1'R-phenylethyl)pyrrolidin-5-one-2,2dicarboxylate (5e) (a mixture of two diastereomers)
white solid; mp $153-160{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} \mathrm{CDCl}{ }_{3}$) $\delta 1.11$ and $1.24(2 \mathrm{~s}, 9 \mathrm{H}), 1.41$ and $1.51(2 \mathrm{~s}, 9 \mathrm{H}), 1.48$ and $1.63(2 \mathrm{~s}, 3 \mathrm{H}), 1.81$ and $1.84(2 \mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.52-2.74$ $(\mathrm{m}, 2 \mathrm{H}), 3.54$ and $4.03(2 \mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.76$ and $5.02(2 \mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.40(\mathrm{~m}$, $5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.2,20.1,23.5,24.0,27.3,27.5,27.8,27.9,46.1$, $46.2,54.5,55.7,76.5,80.0,84.0,84.1,84.5,84.7,126.2,126.3,126.4,126.6,128.1$, $142.2,142.4,166.3,166.6,166.7,167.1,174.0,174.1$; $\operatorname{IR}($ neat): 3400, 2980, 2938, $1730,1692,1395,1302,1250,1157,1024,754,696 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{6}$: C, 65.85; H, 7.93; N 3.34. Found: C, 66.25; H, 8.14; N 3.33.

Di-tert-butyl 3-hydroxy-1-[1'R-(4-methoxyphenyl)ethyl]-3-methylpyrrolidin-5-one-

 2,2-dicarboxylate (5f) (a mixture of two diastereomers)white solid; mp 186-187 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} \mathrm{CDCl}{ }_{3}$) $\delta 1.19$ and $1.30(2 \mathrm{~s}, 9 \mathrm{H}), 1.47$ and $1.53(2 \mathrm{~s}, 9 \mathrm{H}), 1.51$ and $1.60(2 \mathrm{~d}, J=3.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.80$ and $1.82(2 \mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, 2.55-2.72 (m, 2 H$), 3.52$ and $3.90(2 \mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.74$ and $3.75(2 \mathrm{~s}, 3 \mathrm{H}), 4.74$ and 4.94 $(2 \mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.85(\mathrm{~m}, 2 \mathrm{H}), 7.22$ and $7.31(2 \mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz} \mathrm{CDCl}_{3}\right.$) $\delta 19.4,20.0,23.6,23.9,27.4,27.6,27.9,28.0,46.2,46.3,54.2$, $55.1,55.2,76.5,76.6,80.0,80.2,84.0,84.1,84.5,84.6,113.4,113.5,127.5,128.0$, $134.4,134.6,158.1,158.3,166.2,166.6,166.9,167.0,173.9,174.0$; IR (neat): 3400, 2980, 2038, 1750, 1732, 1720, 1700, 1868, 1615, 1559, 1514, 1474, 1395, 1370, 1339,

1302, 1248, 1156, 1030, 910, 831, $735 \mathrm{~cm}^{-1}$; HRMS (EI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{NO}_{7}\left(\mathrm{M}^{+}\right)$ 449.2414, Found: 449.2400.

4.4. Preparation of chiral azetidin-2-ones 4d-f:

4.4.1. Typical Procedure for chemical method A (entry 5 in Table 2);

To a solution of $5 \mathbf{d}(182 \mathrm{mg}, 0.5 \mathrm{mmol})$ in ethanol $(5 \mathrm{~mL})$ was added $\mathrm{I}_{2}(127 \mathrm{mg}$, 0.5 mmol) and $\mathrm{Na}(35 \mathrm{mg}, 1.5 \mathrm{mmol})$. After stirring for 1 h at $85^{\circ} \mathrm{C}$, to the reaction mixture was added AcOEt (30 mL). The resulting solution was washed with 5% $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \times 10 \mathrm{~mL})$ and sat. aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was subjected to silica gel columun chromatography (n-hexane:AcOEt $=1: 1$) to afford $3 S-4 d$ in 30% yield with 48% de.

4.4.2. Typical Procedure for electrochemical method B (entry 10 in Table 2);

In an undivided cell equipped with platinum plate electrodes $\left(1 \times 2 \mathrm{~cm}^{2}\right)$ was placed a solution of $5 \mathbf{e}(210 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathrm{NaI}(75 \mathrm{mg}, 0.5 \mathrm{mmol})$ in acetonitrile $(5 \mathrm{~mL})$. A constant current (100 mA) was passed through the cell externally warmed in oil-bath ($85{ }^{\circ} \mathrm{C}$). After $4 \mathrm{~F} / \mathrm{mol}$ of electricity was passed, to the reaction mixture was added AcOEt (30 mL). The resulting solution was washed with $5 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \times 10 \mathrm{~mL})$ and sat. aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was subjected to silica gel columun chromatography (n-hexane: $\operatorname{AcOEt}=1: 1$) to afford $3 S-4 \mathrm{e}$ in 94% yield with 80% de, which was recrystalized from a mixture of diethyl ether and n-hexane $(1 / 2 \mathrm{~V} / \mathrm{V})$ to give enantiomerically pure $3 S-\mathbf{4 e}$.

Diethyl 3S-acetyl-1-(1'R-phenylethyl)azetidin-2-one-4,4-dicarboxylate (4d) (3S:3R $=74: 26$)
yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} \mathrm{CDCl}{ }_{3}$) $\delta 0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2.22 \mathrm{H}$), $1.06(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $0.78 \mathrm{H}), 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.78 \mathrm{H}), 1.87(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2.22 \mathrm{H})$, $2.31(\mathrm{~s}, 0.78 \mathrm{H}), 2.35(\mathrm{~s}, 2.22 \mathrm{H}), 3.47-3.62(\mathrm{~m}, 0.74 \mathrm{H}), 3.78-3.90(\mathrm{~m}, 0.74 \mathrm{H})$, 3.90-4.02 (m, 0.26H), 4.03-4.15 (m, 0.26H), 4.15-4.45 (m, 2H), 4.57-4.70 (m, 0.74H), 4.75-4.85 (m, 0.26H), $4.68(\mathrm{~s}, 0.26 \mathrm{H}), 4.84(\mathrm{~s}, 0.74 \mathrm{H}), 7.20-7.45(\mathrm{~m}, 5 \mathrm{H})$; IR (neat): 2984, 2938, 1779, 1455, 1393, 1300, 1280, 1240,1180, 1096, 1057, 1028, 903, 860, 762, $702 \mathrm{~cm}^{-1}$; HRMS (EI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{6}\left(\mathrm{M}^{+}\right) 361.1525$, Found: 361.1525.

Di-tert-butyl 3S-acetyl-1-(1'R-phenylethyl)azetidin-2-one-4,4-dicarboxylate (4e)

white solid; mp 140-142 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{26.2}-6.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 MHz CDCl 3) δ 1.07 (s, 9H), $1.55(\mathrm{~s}, 9 \mathrm{H}), 1.85(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 4.66(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.86(\mathrm{~s}, 1 \mathrm{H}), 7.18-7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 22.8,27.0,27.8,30.4$, $57.0,66.5,67.2,83.8,83.9,125.9,127.2,128.7,143.0,162.7,164.9,165.3,197.8 ;$ IR (neat): 2980, 2930, 1765, 1718, 1495, 1394, 1371, 1001, 970, 900, 851, 764, $702 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{6}$: C, 66.17; H, 7.48; N, 3.35. Found: C, 65.79; H, 7.62; N, 3.31 .

Di-tert-butyl 3S-acetyl-1-[1'R-(4-methoxyphenyl)ethyl]azetidin-2-one-4,4dicarboxylate (4f)
white solid; mp $107{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23.8}+3.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz} \mathrm{CDCl} 3) ~ \delta$ $1.13(\mathrm{~s}, 9 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 1.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) 4.62(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$; IR (neat): 2980, 2936, 1771, 1734, 1615, 1559, 1541, 1514, 1474, 1395, 1370, 1302, 1248, 1159, 1032, $831 \mathrm{~cm}^{-1}$; HRMS (EI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{7}\left(\mathrm{M}^{+}\right): 447.2257$, Found: 447.2268 .

4.5. Diastereoselective reduction of 3S-4e:

To a solution of $3 S-4 \mathbf{e}(100 \mathrm{mg}, 0.24 \mathrm{mmol})$ in tetrahydrofuran (3 mL) was added NaBH_{4} ($18 \mathrm{mg}, 0.48 \mathrm{mmol}$). After stirring for 4 h at $-20^{\circ} \mathrm{C}$, to the reaction mixture was added AcOEt (30 mL). The resulting solution was washed with water $(20 \mathrm{~mL})$ and sat. aqueous $\mathrm{NaCl}(20 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was subjected to silica gel columun chromatography (n-hexane $: \operatorname{AcOEt}=1: 1$) to afford $1^{\prime} R-7 \mathbf{e}$ in 83% yield with 84% de, which was recrystalized from diethyl ether to give enantiomerically pure $1^{\prime} R-7 \mathbf{e}$.

3S-(1'R-Hydroxyethyl)-1-(1’R-phenylethyl)azetidin-2-one-4,4-dicarboxylic acid di-tert-butyl ester (7e)
white solid; mp 151-153 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{26.2}+19.7\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz} \mathrm{CDCl}{ }_{3}\right)$ $\delta 1.10(\mathrm{~s}, 9 \mathrm{H}), 1.43(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 9 \mathrm{H}), 1.85(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.57$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-4.07(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{q}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.18-7.30 (m, 5H); IR (neat): 3500, 2980, 2936, 1759, 1736, 1495, 1456, 1395, 1370, 1343, 1250, 1156, 835, 758, $700 \mathrm{~cm}^{-1}$; HRMS (EI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{6}: \mathrm{C}, 65.85$; H ,
7.93; N, 3.34. Found: C, 66.20; H, 8.07; N, 3.35.

4.6. Acetylation of 1 ' R-7e:

To a solution of $1{ }^{\prime} R-7 e(420 \mathrm{mg}, 1.0 \mathrm{mmol})$ and 4-dimethylaminopyridine (12 mg , 0.1 mmol) in pyridine (5 mL) was added dropwise acetyl chloride ($236 \mathrm{mg}, 3 \mathrm{mmol}$). After stirring for 2 h at rt , to the reaction mixture was added AcOEt (50 mL). The resulting solution was washed with $3 \% \mathrm{HCl}(3 \times 25 \mathrm{~mL})$ and sat. aqueous $\mathrm{NaCl}(25$ mL). The organic layer was dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was subjected to silica gel columun chromatography (n-hexane: $\mathrm{AcOEt}=3: 1$) to afford 9 in 75% yield.

Di-tert-butyl

(1'R-acetoxyethyl)-1-(1'R-phenylethyl)azetidin-2-one-4,4-dicarboxylate (9)

 white solid; mp $78-81{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{27.4}+25.4\left(\mathrm{c}=0.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz} \mathrm{CDCl} 3) \delta$ $1.08(\mathrm{~s}, 9 \mathrm{H}), 1.46(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}), 1.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H})$, $4.01(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.35(\mathrm{~m}$, 5H); IR (neat): 2980, 2934, 2380, 1769, 1740, 1495, 1456, 1395, 1456, 1395, 1341, 1244, 1159, 1144, 1115, 1065, 1048, 905, 849, 834, 760, 733, $700 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{NO}_{7}$: C, 65.06; H, 7.64; N, 3.03. Found: C, 64.95; H, 7.40; N, 2.90.
4.7. Preparation of dicaroboxylic acid (10):

To a solution of $\mathbf{9}(462 \mathrm{mg}, 1.0 \mathrm{mmol})$ in dichloromethane $(4 \mathrm{~mL})$ was slowly added trifluoroacetic acid ($3.7 \mathrm{~mL}, 50 \mathrm{mmol}$). After stirring for 2 h at rt , concentration of the reaction mixture under reduced pressure afforded 10 in quantitative yield.
3S-(1'R-Acetoxyethyl)-1-(1'R-phenylethyl)azetidin-2-one-4,4-dicarboxylic acid (10) white solid; mp $132-136{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{28.0}+25.3\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz} \mathrm{CDCl} 3$) $\delta 1.46(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.83(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.63 (q, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{dq}, J=6.0 \mathrm{~Hz}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.40(\mathrm{~m}, 5 \mathrm{H}), 8.55(\mathrm{~m}$, $2 H$); IR (neat): $3500,2984,2359,1750,1541,1497,1456,1375,1260,1180,1160$, 1063, 1050, 1028, 963, 912, 760, $700 \mathrm{~cm}^{-1}$; HRMS (EI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{7}\left(\mathrm{M}^{+}\right)$: 349.1162, Found: 349.1135 .

4.8. Preparation of monocarboxylic acid (11):

To a solution of $\mathbf{1 0}(349 \mathrm{mg}, 1.0 \mathrm{mmol})$ in 2,4,6-collidine (2 mL) was heated at 160
${ }^{\circ} \mathrm{C}$ with oil-bath. After heating for 1 h , to the reaction mixture was added AcOEt (10 mL). The resulting carboxylate ion was collected with sat. NaHCO_{3} (3 x 10 mL). Combined aqueous layer was acidified with $5 \% \mathrm{HCl}$. The carboxylic acid was extracted with $\mathrm{AcOEt}(3 \times 20 \mathrm{~mL}$). The resulting organic layer washed with sat. aqueous NaCl (25 mL). The organic layer was dried over MgSO_{4} and the solvent was removed under reduced pressure to afford $\mathbf{1 1}$ in quantitative yield.

3S-(1'R-Acetoxyethyl)-1-(1'R-phenylethyl)azetidin-2-one- 4R-carboxylic acid (11) (4R:4S=72:28)
white solid; mp 86-90 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} \mathrm{CDCl}{ }_{3}$) $\delta 1.30(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 0.84 \mathrm{H}$), 1.42 (d, $J=6.3 \mathrm{~Hz}, 2.16 \mathrm{H}), 1.60(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 0.84 \mathrm{H}), 1.80(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2.16 \mathrm{H}), 1.89(\mathrm{~s}$, 0.84 H), 1.95 (s, 2.16H), 3.26 (dd, $J=1.8 \mathrm{~Hz}, J=10.5 \mathrm{~Hz}, 0.28 \mathrm{H}$), 3.55 (dd, $J=5.4 \mathrm{~Hz}$, $J=10.5 \mathrm{~Hz}, 0.72 \mathrm{H}$), 3.94 (d, $J=1.8 \mathrm{~Hz}, 0.28 \mathrm{H}$), 4.07 (d, $J=5.4 \mathrm{H}, 0.72 \mathrm{H}$), 4.53 (q, $J=7.2 \mathrm{H}$, 0.72 H), 5.57 ($\mathrm{q}, J=7.2 \mathrm{~Hz}, 0.28 \mathrm{H}$), $5.18-5.34(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.60-7.90(\mathrm{~m}$, 1H); IR(neat): 3500, 2982, 1748, 1638, 1541, 1497, 1456, 1379, 1242, 1200, 1142, 1050, 953, 924, 853, 799, 766, $722 \mathrm{~cm}^{-1}$; HRMS (EI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{5}\left(\mathrm{M}^{\dagger}\right)$: 305.1263, Found: 305.1277.

4.9. Decarboxylative methoxylation of 11:

In an undivided cell equipped with platinum plate electrodes $\left(1 \times 2 \mathrm{~cm}^{2}\right)$ was placed a solution of $\mathbf{1 1}(101 \mathrm{mg}, 0.33 \mathrm{mmol})$ and $\mathrm{NaOMe}(54 \mathrm{mg}, 1 \mathrm{mmol})$ in a mixture of acetonitrile (4 mL) and methanol (1 mL). A constant current (50 mA) was passed through the cell externally cooled with water-bath. After $2 \mathrm{~F} / \mathrm{mol}$ of electricity was passed, to the reaction mixture was added $\operatorname{AcOEt}(30 \mathrm{~mL})$. The resulting solution was washed with sat. aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was subjected to silica gel columun chromatography (n-hexane $: \operatorname{AcOEt}=2: 1$) to afford 12 as a single diastereomer in 73% yield.
4R-Methoxy-3R-(1'R-hydroxylethyl)-1-(1'R-phenylethyl)azetidin-2-one (12) colorless oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz CDCl 3) $\delta 1.27(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}$), 1.63 (d, $J=7.3 \mathrm{~Hz}$, 3 H), $1.80-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=3.6 \mathrm{~Hz}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.24$ (s, 3H), 4.08 (dq, $J=5.4 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.36$ (m, $5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz} \mathrm{CDCl}_{3}$) $\delta 19.4,21.5,51.4,54.2,62.7,64.0,84.5,127.2,127.7$, 128.6, 139.8, 166.5; IR(neat): 3420, 3032, 2975, 2936, 2836, 1740, 1495, 1455, 1395,

1374, 1206, 1184, 1140, 1098, 1028, 997, 951, 864, 766, $700 \mathrm{~cm}^{-1}$; HRMS Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3}: 249.1365$, Found: 249.1354.

4.10. Silylation of 12:

To a solution of $\mathbf{1 2}(60 \mathrm{mg}, 0.24 \mathrm{mmol})$ and 4-dimethylaminopyridine ($88 \mathrm{mg}, 0.72$ mmol) in N, N-dimethylformamide (1 mL) was added tert-butyldimethylsilyl chloride ($109 \mathrm{mg}, 0.72 \mathrm{mmol}$). After stirring for 24 h at rt , to the reaction mixture was added AcOEt $(30 \mathrm{~mL})$. The resulting solution was washed with water (10 mL) and sat. aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was subjected on silica gel columun chromatography (n-hexane $: \mathrm{AcOEt}=5: 1$) to afford 13 in 65% yield.

4R-Methoxy-3R-[1'R-(tert-butyldimethylsilyloxy)ethyl]-1-(1'R-phenylethyl)azetidi n-2-one (13)

colorless oil; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz} \mathrm{CDCl} 3) ~ \delta-0.02(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H})$, $1.21(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.63(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.90(\mathrm{dd}, J=0.6 \mathrm{~Hz}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.20$ (s, $3 \mathrm{H}), 4.05(\mathrm{dq}, J=4.9 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.26-7.39 (m, 5H); ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz} \mathrm{CDCl} 3$) $\delta-4.7,-4.7,17.9,20.0,22.7,25.7$, 51.7, 54.1, 63.2, 64.4, 84.7, 127.3, 127.6, 128.6, 139.9, 166.2; IR(neat): 3033, 2955, 2930, 2897, 2857, 1765, 1495, 1472, 1389, 1250, 1204, 1183, 1150, 1100, 1040, 1028, 1005, 934, 853, 812, 777, $700 \mathrm{~cm}^{-1}$; HRMS (EI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{3}\left(\mathrm{M}^{+}\right): 363.2230$, Found: 363.2199.

4.11. Removal of N-protecting group of 13:

To anhydrous liq. ammonia (2 mL) was added $\mathrm{Na}(18 \mathrm{mg}, 0.78 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. Successively, a solution of $\mathbf{1 3}(47 \mathrm{mg}, 0.13 \mathrm{mmol})$ in tetrahydrofuran (2 mL) was added to the ammonia. After stirring for 1 h at $-78^{\circ} \mathrm{C}$, to the reaction mixture was added sat. aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$. The organic portion was extracted with $\mathrm{AcOEt}(3 \times 10 \mathrm{~mL})$. The resulting organic layer was washed with sat. aqueous $\mathrm{NaCl}(25 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was subjected to silica gel columun chromatography (n-hexane: $\mathrm{AcOEt}=2: 1$) to afford $\mathbf{2 a}{ }^{4}$ in 95% yield.
4R-Methoxy-3R-[1'R-(tert-butyldimethylsilyloxy)ethyl]azetidin-2-one (2a)
colorless crystal; mp $56-58{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{27.0}-28.9\left(\mathrm{c}=1.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$
$\left.\mathrm{CDCl}_{3}\right) \delta 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.00(\mathrm{dd}$, $J=1.0 \mathrm{~Hz}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 4.17(\mathrm{dq}, J=4.9 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}$, $J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C}$ NMR (100 MHz CDCl 3) $\delta-5.1,-4.3,17.9,22.5,25.7$, 25.7, 54.9, 64.2, 65.2, 81.5, 167.7.

Acknowledgements

This work was supported by the JSPS Fellowships for Young Scientists and by the president's discretion fund of Nagasaki University.

References and notes

1. A representative reviews, see: (a) Kametani, T.; Ihara, M. Yuki Gosei Kagaku Kyokaishi 1980, 52, 1025-1036. (b) Nagahara, T.; Kametani, T. Heterocycles 1987, 25, 729-806. (c) Berks, A. H. Tetrahedron, 1996, 52, 331-375.
2. (a) Noyori, R.; Ikeda, T.; Ohkuma, T, Widhalm, M.; Kitamura, M.; Takaya, H.; Akutagawa, S.; Sayo, N.; Asito. T.; Taketomi, T.; Kumobayashi, H. J. Am. Chem. Soc. 1989, 111, 9134-9135. (b) Murahashi, S.-I.; Naota, T.; Kuwabara, T.; Saito, T.; Kumobayashi, H.; Akutagawa, S. J. Am. Chem. Soc. 1990, 112, 7820-7822. (c) Kita, Y.; Shibata, N.; Miki, T.; Takemura, Y.; Tamura, O. J. Chem. Soc., Chem. Comm. 1990, 727-729. (d) Nagao, Y.; Nagase, Y.; Kumagai, T.; Mastunaga, H.; Abe, T.; Shimada, O.; Hayashi, T.; Inoue, Y. J. Org. Chem. 1992, 57, 4243-4249. (e) Lynch, J. E.; Laswell, W. L.; Volante, R. P.; Reamer, R. A.; Tschaen, D. M.; Shinkai, I. Heterocycles 1993, 35, 1029-37 (f) Cozzi, F.; Annunziata, R.; Cinquini, M.; Poletti, L.; Perboni, A.; Tamburini, B. Chirality 1998, 10, 91-94. (g) Cainelli, G.; Galletti, P.; Giacomini, D. Tetrahedron Lett. 1998, 39, 7779-7782. (h) Tatsuta, K.; Takahashi, M.; Tanaka, N.; Chikauchi, K. J. Antibiot. 2000, 53, 1231-1234. (i) Laurent, M.; Cérésiat, M.; Marchand-Brynaert, J. J. Org. Chem. 2004, 69, 3194-3197; (j) Laurent, M.; Cérésiat, M.; Marchand-Brynaert, J.Eur. J. Org. Chem. 2006, 3755-3766. (k) Singh, S. K.; Singh, G. B.; Byri, V. K.; Satish, B.; Dhamjewar, R.; Gopalan, B. Syn. Commun. 2008, 38, 456-464. (1) Kuroboshi, M.; Miyada, M.; Tateyama, S.; Tanaka, H. Heterocycles 2008, 76, 1471-1484.
3. Simig, G.; Doleschall, G.; Hornyák, G.; Fetter, J.; Lempert, K.; Nyitrai, J.; Huszthy, P.; Gizur, T.; Kájtar-Peredy, M. Tetrahedron 1985, 41, 479-484.
4. (a) Kita, Y.; Shibata, N.; Yoshida, N.; Tohjo, T. Chem. Pharm. Bull. 1992, 40, 1044-1046; (b) Kita, Y.; Shibata, N.; Yoshida, N.; Kawano, M.; Matsumoto, K. J.

Org. Chem. 1994, 59, 938-939.
5. (a) Shiozaki, M.; Ishida, N.; Maruyama, H.; Hiraoka, T. Tetrahedron 1983, 39, 2399-2407. (b) Sánta, Z.; Párkányi, L.; Németh, I.; Nagy, J.; Nyitrai, J. Tetrahedron: Asymmetry 2001, 12, 89-94.
6. (a) Carelli, I.; Insei, A.; Carelli, V.; Casadei, M. A.; Liberature, F.; Moracci, F. M. Synthesis 1986, 591-593. (b) Casadei, M. A.; Rienzo, B. D.; Insei, A.; Moracci, F. M. J. Chem. Soc. Perkin Trans. 1 1992, 379-382. (c) Feroci, M.; Chiarotto, I.; Orsini, M.; Sotgiu, G.; Insei, A. Adv. Synth. Catal. 2008, 350, 1355-1359.
7. In this reaction "EGB" was not cleared yet but it might be the conjugated base of 3e. Representative literatures for electrochemical reactions using "EGB", see: (a) Shono, T.; Kise, N.; Tanabe, T. J. Org. Chem. 1988, 53, 1364-1367. (b) Shono, T.; Matsumura, Y.; Katoh, S.; Takeuchi, K.; Sasaki, K.; Kamada, T.; Shimizu, R. J. Am. Chem. Soc. 1990, 112, 2368-2372. (c) Shono, T.; Ishifune, M.; Okada, T.; Kashimura, S. J. Org. Chem. 1991, 56, 2-4. (d) Matsumura, Y.; Satoh, Y.; Shirai, K.; Onomura, O.; Maki, T. J. Chem. Soc. Perkin Trans. 1 1999, 2057-2060.
8. Crystallographic data for structure of azetidin-2-one $7 \mathbf{e}$ have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 745174. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK; fax: +44(0) 1223336033 or e-mail: deposit@ccdc.cam.ac.uk.
9. (a) Mori, M.; Kagechika, K.; Sasai, H.; Shibasaki, M. Tetrahedron 1991, 47, 531-540. (b) Wanyoike, G. N.; Onomura, O.; Maki, T.; Matsumura, Y. Org. Lett. 2002, 4, 1875-1877. (c) Onomura, O.; Kirira, P. G.; Tanaka, T.; Tsukada, S.; Matsumura, Y.; Demizu, Y. Tetrahedron 2008, 64, 7498-7503.
10. Although the corresponding 4-acetoxylated compound $\mathbf{1 4}$ was prepared from $\mathbf{1 1}$ by electrochemical oxidation described below, the reduction of $\mathbf{1 4}$ with Na in liq. NH_{3} did not afford the corresponding N -unsubstituted azetidin-2-one; see, electrochemical decarboxylative acetoxylation: In an undivided cell equipped with platinum plate electrodes ($1 \times 2 \mathrm{~cm}^{2}$) was placed a solution of $\mathbf{1 1}(153 \mathrm{mg}, 0.5$ $\mathrm{mmol})$ and AcOK ($98 \mathrm{mg}, 1 \mathrm{mmol}$) in a mixture of acetonitrile $(4 \mathrm{~mL})$ and acetic acid (1 mL). A constant current (50 mA) was passed through the cell externally cooled with water-bath. After $4 \mathrm{~F} / \mathrm{mol}$ of electricity was passed, to the reaction mixture was added sat. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. Organic portion was extracted with AcOEt ($3 \times 15 \mathrm{~mL}$). The resulting organic layer was washed with sat. aqueous
$\mathrm{NaCl}(10 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was subjected to silica gel columun chromatography (n-hexane : $\mathrm{AcOEt}=2: 1$) to afford 14 in 60% yield.

4R-Acetoxy-3R-(1'R-acetoxyethyl)-1-(1'R-phenylethyl)azetidin-2-one (14):
colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} \mathrm{CDCl}_{3}$) $\delta 1.24$ (d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}$), 1.55 (d, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{dd}, J=1.0 \mathrm{~Hz}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{q}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.09 (quint. $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.92 (d, $J=1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.20-7.40$ (m, $5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.2,19.1,20.8,20.8,52.7,62.3,66.1,78.0$, $126.9,127.9,128.7,140.1,164.3,169.9,169.9$; IR (neat): 3500, 2984, 2853, 1738, 1640, 1497, 1456, 1377, 1242, 1200, 1140, 1050, 953, 922, 851, 799, 722, 704 cm^{-1}; HRMS (EI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{5}\left(\mathrm{M}^{+}\right): 319.1420$, Found: 319.1430.
11. Battersby, A. R.; Turner, S. P. D.; Block, M. H.; Sheng, Z.-C.; Zimmerman, S. C.; J. Chem. Soc. Perkin Trans. 1 1988, 1577-1586.
12. Sugiyama, S.; Watanabe, S.; Inoue, T.; Kurihara, R.; Itou, T.; Ishi, K. Tetrahedron 2003, 59, 3417-3426.

GA

