Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Design, synthesis, and evaluation of A-ring-modified lamellarin \mathbf{N} analogues as noncovalent inhibitors of the EGFR T790M/L858R mutant

Tsutomu Fukuda ${ }^{\text {a }}$, Teppei Umeki ${ }^{\text {a }}$, Keiji Tokushima ${ }^{\text {a }}$, Gao Xiang ${ }^{\text {a }}$, Yuki Yoshida ${ }^{a}$, Fumito Ishibashi ${ }^{\text {b }}$, Yusuke Oku ${ }^{\text {c }}$, Naoyuki Nishiya ${ }^{\text {c }}$, Yoshimasa Uehara ${ }^{\text {c }}$, Masatomo Iwao ${ }^{\text {a, }}{ }^{*}$
${ }^{a}$ Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
${ }^{b}$ Division of Marine Life Science and Biochemistry, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
${ }^{c}$ Department of Integrated Information for Pharmaceutical Sciences, Iwate Medical University School of Pharmacy, 2-1-1 Nishitokuta, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan

ARTICLE INFO

Article history.

Received
Received in revised form
Accepted
Available online

Keywords:

EGFR tyrosine kinase inhibitors (EGFR-TKI)
EGFR T790M/L858R mutant
Structure-based drug design (SBDD)
Lamellarin N
Water-soluble analogues

Abstract

A series of A-ring-modified lamellarin N analogues were designed, synthesized, and evaluated as potential noncovalent inhibitors of the EGFR T790M/L858R mutant, a causal factor in the drug-resistant non-small cell lung cancer. Several water-soluble ammonium- or guanidiniumtethered analogues exhibited good kinase inhibitory activities. The most promising analogue, 14f, displayed an excellent inhibitory profile against the T790M/L858R mutant [$\mathrm{IC}_{50}(\mathrm{WT})=$ $31.8 \mathrm{nM} ; \mathrm{IC}_{50}(\mathrm{~T} 790 \mathrm{M} / \mathrm{L} 858 \mathrm{R})=8.9 \mathrm{nM}$]. The effects of A-ring-substituents on activity were rationalized by docking studies.

2009 Elsevier Ltd. All rights reserved.

1. Introduction

Epidermal growth factor receptor (EGFR) is a transmembrane protein involved in multiple signal transduction pathways associated with cell proliferation, survival, and migration. ${ }^{1,2}$ Upon EGF binding to the extracellular receptor domain, EGFR monomers dimerize and activate their intracellular tyrosine kinase domains to initiate signaling. ${ }^{3}$ Malignant mutations in the kinase domain of wild-type EGFR (EGFR WT) lead to constitutive activation, without ligand binding. ${ }^{4,5}$ The most frequent mutations are the substitution of Leu858 in the activation loop with arginine (L858R) and an exon 19 deletion. These activating mutations cause a subset of non-small cell lung cancer (NSCLC). To treat this type of NSCLC, many small molecule tyrosine kinase inhibitors (TKIs) have been developed, two of which (gefitinib ${ }^{6}$ and erlotinib ${ }^{7}$) were approved by the US Food and Drug Administration (FDA) in 2002 and 2004, respectively (Fig. 1). These drugs have a common 4anilinoquinazoline motif and are highly effective for the treatment of NSCLC harboring activating EGFR mutations. Unfortunately, the efficacy of these drugs is limited by the emergence of resistance via the mutation of Thr790, referred to as the gatekeeper residue, to methionine (T790M), ${ }^{8}$ which leads
to an increased affinity to ATP and resistance to first-generation EGFR-TKIs. ${ }^{9}$ To overcome this issue, 4-anilinoquinazolinebased irreversible (covalent) inhibitors, such as afatinib (BIBW2992), ${ }^{10}$ have been developed. These second-generation inhibitors possess an appropriate Michael acceptor on the quinazoline ring to form a covalent bond with the SH group of Cys797. Although afatinib was approved in 2013, its use for the treatment of NSCLC harboring EGFR T790M/L858R is limited by its dose-limiting toxicity associated with the concurrent inhibition of EGFR WT. ${ }^{11}$

osimertinib (AZD9291)
Fig. 1. Approved EGFR-TKIs for the treatment of NSCLC.

[^0]More recently, pyrimidine-based irreversible inhibitors, such as WZ4002, ${ }^{12}$ rociletinib (CO-1686), ${ }^{13}$ and osimertinib (AZD9291), ${ }^{14}$ have been developed. These third-generation TKIs exhibit much a higher affinity to EGFR T790M/L858R than to EGFR WT and show promising responses to resistant NSCLC in clinical evaluations. The FDA approved osimertinib for the treatment of patients with EGFR T790M mutationpositive metastatic NSCLC in 2015. However, a new mutation at Cys797, the site of covalent binding, to serine (C797S) leads to resistance to osimertinib and related irreversible inhibitors. ${ }^{15}$ It has been reported that the EGFR T790M/C797S/L858R triple mutation causes resistance to all currently available EGFR-TKIs, except for combined therapy with the anti-EGFR antibody cetuximab. ${ }^{16-18}$ Thus, new EGFR-TKIs that do not rely on covalent bond formation with Cys797 for potency are needed. ${ }^{19-21}$

Lamellarins are DOPA-derived marine natural products with a unique polyaromatic structure (Fig. 2). ${ }^{22,23}$ Some lamellarins exhibit potent cytotoxicity against cancer cell lines, including multi-drug resistant phenotype. ${ }^{24-27}$ In 2003, Bailly reported that lamellarin $\mathrm{D}(\mathbf{1})$ is a potent inhibitor of DNA topoisomerase I. ${ }^{28}$ There is a strong correlation between cytotoxicity and topoisomerase I inhibition, suggesting that topoisomerase I is a major molecular target of $\mathbf{1}$ in cancer cells. ${ }^{29}$ In 2008, Meijer reported that lamellarin N (2) strongly inhibits several protein kinases related to cancer and neurodegenerative diseases, such as CDKs and GSK-3 α / β, ${ }^{30}$ but has low selectivity. Recently, we investigated the effects of the axial chirality of 2 on the selectivity of kinase inhibtion. ${ }^{31}$ Although $\mathbf{2}$ could not be resolved at room temperature due to the relatively low energy barrier for rotation around the $\mathrm{C} 1-\mathrm{C} 11$ single bond ($83-87 \mathrm{~kJ} / \mathrm{mol}$), ${ }^{32} 16$ methyllamellarin N (3) with hindered rotation was successfully resolved by HPLC over the chiral stationary phase to yield thermally stable atropisomers. ${ }^{31}$ Interestingly, these isomers differed in selectivity to 8 protein kinases (CDK1/cyclin B, CDK2/cyclin A, CDK5/p25, GSK-3 α / β, PIM1, DYRK1A, CLK3, and CK1). Although $(\mathrm{a} R)-\mathbf{3}$ showed potent, but non-selective inhibition of all kinases, except for CK1, (aS) $\mathbf{3}$ selectively inhibited GSK-3 α / β, PIM1, and DYRK1A. In contrast to parental

Fig. 2. Biologically active lamellarins.

2, both ($\mathrm{a} R$)- and (aS) $\mathbf{- 3}$ showed no inhibition of topoisomerase I. These results suggested that the lamellarin scaffold is a unique structural motif that can be used to design selective inhibitors of protein kinases. In this study, we generated potent noncovalent inhibitors of the EGFR T790M/L858R mutant based on 2.

2. Results and discussion

2.1. Structure-based drug design

We initially investigated the binding mode of $\mathbf{2}$ in the EGFR T790M/L858R kinase domain by docking simulations using published X-ray crystallographic data for the T790M/L858R/V948R kinase-gefitinib complex ${ }^{33}$ [PDB ID: 4I22]. An additional V948R mutation was introduced to prevent dimerization of the T790M/L858R kinase during crystallization. This mutation had essentially no influence on the structure or activity of the $\mathrm{T} 790 \mathrm{M} / \mathrm{L} 858 \mathrm{R}$ kinase beyond the changes observed in a monomeric state in solution. ${ }^{33}$ Gefitinib in the ATP-binding pocket of the kinase was replaced with 2 and the resulting complex was minimized using the MOE program. ${ }^{34}$ The model with the highest docking score is depicted in Fig. 3. In this model, the planar pentacyclic core (ABCDE-ring) of 2 occupied the ATP-binding pocket in such a way that the A-ring was directed to the solvent channel (entrance region) and the E-ring was oriented to the specificity (back) pocket. The F-ring perpendicularly connected to the pentacyclic core was situated at the ribose-binding site. The lactone carbonyl $(\mathrm{C}=\mathrm{O})$ of the B-ring formed a hydrogen bond with the NH of Met793 located in the hinge region. The phenolic OH at C 8 also formed a hydrogen bond with the side chain carboxylate of Asp855 in the conserved catalytic salt bridge (Lys745-Asp855). Another phenolic OH at C13 of the F-ring was directed downward and formed an additional hydrogen bond with $\mathrm{C}=\mathrm{O}$ of $\operatorname{Arg} 841$ in the A-loop. Overall, the binding mode of 2 in the EGFR T790M/L858R kinase domain was similar to the previously reported binding modes of $\mathbf{2}$ in CDK 2 or GSK- 3β. ${ }^{31}$

Further inspection of this model revealed the presence of a negatively charged small pocket at the edge of the entrance region. This pocket was surrounded by stem chain $\mathrm{C}=\mathrm{O}$ of Phe795 and side chain carboxylates of both Asp800 and Glu804 [Fig. 3 (c)]. Since the oxygen functionalities $(20-\mathrm{OH}$ and $21-$ OMe) at the A-ring of $\mathbf{2}$ were directed to this pocket, we thought that positively charged ammonium group(s) tethered to these oxygens may increase the activity of $\mathbf{2}$ by ionic and/or hydrogen bonding interactions. Examples of the designed inhibitors are illustrated in Fig. 4.

Fig. 3. A docking model of lamellarin $N(2)$ in the ATP-binding pocket of the EGFR T790M/L858R/V948R kinase domain [Scoring (GBVI/WSA dG): -9.06 $\mathrm{kcal} / \mathrm{mol}]$.

Fig. 4. A-ring-modified lamellarin N analogues designed to target EGFRTKIs.

2.2. Synthesis

We recently developed a modular synthesis of lamellarins by the regioselective assembly of 3,4,5-differentially arylated pyrrole-2-carboxylates. ${ }^{35,36}$ In the present study, we improved this method to produce diverse A-ring-modified lamellarin N analogues by preassembling the common tricyclic intermediate 7 (CDEF-ring of the lamellarin core), followed by Suzuki-Miyaura coupling with a variety of 2-(methoxymethoxy)arylboronic acids $\mathbf{8 a}-\mathbf{g}$ corresponding to the A-ring (Scheme 1).

Readily available N-Boc-2,5-dibromopyrrole (4) was converted to a known tetra-substituted pyrrole 5 in 6 steps using procedures established in our laboratories. ${ }^{35}$ Compound 5 was alkylated at the pyrrole-nitrogen with bromoacetaldehyde dimethyl acetal in the presence of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ to give 6 (91% yield). Subsequent trifluoromethanesulfonic acid (TfOH)-catalyzed cyclization ${ }^{35}$ of 6 to produce a key tricyclic intermediate 7 was difficult due to the unexpected partial elimination of an O -isopropyl-protecting group in the highly acidic conditions. This unfavorable overreaction could be avoided by the slow addition of a catalytic amount (0.1 equiv) of TfOH as a diluted dichloromethane (DCM) solution (condition b in Scheme 1). Under carefully controlled conditions, intact 7 was isolated in 88% yield. We later found that this cyclization could be performed more conveniently using trimethylsilyl trifluoromethanesulfonate (TMSOTf) (0.5 equiv) as a Lewis acid catalyst ${ }^{37}$ (condition c in Scheme 1). Subsequent Suzuki-Miyaura coupling of 7 with a range of 2-(methoxymethoxy)arylboronic acids $\mathbf{8 a}-\mathbf{g}$ gave $9 \mathbf{9}-\mathbf{g}$ in good yields using $\operatorname{Pd}(\mathrm{dba})_{2}-\mathrm{dppf}^{35}$ as a catalyst. The coupling products were lactonized directly to O protected lamellarins $\mathbf{1 0 a}-\mathbf{g}$ by heating in methanol in the presence of $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$.

Next, deprotection of O-isopropyl and/or O-benzyl groups of 10a-e was performed. Both protecting groups were simultaneously removed by treatment with $\mathrm{BCl}_{3}{ }^{38}$ in DCM to
give fully deprotected lamellarins 11a-e in good yields (Scheme 2). Compound 11d was identical to lamellarin N based on a spectroscopic comparison with an authentic sample. ${ }^{35,38}$ An attempted deprotection of $\mathbf{1 0 g}(\mathrm{X}=\mathrm{Y}=\mathrm{OBn})$ with BCl_{3} gave only an intractable material.

Scheme 2. Deprotection of $O-i-\mathrm{Pr}$ and $O-\mathrm{Bn}$ groups of 10a-e. Reagents and conditions: (a) $\mathrm{BCl}_{3}, \mathrm{DCM}$, approximately $-78^{\circ} \mathrm{C}$ to room temperature or $78^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$ (11a: 97%, 11b: 96%, 11c: 70%. 11d: 71%, 11e: 90%).

The O-benzyl groups of $\mathbf{1 0 d}-\mathbf{g}$ were selectively removed by hydrogenolysis ${ }^{39}$ over Pd-C using $\mathrm{HCO}_{2} \mathrm{NH}_{4}$ as a hydrogen source to give 12a-d in excellent yields (Scheme 3). When the solubility of the substrate was poor (e.g., $\mathbf{1 0 g}$) in the solvent $(\mathrm{AcOEt} / \mathrm{EtOH}=1: 1)$, partial hydrogenation of the 5,6unsaturated bond at the D-ring was observed. However, this unfavorable overreaction was avoided by carrying out the reaction in a sufficient amount of the solvent for a short period of time ($<1 \mathrm{~h}$). Acidolysis ${ }^{40}$ could also be used for selective debenzylation. For example, treatment of $\mathbf{1 0 g}(X=Y=O B n)$ with trifluoroacetic acid in the presence of pentamethylbenzene ${ }^{41}$ gave 12d $(\mathrm{X}=\mathrm{Y}=\mathrm{OH})$ in 87% yield.

Scheme 3. Selective deprotection of the $O-\mathrm{Bn}$ group of $\mathbf{1 0 d} \mathbf{- g}$. Reagents and conditions: (a) $\mathrm{HCO}_{2} \mathrm{NH}_{4}, 10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{AcOEt} / \mathrm{EtOH}=1: 1$, reflux, $0.5-1 \mathrm{~h}$ (12a: 93%, 12b: 95%, 12c: 96%, 12d: 93%).

Scheme 1. Synthesis of O-protected lamellarins 10a-g. Reagents and conditions: (a) $\mathrm{BrCH}_{2} \mathrm{CH}(\mathrm{OMe})_{2}, \mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 110{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}(91 \%)$; (b) $\mathrm{TfOH}(0.1$ equiv), DCM, $0^{\circ} \mathrm{C}$, $2 \mathrm{~h}(88 \%)$; (c) TMSOTf (0.5 equiv), DCM , rt, $1.5 \mathrm{~h}(91 \%)$; (d) $\mathrm{Pd}(\mathrm{dba})_{2}(10 \mathrm{~mol} \%)$, dppf ($10 \mathrm{~mol} \%$), 8 (1.5 equiv), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (6.6 equiv), DME, water, $85^{\circ} \mathrm{C}$ in a sealed tube or reflux, $24 \mathrm{~h}\left(\mathbf{9 a}: 94 \%, 9 \mathbf{b}: 90 \%, \mathbf{9 c}: 94 \%, 9 \mathrm{~d}: 77 \%, 9 \mathrm{e}: 97 \%, \mathbf{9 f}: 87 \%\right.$, $\mathbf{9 g}$: quant.); (e) $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(4.0 \mathrm{equiv}), \mathrm{MeOH}$, $65{ }^{\circ} \mathrm{C}$ in a sealed tube or reflux, 18 h (10a: 98%, 10b: $\left.96 \%, 10 \mathrm{c}: 92 \%, 10 \mathrm{~d}: 93 \%, \mathbf{1 0 e}: 90 \%, \mathbf{1 0 f}: 88 \%, \mathbf{1 0 g}: 84 \%\right)$.

Next, selectively debenzylated lamellarins 12a-d were converted to a series of ammonium-tethered analogues $\mathbf{1 4 a - g}$ in two additional steps (Scheme 4). Thus, 12a-d were reacted with an appropriate alkylating agent, such as 2-(dimethylamino)ethyl chloride, 3-(dimethylamino)propyl chloride, and 4-(3chloropropyl)morpholine, in acetone in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ to
give 13a-g in good yields. The O-isopropyl protecting groups of 13a-g were cleanly removed by treatment with $\mathrm{AlCl}_{3}{ }^{42}$ at room temperature, without affecting O-aminoalkyl groups. The deprotected lamellarins were purified using a Sephadex column and isolated as trifluoroacetates $\mathbf{1 4 a}-\mathbf{f}$ or methanesulfonate $\mathbf{1 4 g}$. The trifluoroacetate corresponding to $\mathbf{1 4 g}$ was not obtained

13a: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}$ 13b: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}$
14a: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}$ - TFA
14b: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2} \cdot$ TFA

14e: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}$ - TFA
14f: R= $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2} \cdot$ TFA
14g: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}^{\square} \cdot \mathrm{MsOH}$

Scheme 4. Synthesis of ammonium-tethered lamellarin N analogues $\mathbf{1 4 a - g}$. Reagents and conditions: (a) $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2} \cdot \mathrm{HCl}_{1}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, acetone, reflux (13a: 88%, 13c: 82%, 13e: 54%); (b) $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2} \cdot \mathrm{HCl}, \mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, reflux ($\mathbf{1 3 b}: 70 \%, \mathbf{1 3 d}: 34 \%, \mathbf{1 3 f}: 71 \%$); (c) 4-(3-chloropropyl)morpholine, NaI , $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, reflux (13g: 97\%); (d) (1) $\mathrm{AlCl}_{3}, \mathrm{DCM}$, rt, (2) TFA (14a: $97 \%, \mathbf{1 4 b}: 82 \%, \mathbf{1 4 c}: 88 \%, \mathbf{1 4 d}: 98 \%, \mathbf{1 4 e}: 93 \%$, 14f: quant); (e) (1) $\mathrm{AlCl}{ }_{3}$, DCM , rt, (2) MsOH ($\mathbf{1 4 g}: 86 \%)$.

Scheme 5. Synthesis of guanidinium-tethered lamellarin N analogues 18a, b. Reagents and conditions: (a) $\mathrm{BocNHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ (1.5 equiv), DIAD (1.5 equiv), PPh_{3} (1.5 equiv), THF, rt (15a: 90%); (b) $\mathrm{BocNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ (1.5 equiv), DIAD (1.5 equiv), PPh_{3} (1.5 equiv), THF, rt (15b: 87\%); (c) TFA (16a: quant, 16b: 96%); (d) N, N^{\prime}-bis(Boc)-1H-pyrazole-1-carboxamidine (2.0 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (2.0 equiv), THF, rt, ($\mathbf{1 7 a}: 87 \%, \mathbf{1 7 b}: 75 \%$); (e) (1) $\mathrm{AlCl}_{3}(10$ equiv), $\mathrm{DCM}, \mathrm{rt}, 2 \mathrm{~d}$ (2) TFA (18a: 46\%, 18b: 81\%).
owing to the lower basicity of morpholino nitrogen (ca. 1/1000 of common tertiary amines). In contrast to the highly lipophilic parental lamellarins, ${ }^{40}$ these ammonium salts were highly soluble in water. For example, the estimated solubilities of $\mathbf{1 4 b}$ and $\mathbf{1 4 f}$ in water were $19 \mathrm{mg} / \mathrm{mL}$ and $41 \mathrm{mg} / \mathrm{mL}$, respectively, as determined by a HPLC method (Fig. 5). ${ }^{43}$

Water solubility: $<0.01 \mathrm{mg} / \mathrm{mL}$

Fig. 5. Solubilities of lamellarin N (2) and its ammonium-tethered analogues 14b and 14 f.

The guanidinium group can recognize carboxylate anions by exceptionally potent ionic and hydrogen bonding interactions. ${ }^{44}$ We predicted that the guanidinium group at the A-ring side chain could interact with Asp800 or Glu804 more strongly than the simple ammonium groups. Thus, we synthesized guanidiniumtethered analogues 18a and 18b from 12a (Scheme 5). The

Mitsunobu reaction of 12a with tert-butyl N-(2hydroxyethyl)carbamate produced the O-alkylated compound 15a in good yield. After deprotection of the Boc group by TFA, the resulting 16a was reacted with N, N^{\prime}-bis (tert-butoxycarbonyl)-1 H -pyrazole-1-carboxamidine ${ }^{45,46}$ to give $\mathbf{1 7 a}$. Treatment of this compound with AlCl_{3} in DCM caused the simultaneous deprotection of both $i-\mathrm{Pr}$ and Boc groups. The resulting guanidinium compound was isolated as a TFA salt 18a in good yield. Another guanidinium derivative 18b with a propylene linker was prepared in a similar manner using tertbutyl N-(3-hydroxypropyl)carbamate as an alkylating agent. The guanidinium salts $\mathbf{1 8 a}$ and $\mathbf{1 8 b}$ were soluble in water, like the ammonium salts 14a-g.

2.3. In vitro kinase assay and structure-activity relationships

Kinase inhibitory activities of the synthetic lamellarins 11b, d, $\mathbf{e , ~ 1 4 a - g , ~ a n d ~ 1 8 a , ~ b ~ w e r e ~ e v a l u a t e d ~ b y ~ e n z y m e - l i n k e d ~}$ immunosorbent assays using the recombinant kinase domains of EGFR WT and the T790M/L858R mutant. ${ }^{47}$ Approved EGFRTKIs, gefitinib and afatinib, were used as positive controls. Halfmaximal inhibitory concentrations $\left(\mathrm{IC}_{50}\right)$ of the tested compounds are shown in Table 1. Lamellarin N (11d) and its 20-O-methyl derivative 11b were inactive at concentrations of lower than 1000 nM (entries 1, 2). Interestingly, compound 11e, in which $20-\mathrm{OH}$ and $21-\mathrm{OMe}$ of $\mathbf{1 1 d}$ is simply replaced, exhibited moderate activity (entry 3). These results indicate that $21-\mathrm{OH}$ (not $20-\mathrm{OH}$) is an important structural unit to potentiate the kinase inhibitory activity. The inhibitor $\mathbf{1 4 a}$ with a 2-(N, N-dimethylamino)ethoxy group at C20 showed modest activity (entry 4). Homologous 14b bearing a 3 -(N, N-dimethylamino)propoxy group at the same position exhibited higher activity (entry 5). Thus the 1,3propylene linker seems to be better than the ethylene linker to connect the positively charged ammonium group to the lamellarin core. Transposition of the 20- and 21-substituents (X and Y) of 14a decreased the activity (entry 6). Compound 14d with 21-OH and 20-[3-(N, N-dimethylamino)propoxy] had greater

Table 1
Inhibitory activities of A-ring-modified lamellarin N analogues toward EGFR WT and T790M/L858R kinase domains.

Entry	Compound	X	Y	$\underline{\mathrm{IC}_{50}(\mathrm{nM})}$	
				WT	T790M/L858R
1	11b	OMe	OMe	>1000	>1000
2	11d	OH	OMe	>1000	>1000
3	11e	OMe	OH	249.1	396.7
4	14a	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}$. TFA	OMe	595.4	559.8
5	14b	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2} \cdot$ TFA	OMe	215.4	188.3
6	14c	OMe	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2} \cdot$ TFA	842.3	>1000
7	14d	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2} \cdot$ TFA	OH	47.8	82.6
8	14e	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2} \cdot$ TFA	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2} \cdot$ TFA	190.6	232.9
9	14 f	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2} \cdot$ TFA	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2} \cdot$ TFA	31.8	8.9
10	149	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N} \xrightarrow{\square} \cdot \mathrm{MsOH}$	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N} \square \mathrm{O} \cdot \mathrm{MsOH}$	>1000	>1000
11	18a		OMe	>1000	>1000
12	18b	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}=\mathrm{NH}_{\mathrm{NH}}^{\mathrm{NH}}$ 2 \cdot TFA	OMe	47	39
13	gefitinib	------------------------	-	4.0	>1000
14	afatinib	-	-	<1.0	3.8

activity than that of $\mathbf{1 4 b}$ (entry 7), indicating again that 21-OH potentiates the activity of lamellarins. However, lamellarins with 21-OH selectively inhibited WT, rather than the T790M/L858R mutant (entries 3, 7). The activities of 20, 21-bis $(N, N-$ dimethylamino)alkyloxy lamellarins $\mathbf{1 4 e}$ and $\mathbf{1 4 f}$ were higher than those of the corresponding monoalkyloxy lamellarins 14a and 14b (entries 8, 9). In particular, 14f showed potent and selective activity toward the T790M/L858R mutant at a low nM concentration (entry 9). The activity was comparable to that of the covalent inhibitor afatinib (entry 14). Of interest, the less basic morpholino derivative $\mathbf{1 4 g}$ was inactive at concentration of below 1000 nM (entry 10). The activities of the guanidinium
derivatives were sensitive to the length of the linker. Compound 18a with the ethylene linker was inactive, whereas compound 18b bearing the 1,3-propylene linker was quite active (entries 11, 12).

2.4. Docking analysis

To rationalize the effects of A-ring-substituents X and Y on kinase inhibitory activity, docking simulations of the active compounds 14b, 14d, 14f, and 18b in the ATP-binding pocket of EGFR T790M/L858R/V948R were performed using the protocol described in section 2.1. Plausible binding modes are represented

	(A)	(B)	(C)
14b			
	GBVI/WSA dG: -9.78 kcal/mol		
14d			
	GBVI/WSA dG: -10.00 $\mathrm{kcal} / \mathrm{mol}$		
14 f			
	GBVI/WSA dG: -10.50 kcal/mol		
18b			
GBVI/WSA dG: -9.95 kcal/mol			

Fig. 6. Plausible binding modes of $\mathbf{1 4 b}, \mathbf{1 4 d}, \mathbf{1 4 f}$, and $\mathbf{1 8 b}$ in the ATP-binding pocket of EGFR T790M/L858R/V948R. (A) Side view from the entrance region; (B) side-view from the entrance region (the region surrounding the ATP-binding pocket is shown by an electrostatic potential map); (C) top view from the N terminal lobe (floor of the ATP-binding pocket is shown by an electrostatic potential map).
in Fig. 6. The orientation of the lamellarin core of each compound was quite similar to that of lamellarin N shown in Fig. 3. Each 3 -(N, N-dimethylamino)propoxy group at the 20-position of $\mathbf{1 4 b}, \mathbf{1 4 d}$, and $\mathbf{1 4 f}$ was nicely embedded in the negatively charged small pocket in the entrance region and the ammonium group makes hydrogen bonding and/or ionic interactions with the side chain carboxylate of Glu804 or stem chain carbonyl of Phe795. The $21-\mathrm{OH}$ of $\mathbf{1 4 d}$ and $21-[3-(N, N-$ dimethylamino)propoxy] group of $\mathbf{1 4 f}$ can form additional hydrogen bonds with Asp800. This may explain the higher activities of $\mathbf{1 4 d}$ and $\mathbf{1 4 f}$ compared to $\mathbf{1 4 b}$. The high activity of 18b may be rationalized by unique dual hydrogen bonding interactions of the guanidinium moiety with the carboxylates of Asp800 and Glu804.

3. Conclusion

Various A-ring-modified lamellarin N analogues were designed, synthesized, and evaluated as non-covalent inhibitors of the EGFR T790M/L858R mutant. Several water-soluble ammonium- and guanidinium-tethered analogues, such as $\mathbf{1 4 b}, \mathbf{d}$, \mathbf{e}, \mathbf{f}, and $\mathbf{1 8 b}$, exhibited good inhibitory activity against the kinases. In particular, $\mathbf{1 4 f}$ showed a low $\mathrm{nM} \mathrm{IC}_{50}$ towards the T790M/L858R mutant. Docking studies suggested that hydrogen bonding and/or ionic interactions of A-ring-substituent(s) with Phe795, Asp800, and Asp804 are major determinants of the increased activities of these analogues. Further biological evaluations of the most promising analogue, $\mathbf{1 4 f}$, are in progress in our laboratories.

4. Experimental section

4.1. Synthesis-general

Melting points were determined with a Yanagimoto micro melting point apparatus and are uncorrected. IR spectra were obtained with a Thermo Nicolet Nexus 670 NT FT-IR instrument and are reported in terms of absorption frequency $\left(\mathrm{cm}^{-1}\right)$. NMR spectra were recorded on a JEOL JNM-AL400 instrument (400 MHz for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$) or a Varian NMR System 500PS SN instrument (500 MHz for ${ }^{1} \mathrm{H}$ and 126 MHz for ${ }^{13} \mathrm{C}$). Chemical shifts for ${ }^{1} \mathrm{H}$ NMR are expressed in parts per million (ppm) relative to the following internal standards: CDCl_{3} (tetramethylsilane, $\delta 0.0 \mathrm{ppm}$); DMSO- d_{6} (DMSO, $\delta 2.50 \mathrm{ppm}$). Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift ($\delta \mathrm{ppm}$), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ double doublet, $\mathrm{t}=$ triplet, sext $=$ sextet, sep $=$ septet, $\mathrm{m}=$ multiplet, br s $=$ broad singlet), coupling constant (Hz), and integration. Chemical shifts for ${ }^{13} \mathrm{C}$ NMR are expressed in ppm relative to the following internal standards: CDCl_{3} (tetramethylsilane, $\delta 0.0$ ppm); DMSO- d_{6} (DMSO- $\left.d_{6}, \delta 39.52 \mathrm{ppm}\right) .{ }^{13} \mathrm{C}$ NMR data are reported in terms of chemical shift. High-resolution mass spectra (HRMS) were recorded on a JEOL JMS-T100TD (direct analysis in real-time mass spectrometry, DARTMS) instrument or a JEOL JMS-700N (fast atom bombardment mass spectrometry, FABMS or electron ionized mass spectrometry, EIMS) instrument. Column chromatography was conducted using silica gel 60 N , 63-210 $\mu \mathrm{m}$ (Kanto Chemical Co., Inc.) or Chromatorex NHDM1020 (Fuji Silysia Chemical Ltd.). Flash chromatography was conducted using silica gel $60 \mathrm{~N}, 40-50 \mu \mathrm{~m}$ (Kanto Chemical Co., Inc.).

4.2. Synthesis of A-ring-modified lamellarin N analogues

4.2.1. Synthesis of tricyclic intermediate 7

4.2.1.1. Methyl 3-bromo-1-(2,2-dimethoxyethyl)-4-(3-isopropoxy-4-methoxyphenyl)-5-(4-isopropoxy-3-methoxyphenyl)-1H-pyrrole-2-carboxylate (6)

Under an argon atmosphere, a mixture of $5(2.66 \mathrm{~g}, 5.00$ mmol), 2-bromo-1,1-dimethoxyethane ($3.72 \mathrm{~mL}, 31.5 \mathrm{mmol}$), and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(11.7 \mathrm{~g}, 35.8 \mathrm{mmol})$ in DMF $(60 \mathrm{~mL})$ was stirred for 16 h at $110^{\circ} \mathrm{C}$. After cooling to room temperature, the mixture was diluted with water and and the products were extracted with a mixed solvent of hexane-EtOAc (1:1). The extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by flash chromatography over silica gel 60 N (hexane-ethyl acetate $=3: 1$) to give $\mathbf{6}$ as a colorless semisolid ($2.83 \mathrm{~g}, 91 \%$). IR (KBr): 1698, 1467, 1441, 1255, 1136, 1093 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.21(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H})$, $1.35(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.23(\mathrm{~s}, 6 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, 3.93 (s, 3H), $4.27(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.46(\mathrm{~m}, 3 \mathrm{H}), 4.50$ (sep, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.72-6.76(\mathrm{~m}, 3 \mathrm{H}), 6.76(\mathrm{~d}, J$ $=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 21.9,22.0,48.4,51.4,54.9,55.8,55.9,71.0,71.1$, $104.2,106.4,111.1,114.5,115.3,118.3,120.3,123.0,123.3$, 124.0, 125.0, 126.0, 138.8, 146.3, 147.5, 149.0, 149.7, 161.6. HRDARTMS m/z. Calcd for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{BrNO}_{8}\left(\mathrm{M}^{+}\right)$: 619.17808 . Found: 619.17815.
4.2.1.2. Methyl 2-bromo-8-isopropoxy-1-(3-isopropoxy-4-methoxyphenyl)-9-methoxy-pyrrolo[2,1-a]isoquinoline-3carboxylate (7)

Method 1: Under an argon atmosphere, to a solution of 6 (255 $\mathrm{mg}, 0.411 \mathrm{mmol})$ in DCM $(8.0 \mathrm{~mL})$ was added a DCM solution of TfOH ($74.5 \mathrm{mM}, 550 \mu \mathrm{~L}, 41.1 \mu \mathrm{~mol}$) at $0{ }^{\circ} \mathrm{C}$. After stirring for 2 h at $0{ }^{\circ} \mathrm{C}, \mathrm{Na}_{2} \mathrm{CO}_{3}(50 \mathrm{mg})$ and $\mathrm{MgSO}_{4}(50 \mathrm{mg})$ was added to the mixture. The suspension was allowed to warm to room temperature and then stirred for an additional 0.5 h . The mixture was passed through a filter paper. The filtrate was evaporated and the residue was purified by column chromatography over silica gel 60 N (hexane-ethyl acetate $=3: 1$) to give 7 as a colorless solid ($202 \mathrm{mg}, 88 \%$).

Method 2: Under an argon atmosphere, to a solution of $\mathbf{6}$ (1.84 $\mathrm{g}, 2.97 \mathrm{mmol})$ in DCM $(110 \mathrm{~mL})$ was added TMSOTf $(270 \mu \mathrm{~L}$, 1.49 mmol) at $0^{\circ} \mathrm{C}$. After stirring for 1.5 h at $0{ }^{\circ} \mathrm{C}$, a saturated aqueous NaHCO_{3} was added to the mixture. The mixture was allowed to warm to room temperature and stirred for an additional 0.5 h . The products were extracted with DCM and the extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by flash chromatography over silica gel 60 N (hexane-ethyl acetate $=4: 1$) to give 7 as a colorless solid ($1.50 \mathrm{~g}, 91 \%$).

Recrystallization from $\mathrm{Et}_{2} \mathrm{O}$-hexane gave a colorless granules. Mp $165-166^{\circ} \mathrm{C}$. IR (KBr): $1675,1449,1352,1213,1111 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.35(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.38(\mathrm{~d}$, $J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}$, $3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 4.53(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{sep}, J=6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.99$ (dd, $J=1.9$ and $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 9.28(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 21.9,22.0,22.1,51.2,55.2,56.1,71.1,71.2,105.4$, $110.1,112.1,112.3,112.4,112.4,118.6,118.7,119.3,123.3$, $123.5,124.1,127.8,130.9,147.5,148.0,150.0,150.2,161.6$. HRDARTMS m / z. Calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{BrNO}_{6}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 556.13347$. Found: 556.13474.

4.2.2. Synthesis of O-protected lamellarins 10a-g

4.2.2.1. Methyl 8-isopropoxy-1-(3-isopropoxy-4-methoxyphenyl)-9-methoxy-2-[2-(methoxymethoxy)phenyl]pyrrolo[2,1-a]isoquinoline-3-carboxylate (9a)

Under an argon atmosphere, a mixture of $7(50.0 \mathrm{mg}, 89.9$ $\mu \mathrm{mol}), 8 \mathrm{a}(24.6 \mathrm{mg}, 0.135 \mathrm{mmol}), \operatorname{Pd}(\mathrm{dba})_{2}(5.2 \mathrm{mg}, 9.0 \mu \mathrm{~mol})$, dppf ($5.0 \mathrm{mg}, 9.0 \mu \mathrm{~mol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(63.0 \mathrm{mg}, 0.594 \mathrm{mmol})$, DME
$(3.0 \mathrm{~mL})$, and degassed water $(0.2 \mathrm{~mL})$ was heated in a sealed tube at $85{ }^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature, the mixture was evaporated and the products were extracted with DCM. The extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by flash chromatography over silica gel 60 N (hexane-ethyl acetate $=4: 1$) to give 9a as a pale yellow solid (51.8 mg , 94%). Recrystallization from DCM-hexane gave a pale yellow needles. Mp 186-187 ${ }^{\circ} \mathrm{C}$. IR (KBr): 1688, 1473, 1379, 1256, 1226, 1190, $1114 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.07(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $1.5 \mathrm{H}), 1.20(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.21(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.27$ (d, $J=6.1 \mathrm{~Hz}, 1.5 \mathrm{H}$), 1.42 (d, $J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.42$ (br s, 3H), $3.59(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 1.5 \mathrm{H}), 3.82(\mathrm{~s}, 1.5 \mathrm{H}), 4.25(\mathrm{sep}, J$ $=6.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.33(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.66(\mathrm{sep}, J=6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 0.5 \mathrm{H})$, $4.99(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.04(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.75-6.89$ (m, 4H), $6.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-7.01(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~s}$, $1 \mathrm{H}), 7.08$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.21$ (m, 2H), 9.30 (d, $J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.7,21.8,21.9,21.9$, $22.0,22.2,50.7,55.3,55.7,56.0,71.1,71.1,71.2,95.1,105.6$, $110.6,111.4,111.7,112.0,112.8,114.6,117.4,118.1,118.2$, $118.6,119.0,119.4,119.8,121.0,121.2,123.5,123.9,124.1$, $124.2,124.4,128.2,128.3,128.4,130.4,131.4,131.8,132.3$, $132.4,146.9,147.5,148.5,149.3,149.9,150.4,155.6,162.6$. HRDARTMS m / z. Calcd for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{NO}_{8}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 614.27539$. Found: 614.27399.
4.2.2.2. Methyl 2-[4,5-dimethoxy-2-(methoxymethoxy)phenyl]-8-isopropoxy-1-(3-isopropoxy-4-methoxyphenyl)-9-methoxy-pyrrolo[2,1-a]isoquinoline-3-carboxylate (9b)

According to the procedure described for the preparation of $\mathbf{9 a}$, $7(50.0 \mathrm{mg}, 89.9 \mu \mathrm{~mol}), \mathbf{8 b}(32.7 \mathrm{mg}, 0.135 \mathrm{mmol}), \operatorname{Pd}(\mathrm{dba})_{2}(5.2$ $\mathrm{mg}, 9.0 \mu \mathrm{~mol}$), and dppf ($5.0 \mathrm{mg}, 9.0 \mu \mathrm{~mol}$) were reacted. After purification by column chromatography over silica gel 60 N (hexane-ethyl acetate $=2: 1$), $\mathbf{9 b}$ was obtained as a pale brown solid ($54.4 \mathrm{mg}, 90 \%$). Recrystallization from DCM-hexane gave a pale brown powder. $\mathrm{Mp} 72-73{ }^{\circ} \mathrm{C}$. IR (KBr): 1683, 1438, 1372, 1214, 1188, 1122, $1019 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $1.05-1.33(\mathrm{~m}, 6 \mathrm{H}), 1.42(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.28$ (br s, 3 H), 3.43 (s, 3H), $3.62(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$, $4.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.66(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.70-5.00(\mathrm{~m}, 2 \mathrm{H})$, $6.48-6.63(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.77-7.03(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.30$ $(\mathrm{m}, 1 \mathrm{H}), 9.28(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.6,21.9,22.0,22.2,50.8,55.3,55.7,55.9,56.1,71.0,71.1$, $71.3,96.6,96.7,101.5,102.4,105.6,110.5,111.5,112.0,112.9$, $114.7,118.6,119.1,119.7,120.7,123.4,123.4,124.2,128.6$, $130.3,131.8,143.4,144.1,147.5,148.5,148.5,148.8,149.0$, 149.3, 149.7, 149.9, 162.6. HRDARTMS m / z. Calcd for $\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{NO}_{10}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 674.29652$. Found: 674.29513.
4.2.2.3. Methyl 8-isopropoxy-1-(3-isopropoxy-4-methoxyphenyl)-9-methoxy-2-[6-(methoxymethoxy)-1,3-benzodioxol-5-yl]pyrrolo[2,1-a]isoquinoline-3-carboxylate (9c)

According to the procedure described for the preparation of $\mathbf{9 a}$, $7(50.0 \mathrm{mg}, 89.9 \mu \mathrm{~mol}), \mathbf{8 c}(30.5 \mathrm{mg}, 0.135 \mathrm{mmol}), \operatorname{Pd}(\mathrm{dba})_{2}(5.2$ $\mathrm{mg}, 9.0 \mu \mathrm{~mol}$), and dppf ($5.0 \mathrm{mg}, 9.0 \mu \mathrm{~mol}$) were reacted. After purification by column chromatography over silica gel 60 N (hexane-ethyl acetate $=3: 1$), $\mathbf{9 c}$ was obtained as a pale brown solid ($55.3 \mathrm{mg}, 94 \%$). Recrystallization from DCM-hexane gave a pale brown powder. Mp $200-201^{\circ} \mathrm{C}$. IR (KBr): 1670, 1438, 1379, 1256, 1161, $1112 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 1.15 (d, $J=6.0 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.24$ (d, $J=6.0 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.25(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.29(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.42(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H})$, $3.26(\mathrm{~s}, 1.5 \mathrm{H}), 3.28(\mathrm{~s}, 1.5 \mathrm{H}), 3.42(\mathrm{~s}, 1.5 \mathrm{H}), 3.43(\mathrm{~s}, 1.5 \mathrm{H}), 3.66$ $(\mathrm{s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 1.5 \mathrm{H}), 3.85(\mathrm{~s}, 1.5 \mathrm{H}), 4.32(\mathrm{sep}, J=6.0 \mathrm{~Hz}$, $0.5 \mathrm{H}), 4.38(\mathrm{sep}, J=6.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.66(\mathrm{sep}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.69(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.83(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.84(\mathrm{~d}, J=$
$6.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.86(\mathrm{~d}, J=5.9 \mathrm{~Hz}$, $0.5 \mathrm{H}), 5.91(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.45(\mathrm{~s}, 0.5 \mathrm{H}), 6.58(\mathrm{~s}, 0.5 \mathrm{H})$, $6.72(\mathrm{~s}, 1 \mathrm{H}), 6.81-6.99(\mathrm{~m}, 4 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 0.5 \mathrm{H}), 7.24$ (s, 0.5 H$), 9.27(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 21.7,21.9,22.0,22.2,50.8,55.3,55.6,56.0,71.0,71.1,71.2$, 96.3, 98.9, 101.1, 105.6, 110.5, 110.7, 110.9, 111.5, 111.8, 112.0, $118.7,118.9,119.0,119.2,119.3,119.7,119.8,123.5,124.1$, $124.4,128.3,128.4,130.4,132.0,141.7,141.7,146.8,147.0$, $147.0,147.5,149.4,149.9,150.4,162.5$. HRDARTMS m/z. Calcd for $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{NO}_{10}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 658.26522 . Found: 658.26263 .

4.2.2.4. Methyl 2-[4-benzyloxy-5-methoxy-2-
 (methoxymethoxy)phenyl]-8-isopropoxy-1-(3-isopropoxy-4-methoxyphenyl)-9-methoxy-pyrrolo[2,1-a]isoquinoline-3carboxylate (9d)

Under an argon atmosphere, a mixture of $7(290 \mathrm{mg}, 0.521$ $\mathrm{mmol}), \mathbf{8 d}(497 \mathrm{mg}, 1.56 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dba})_{2}(30.0 \mathrm{mg}, 52.1 \mu \mathrm{~mol})$, dppf ($28.9 \mathrm{mg}, 52.1 \mu \mathrm{~mol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(365 \mathrm{mg}, 3.44 \mathrm{mmol})$, DME $(12 \mathrm{~mL})$, and degassed water (1.0 mL) was refluxed for 24 h . After cooling to rt, the mixture was evaporated and the products were extracted with DCM. The extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by flash chromatography over silica gel 60 N (hexaneethyl acetate $=3: 1$) to give $9 \mathbf{d}$ as a pale brown solid (302 mg , 77%). Recrystallization from DCM-hexane gave a pale brown granules. Mp 56-57 ${ }^{\circ} \mathrm{C}$. IR (KBr): 1683, 1509, 1436, 1374, 1260, $1215,1121,1024 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.98-1.33$ (m, 6H), 1.40-1.48 (m, 6H), 3.22 (br s, 3H), 3.43 (br s, 3H), 3.61 (br s, 6H), 3.84 (br s, 3H), 4.20-4.43(m, 1H), 4.63-4.95 (m, 3H), $5.06-5.16(\mathrm{~m}, 2 \mathrm{H}), 6.48-7.50(\mathrm{~m}, 13 \mathrm{H}), 9.27(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.6,21.9,22.0,22.2,50.8,55.3$, $55.5,56.1,56.4,71.1,71.2,96.5,102.8,104.3,104.4,105.5$, 105.6, 110.4, 110.5, 111.5, 111.9, 112.0, 112.4, 112.8, 112.9, $115.3,118.6,119.0,119.7,123.2,123.4,123.4,124.2,124.7$, 127.3, 127.6, 127.8, 128.1, 128.2, 128.4, 128.7, 130.3, 131.7, 137.1, 144.2, 147.5, 149.3, 149.6, 149.9, 162.6. HRDARTMS m / z. Calcd for $\mathrm{C}_{44} \mathrm{H}_{48} \mathrm{NO}_{10}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 750.32782. Found: 750.32788.

4.2.2.5. Methyl 2-[5-benzyloxy-4-methoxy-2-

 (methoxymethoxy)phenyl]-8-isopropoxy-1-(3-isopropoxy-4-methoxyphenyl)-9-methoxy-pyrrolo[2,1-a]isoquinoline-3carboxylate (9e)According to the procedure described for the preparation of 9d, $7(421 \mathrm{mg}, 0.756 \mathrm{mmol}), 8 \mathrm{e}(361 \mathrm{mg}, 1.13 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dba})_{2}(41.9$ $\mathrm{mg}, 72.9 \mu \mathrm{~mol})$, dppf ($45.0 \mathrm{mg}, 81.2 \mu \mathrm{~mol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(529 \mathrm{mg}$, $4.99 \mathrm{mmol})$, DME (30 mL), and degassed water (2.0 mL) was reacted for 24 h . After purification by column chromatography over silica gel 60 N (hexane-ethyl acetate $=2: 1$), $9 \mathbf{e}$ was obtained as a pale brown solid ($552 \mathrm{mg}, 97 \%$). Recrystallization from DCM-hexane gave a pale brown granules. Mp $53-54{ }^{\circ} \mathrm{C}$. IR (KBr): 1683, 1437, 1374, 1259, 1217, 1122, $1065 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.10-1.22(\mathrm{~m}, 3 \mathrm{H}), 1.25(\mathrm{br} \mathrm{d}, J=6.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.42(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{br}$ $\mathrm{s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.31(\mathrm{sep}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.66$ (sep, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), $4.67-4.98(\mathrm{~m}, 4 \mathrm{H}), 6.59$ (br s, 1H), $6.68-$ $6.89(\mathrm{~m}, 4 \mathrm{H}), 6.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H})$, $7.25-7.40(\mathrm{~m}, 5 \mathrm{H}), 9.27(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 21.7,21.9,22.0,22.2,50.8,55.3,55.6,56.0,71.0,71.1$, $71.2,71.9,96.4,101.7,105.6,110.5,111.5,111.8,112.0,112.8$, $118.1,118.7,119.0,119.7,123.4,124.2,127.4,127.7,128.4$, $128.5,130.3,131.8,137.4,142.6,147.0,147.5,149.3,149.4$, 149.9, 150.2, 162.6. HRDARTMS m / z. Calcd for $\mathrm{C}_{44} \mathrm{H}_{48} \mathrm{NO}_{10}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 750.32782$. Found: 750.32836.
4.2.2.6. Methyl 2-[4-benzyloxy-5-isopropoxy-2-(methoxymethoxy)phenyl]-8-isopropoxy-1-(3-isopropoxy-4-
methoxyphenyl)-9-methoxy-pyrrolo[2,1-a]isoquinoline-3carboxylate (9f)

According to the procedure described for the preparation of $\mathbf{9 a}$, 7 ($186 \mathrm{mg}, 0.334 \mathrm{mmol}$), $8 \mathbf{8 f}(173 \mathrm{mg}, 0.500 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dba})_{2}$ $(19.6 \mathrm{mg}, 34.1 \mu \mathrm{~mol})$, and dppf $(18.3 \mathrm{mg}, 33.0 \mu \mathrm{~mol})$ were reacted. After purification by flash chromatography over silica gel 60 N (hexane-ethyl acetate $=2: 1$), 9 f was obtained as a pale yellow solid ($226.1 \mathrm{mg}, 87 \%$). Recrystallization from $\mathrm{Et}_{2} \mathrm{O}-$ hexnae gave a pale yellow powder. Mp 61-64 ${ }^{\circ} \mathrm{C}$. IR (KBr): 1683, 1437, 1373, 1245, 1191, 1121, $1063 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.02-1.31(\mathrm{~m}, 12 \mathrm{H}), 1.42(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H})$, $3.23(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.14-4.42$ $(\mathrm{m}, 2 \mathrm{H}), 4.66(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.93(\mathrm{~m}, 2 \mathrm{H}), 5.02-$ $5.13(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{br} \mathrm{s}, 0.5 \mathrm{H}), 6.66(\mathrm{br} \mathrm{s}, 0.5 \mathrm{H}), 6.75-6.90(\mathrm{~m}$, $3.5 \mathrm{H}), 6.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-7.02(\mathrm{~m}, 0.5 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H})$, 7.20-7.33 (m, 2H), 7.34-7.39 (m, 2H), 7.42-7.47 (m, 2H), 9.28 $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.6,21.8$, 21.9, 22.0, 22.1, 22.2, 50.7, 55.3, 55.5, 56.1, 70.9, 71.1, 71.2, 72.7, 96.2, 104.7, 105.6, 110.5, 111.6, 111.9, 112.8, 118.6, 118.8, 119.2, 119.7, 122.4, 122.7, 123.4, 124.0, 124.3, 127.5, 127.7, $128.4,128.6,130.3,131.7,137.4,142.0,147.0,147.5,149.2$, 149.7, 149.9, 150.7, 162.7. HRDARTMS m / z. Calcd for $\mathrm{C}_{46} \mathrm{H}_{52} \mathrm{NO}_{10}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 778.35912$. Found: 778.35688.
4.2.2.7. Methyl 2-[4,5-bis(benzyloxy)-2-
(methoxymethoxy)phenyl]-8-isopropoxy-1-(3-isopropoxy-4-methoxyphenyl)-9-methoxy-pyrrolo[2,1-a]isoquinoline-3carboxylate (9g)

According to the procedure described for the preparation of $9 \mathbf{d}$, $7(1.23 \mathrm{~g}, 2.21 \mathrm{mmol}), 8 \mathrm{~g}(1.31 \mathrm{~g}, 3.32 \mathrm{mmol}), \operatorname{Pd}(\mathrm{dba})_{2}(123 \mathrm{mg}$, $0.213 \mathrm{mmol}), \operatorname{dppf}(132 \mathrm{mg}, 0.237 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(1.55 \mathrm{~g}, 14.6$ $\mathrm{mmol})$, DME (80 mL), and degassed water $(6.0 \mathrm{~mL})$ was reacted for 24 h . After purification by column chromatography over silica gel 60 N (hexane-ethyl acetate $=5: 1$), 9 g was obtained as a pale yellow semisolid (1.83 g , quant.). IR (KBr): 1682, 1436, 1373, 1217, 1188, 1121, $1063 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.03-1.30(\mathrm{~m}, 6 \mathrm{H}), 1.42(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.23(\mathrm{br} \mathrm{s}, 3 \mathrm{H})$, 3.42 (s, 3H), 3.56 (br s, 3H), 3.82 (s, 3H), 4.23-4.40 (m, 1H), 4.66 ($\operatorname{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.79-4.93(\mathrm{~m}, 4 \mathrm{H}), 5.04-5.14(\mathrm{~m}, 2 \mathrm{H})$, $6.63(\mathrm{br} \mathrm{s}, 0.5 \mathrm{H}), 6.71-6.90(\mathrm{~m}, 4.5 \mathrm{H}), 6.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.03 (s, 1H), 7.20-7.38 (m, 9H), 7.40-7.45 (m, 2H), 9.27 (d, $J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.6,21.9,22.0$, $22.2,50.7,55.3,55.5,56.0,70.9,71.1,71.4,72.3,96.2,104.6$, 105.6, 110.5, 111.5, 111.8, 112.0, 112.8, 118.6, 118.8, 119.0, $119.2,119.4,119.7,123.4,124.2,127.5,127.6,127.7,127.8$, $128.3,128.4,128.5,130.3,131.7,137.2,137.6,143.3,147.0$, $147.5,148.6,149.2,149.9,150.3,162.6$. HRDARTMS m / z. Calcd for $\mathrm{C}_{50} \mathrm{H}_{52} \mathrm{NO}_{10}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 826.35912$. Found: 826.36040.
4.2.2.8. 11-Isopropoxy-14-(3-isopropoxy-4-methoxyphenyl)-12-methoxy-6H-[1]benzopyrano[4',3':4,5]pyrrolo[2,1-a]isoquinolin-6-one (10a)

Under an argon atmosphere, a mixture of $\mathbf{9 a}(50.0 \mathrm{mg}, 81.5$ $\mu \mathrm{mol}$), p - $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(62.0 \mathrm{mg}, 0.326 \mathrm{mmol})$, and $\mathrm{MeOH}(2.0$ mL) was heated in a sealed tube at $65^{\circ} \mathrm{C}$ for 18 h . After cooling to room temperature, the mixture was evaporated and the products were extracted with DCM. The extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by column chromatography over silica gel 60 N (hexane-ethyl acetate $=2: 1$) to give 10a as a pale yellow solid ($42.9 \mathrm{mg}, 98 \%$). Recrystallization from DCM-hexane gave a colorless granules. $\mathrm{Mp} 208-209{ }^{\circ} \mathrm{C}$. IR (KBr): 1716, 1476, 1263, 1221, 1178, 1111, $1043 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $1.34(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~d}, J=6.1$ $\mathrm{Hz}, 6 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 4.55(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.70(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.11-$ $7.18(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.44(\mathrm{~m}, 1 \mathrm{H}), 9.23(\mathrm{~d}, J=$
$7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.9,21.9,22.0$, 55.2, 56.2, 71.2, 71.3, 105.6, 108.4, 110.4, 112.2, 112.8, 117.3, $118.1,119.1,123.0,123.8,123.9,124.2,124.7,128.0,128.3$, 128.7, 134.6, $148.2,148.5,150.2,150.4,151.8,155.2$. HRDARTMS m / z. Calcd for $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{NO}_{6}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 538.22296$. Found: 538.22569.
4.2.2.9. 11-Isopropoxy-14-(3-isopropoxy-4-methoxyphenyl)-2,3,12-trimethoxy-6H-[1]benzopyrano[4',3':4,5]pyrrolo[2,1-a]isoquinolin-6-one (10b)

According to the procedure described for the preparation of 10a, 9b ($50.0 \mathrm{mg}, 74.2 \mu \mathrm{~mol}$), $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(56.5 \mathrm{mg}, 0.297$ $\mathrm{mmol})$, and $\mathrm{MeOH}(2.0 \mathrm{~mL})$ were reacted. After purification by column chromatography over silica gel 60 N (hexane-ethyl acetate $=2: 1$), 10b was obtained as a pale yellow solid (42.6 mg , 96%). Recrystallization from DCM-hexane gave a pale gray needles. Mp 192-193 ${ }^{\circ} \mathrm{C}$. IR (KBr): 1704, 1418, 1269, 1225, 1163, $1039 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.36(\mathrm{~d}, J=6.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.37$ (d, $J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.44$ (d, $J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.46$ $(\mathrm{s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 4.58(\mathrm{sep}, J=6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.70(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H})$, 6.99 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.17$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.17(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=1.8$ and 8.2 $\mathrm{Hz}, 1 \mathrm{H}), 9.14(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.9,21.9,22.0,22.0,55.2,55.4,56.0,56.4,71.2,71.3,100.5$, $105.0,105.6,107.7,109.9,110.4,111.0,112.3,112.7,118.2$, $119.0,123.1,124.2,124.7,128.2,129.3,134.5,145.5,146.6$, $148.2,148.5,149.5,150.2,150.3,155.5$. HRDARTMS m / z. Calcd for $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{NO}_{8}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 598.24409$. Found: 598.24289.
4.2.2.10. 3-Isopropoxy-15-(3-isopropoxy-4-methoxyphenyl)-2-methoxy-8H-
[1,3]dioxolo[6',7'][1]benzopyrano[4',3':4,5]pyrrolo[2,1-a]isoquinolin-8-one (10c)

According to the procedure described for the preparation of $\mathbf{1 0 a}, 9 \mathbf{c}(50.0 \mathrm{mg}, 76.0 \mu \mathrm{~mol}), p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(57.8 \mathrm{mg}, 0.304$ $\mathrm{mmol})$, and $\mathrm{MeOH}(2.0 \mathrm{~mL})$ were reacted. After purification by column chromatography over silica gel 60N (hexane-ethyl acetate $=2: 1$), 10c was obtained as a pale yellow solid $(40.6 \mathrm{mg}$, 92%). Recrystallization from DCM-hexane gave a pale yellow granules. Mp $235.5-236.5^{\circ} \mathrm{C}$. IR (KBr): 1703, 1475, 1434, 1262, 1153, $1033 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.34(\mathrm{~d}, J=6.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.38(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.44$ $(\mathrm{s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 4.56(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{sep}, J=$ $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.70(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H})$, $7.07(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 9.18(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.9,21.9,22.0$, $55.2,56.2,71.1,71.3,98.9,101.7,102.3,105.6,107.5,110.3$, $111.3,111.4,112.5,112.8,118.2,119.0,123.0,124.0,124.7$, $127.7,129.2,134.6,144.2,147.7,148.0,148.2,148.4,150.2$, 150.5, 155.2. HRDARTMS m / z. Calcd for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{NO}_{8}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 582.21279. Found: 582.21551.

4.2.2.11. 3-Benzyloxy-11-isopropoxy-14-(3-isopropoxy-4-

 methoxyphenyl)-2,12-dimethoxy-6H-[1]benzopyrano[4', $3^{\prime}: 4,5$]pyrrolo[2,1-a]isoquinolin- 6 -one (10d)
According to the procedure described for the preparation of 10a, 9d ($30.0 \mathrm{mg}, 40.0 \mu \mathrm{~mol}$), $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(30.4 \mathrm{mg}, 0.160$ mmol), and $\mathrm{MeOH}(1.5 \mathrm{~mL})$ were reacted. After purification by column chromatography over silica gel 60 N (hexane-ethyl acetate $=2: 1$), 10d was obtained as a pale yellow solid (25.0 mg , 93%). Recrystallization from DCM-hexane gave a colorless powder. Mp 219.5-220.5 ${ }^{\circ} \mathrm{C}$. IR (KBr): 1702, 1431, 1268, 1224, $1164,1038 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.35(\mathrm{~d}, J=6.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.45$ $(\mathrm{s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 4.55(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.69(\operatorname{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H})$, $7.01(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.15(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=1.8$ and 8.2 $\mathrm{Hz}, 1 \mathrm{H}), 7.27-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.45(\mathrm{~m}$, $2 \mathrm{H}), 9.19(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 21.9, 22.0, 22.0, 55.2, 55.5, 56.4, 70.9, 71.2, 71.3, 102.7, 105.5, $105.6,107.8,110.4,111.1,112.4,112.8,118.2,119.0,123.2$, $124.1,124.7,127.2,128.1,128.2,128.7,129.3,134.5,136.2$, $146.1,146.5,148.2,148.5,148.5,150.2,150.3,155.5$. HRDARTMS m / z. Calcd for $\mathrm{C}_{41} \mathrm{H}_{40} \mathrm{NO}_{8}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 674.27539 . Found: 674.27820.
4.2.2.12. 2-Benzyloxy-11-isopropoxy-14-(3-isopropoxy-4-methoxyphenyl)-3,12-dimethoxy-6H-
[1]benzopyrano[4',3':4,5]pyrrolo[2,1-a]isoquinolin-6-one (10e)
According to the procedure described for the preparation of 10a, 9e ($30.0 \mathrm{mg}, 40.0 \mu \mathrm{~mol}$), $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(30.4 \mathrm{mg}, 0.160$ $\mathrm{mmol})$, and $\mathrm{MeOH}(1.5 \mathrm{~mL})$ were reacted. After purification by column chromatography over silica gel 60 N (hexane-ethyl acetate $=2: 1$), $\mathbf{1 0 e}$ was obtained as a pale yellow solid (24.3 mg , 90%). Recrystallization from DCM-hexane gave a pale yellow needles. Mp 208-209 ${ }^{\circ} \mathrm{C}$. IR (KBr): 1702, 1418, 1268, 1220, $1162,1028 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.34(\mathrm{~d}, J=6.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.45$ (s, 3H), 3.89 (s, 3H), $3.95(\mathrm{~s}, 3 \mathrm{H}), 4.54(\operatorname{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.69 ($\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}$), $4.74(\mathrm{~s}, 2 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H})$, $6.99(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.12(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=1.8$ and 8.1 $\mathrm{Hz}, 1 \mathrm{H}), 7.21-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.36(\mathrm{~m}, 3 \mathrm{H}), 9.19(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.9,22.0,22.1,55.2$, 56.1, 56.4, 70.6, 71.2, 71.2, 100.9, 105.6, 107.8, 107.8, 110.0, $110.4,111.1,112.4,112.8,118.1,119.0,123.1,124.0,124.7$, $127.3,127.8,128.1,128.4,129.2,134.5,136.4,144.5,147.1$, $148.3,148.5,150.2,150.3,150.3,155.5$. HRDARTMS m / z. Calcd for $\mathrm{C}_{41} \mathrm{H}_{40} \mathrm{NO}_{8}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 674.27539$. Found: 674.27240.

4.2.2.13. 3-Benzyloxy-2,11-diisopropoxy-14-(3-isopropoxy-4-

 methoxyphenyl)-12-methoxy-6H-[1]benzopyrano[4', $\left.3^{\prime}: 4,5\right]$ pyrrolo[2,1-a]isoquinolin-6-one (10f)
Under an argon atmosphere, a mixture of $9 f(202 \mathrm{mg}, 0.260$ mmol), p - $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(198 \mathrm{mg}, 1.04 \mathrm{mmol})$, and $\mathrm{MeOH}(10 \mathrm{~mL})$ was refluxed for 18 h . After cooling to room temperature, the mixture was evaporated and the products were extracted with DCM. The extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by column chromatography over silica gel 60 N (hexane-ethyl acetate $=2: 1$) to give $\mathbf{1 0 f}$ as a pale yellow solid ($161 \mathrm{mg}, 88 \%$). Recrystallization from DCM-hexane gave a colorless powder. $\mathrm{Mp} 231-232^{\circ} \mathrm{C}$. IR (KBr): 1701, 1433, 1267, 1212, 1162, 1033 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.19(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.20(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{~d}, J=6.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 4.02$ (sep, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{sep}, J=$ $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.11-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.27-$ $7.33(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.45(\mathrm{~m}, 2 \mathrm{H}), 9.18(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.9,21.9,22.0$, $22.0,22.0,55.2,56.4,71.0,71.1,71.2,71.9,103.5,105.6,107.8$, $110.0,110.3,110.6,111.1,112.3,112.8,117.6,119.0,123.2$, 123.8, 124.7, 127.1, 127.9, 128.2, 128.5, 129.4, 134.4, 136.6, $144.5,146.6,148.4,148.4,149.8,150.2,150.2,155.5$. HRDARTMS m / z. Calcd for $\mathrm{C}_{43} \mathrm{H}_{44} \mathrm{NO}_{8}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 702.30669$. Found: 702.30518.
4.2.2.14. 2,3-Bis(benzyloxy)-11-isopropoxy-14-(3-isopropoxy-4-methoxyphenyl)-12-methoxy-6H-
[1]benzopyrano[4', $3^{\prime}: 4,5$]pyrrolo[2,1-a]isoquinolin-6-one (10g)

Under an argon atmosphere, a mixture of $9 \mathbf{g}(1.77 \mathrm{~g}, 2.14$ $\mathrm{mmol}), p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(1.63 \mathrm{~g}, 8.57 \mathrm{mmol})$, and $\mathrm{MeOH}(60 \mathrm{~mL})$ was refluxed for 18 h . After cooling to room temperature, the mixture was evaporated and the products were extracted with DCM. The extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by recrystallization from DCM-hexane to give $\mathbf{1 0 g}$ as a pale yellow needles ($1.35 \mathrm{~g}, 84 \%$). Mp $232-233{ }^{\circ} \mathrm{C}$. IR (KBr): 1711, 1421, 1261, 1222, 1165, $1039 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $1.34(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=6.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 4.54$ (sep, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.69$ (sep, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=$ $12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H})$, $6.98(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H})$, $7.12(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.39(\mathrm{~m}, 8 \mathrm{H}), 7.43-7.46$ $(\mathrm{m}, 2 \mathrm{H}), 9.20(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.9,22.0,22.1,55.2,56.4,70.8,71.0,71.2,71.3,103.4,105.6$, 107.8, 108.7, 110.4, 110.6, 111.2, 112.4, 112.8, 118.1, 119.0, 123.2, 124.0, 124.7, 127.2, 127.2, 127.8, 128.0, 128.1, 128.4, $128.6,129.2,134.5,136.5,136.7,145.0,147.0,148.3,148.5$, $149.4,150.2,150.3,155.5$. HRDARTMS m / z. Calcd for $\mathrm{C}_{47} \mathrm{H}_{44} \mathrm{NO}_{8}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 750.30669$. Found: 750.30535.

4.2.3. Synthesis of lamellarins 11a-e

4.2.3.1. 11-Hydroxy-14-(3-hydroxy-4-methoxyphenyl)-12-methoxy-6H-[1]benzopyrano[4',3':4,5]pyrrolo[2,1-a]isoquinolin-6-one (11a)

Under an argon atmosphere, a heptane solution of $\mathrm{BCl}_{3}(1.0 \mathrm{M}$, $1.41 \mathrm{~mL}, 1.41 \mathrm{mmol}$) was added dropwise to a solution of $\mathbf{1 0 a}$ ($101 \mathrm{mg}, 0.188 \mathrm{mmol}$) in $\mathrm{DCM}(25 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for 0.5 h at $-78{ }^{\circ} \mathrm{C}$, the mixture was allowed to warm to room temperature and stirred for an additional 3 h at room temperature. The mixture was quenched with saturated aqueous NaHCO_{3} and the products were extracted with ethyl acetate. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by column chromatography over silica gel 60 N (hexane-ethyl acetate $=1: 1$) to give 11a as a pale gray powder ($82.9 \mathrm{mg}, 97 \%$). Mp 291.5-295 ${ }^{\circ} \mathrm{C}$ (sealed capillary). IR (KBr): 3531, 1678, 1409, 1277, 1217, $1049 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 6.97-7.01(\mathrm{~m}, 3 \mathrm{H})$, $7.14-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.21-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=1.4$ and $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.48(\mathrm{~m}$, 2H), $9.04(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.39(\mathrm{~s}, 1 \mathrm{H}), 9.96(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}): $\delta 54.5,55.9,105.2,107.3,111.6$, $111.8,113.1,113.5,117.1,117.5,117.6,117.9,121.8,121.9$, 123.7, 124.0, 124.6, 127.2, 127.4, 128.7, 134.2, 147.7, 148.0, 148.3, 148.6, 151.2, 153.9. HRFABMS m / z. Calcd for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{NO}_{6}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 454.1291$. Found: 454.1282.
4.2.3.2. 11-Hydroxy-14-(3-hydroxy-4-methoxyphenyl)-2,3,12-trimethoxy-6H-[1]benzopyrano[4',3':4,5]pyrrolo[2,1-a]isoquinolin-6-one (11b)

Under an argon atmosphere, a heptane solution of $\mathrm{BCl}_{3}(1.0 \mathrm{M}$, $0.500 \mathrm{~mL}, 0.500 \mathrm{mmol}$) was added dropwise to a solution of $\mathbf{1 0 b}$ $(50.0 \mathrm{mg}, 83.7 \mu \mathrm{~mol})$ in $\mathrm{DCM}(5.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and then the mixture was allowed to warm to room temperature. After stirring for 1 h at room temperature, the mixture was quenched with saturated aqueous NaHCO_{3}. The precipitate thus formed was collected by filtration, washed with water, and dried under reduced pressure to give 11b as a pale brown powder (41.2 mg , 96%). $\mathrm{Mp}>300{ }^{\circ} \mathrm{C}$ (sealed capillary). IR (KBr): 3451, 1696, 1420, 1273, 1218, 1165, $1043 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right): \delta 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 6.74(\mathrm{~s}$, $1 \mathrm{H}), 6.99(\mathrm{dd}, J=2.1$ and $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.06(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.95(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$,
9.93 (br s, 1 H$).{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 54.5,54.9$, 55.8, 56.1, 100.9, 105.1, 105.3, 106.6, 109.1, 110.6, 111.5, 112.5, 113.6, 117.4, 118.3, 121.9, 122.1, 124.6, 127.3, 128.3, 133.8, $145.2,146.2,147.7,148.0,148.3,148.5,149.5,154.2$. HRFABMS m/z. Calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{NO}_{8}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 514.1502$. Found: 514.1520.
4.2.3.3. 3-Hydroxy-15-(3-hydroxy-4-methoxyphenyl)-2-methoxy-8H-[1,3]dioxolo[$\left.6^{\prime}, 7^{\prime}\right][1]$ benzopyrano[4', $\left.3^{\prime}: 4,5\right]$ pyrrolo[2,1-ajisoquinolin-8-one (11c)

Under an argon atmosphere, a heptane solution of $\mathrm{BCl}_{3}(1.0 \mathrm{M}$, $1.41 \mathrm{~mL}, 1.41 \mathrm{mmol}$) was added dropwise to a solution of $\mathbf{1 0 c}$ $(20.0 \mathrm{mg}, 34.4 \mu \mathrm{~mol})$ in $\mathrm{DCM}(5.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for 0.5 h at $-78^{\circ} \mathrm{C}$, the mixture was allowed to warm to $-40^{\circ} \mathrm{C}$ and stirred for an additional 25.5 h at $-40^{\circ} \mathrm{C}$. The mixture was quenched with saturated aqueous NaHCO_{3} and the products were extracted with ethyl acetate. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by column chromatography over silica gel 60 N (hexane-ethyl acetate $=2: 1$) to give 11c as a pale brown powder (11.9 mg , 70%). $\mathrm{Mp}>300{ }^{\circ} \mathrm{C}$ (sealed capillary). IR (KBr): 3426, 1685 , 1425, 1260, 1152, 1126, $1037 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO$\left.d_{6}\right): \delta 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 6.05(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~d}$, $J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J$ $=2.1$ and $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H})$, $7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.01(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 9.42(\mathrm{~s}, 1 \mathrm{H}), 9.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}): $\delta 54.5,55.9,98.9,101.3,102.1,105.2,106.4,110.4$, $110.9,111.6,112.8,113.5,117.4,117.9,121.9,121.9,124.7$, 127.0, 128.1, 134.2, 143.9, 147.2, 147.7, 148.0, 148.1, 148.4, 148.6, 154.0. HRFABMS m/z. Calcd for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{NO}_{8}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 498.1189. Found: 498.1171.
4.2.3.4. 3,11-Dihydroxy-14-(3-hydroxy-4-methoxyphenyl)-2,12-dimethoxy-6H-[1]benzopyrano[4',3':4,5]pyrrolo[2,1a] isoquinolin-6-one (lamellarin $N, 11 d$)

Under an argon atmosphere, a heptane solution of $\mathrm{BCl}_{3}(1.0 \mathrm{M}$, $0.401 \mathrm{~mL}, 0.401 \mathrm{mmol}$) was added dropwise to a solution of $\mathbf{1 0 d}$ $(30.0 \mathrm{mg}, 44.5 \mu \mathrm{~mol})$ in $\mathrm{DCM}(3.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for 0.5 h at $-78^{\circ} \mathrm{C}$, the mixture was allowed to warm to room temperature and stirred for an additional 3 h at room temperature. The mixture was quenched with saturated aqueous NaHCO_{3} and the precipitate thus formed was collected by filtration, washed with water, and dried under reduced pressure. The crude product was purified by column chromatography over silica gel 60 N (acetone) to give $\mathbf{1 1 d}$ as a pale gray powder ($15.7 \mathrm{mg}, 71 \%$). Mp $280-300{ }^{\circ} \mathrm{C}$ (dec) (sealed capillary) $\left[\right.$ lit. $.^{38} \mathrm{Mp} 280-300{ }^{\circ} \mathrm{C}$ (dec) (sealed capillary)]. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 3.39$ (s, $3 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 7.00$ (dd, $J=2.0$ and $8.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.00(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}$, $1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.99(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.39(\mathrm{~s}, 1 \mathrm{H}), 9.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.94$ (br s, 1H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 54.6,55.1,56.1$, 103.8, 105.3, 105.7, 106.5, 108.2, 110.5, 111.6, 112.4, 113.6, $117.5,118.3,122.1,122.1,124.7,127.4,128.8,133.9,144.6$, $146.3,147.7,147.8,148.0,148.3,148.5,154.4$. These physical and spectroscopic data are in good agreement with those previously reported. ${ }^{35,38}$
4.2.3.5. 2,11-Dihydroxy-14-(3-hydroxy-4-methoxyphenyl)-3,12-dimethoxy-6H-[1]benzopyrano[4', 3':4,5]pyrrolo[2,1-a]isoquinolin-6-one (11e)

According to the procedure described for the preparation of $\mathbf{1 1 b}, 10 e(37.3 \mathrm{mg}, 55.4 \mu \mathrm{~mol})$ and $\mathrm{BCl}_{3}(1.0 \mathrm{M}, 0.500 \mathrm{~mL}, 0.500$ mmol) were reacted to give 11 e as a pale brown powder $(8.8 \mathrm{mg}$, 90%). Mp $>300{ }^{\circ} \mathrm{C}$ (sealed capillary). IR (KBr): 3543, 3427, 1691, 1421, 1278, 1206, 1160, $1043 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz ,

DMSO- d_{6}): $\delta 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H})$, $6.94(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=2.0$ and 8.6 $\mathrm{Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.02(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.37$ (br s, 1H), 9.92 (br s, 1 H). ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}): δ $54.5,55.8,55.9,100.8,105.2,106.7,108.9,109.7,111.0,111.5$, $112.5,113.5,117.5,118.0,121.9,122.0,124.7,127.2,128.2$, 134.1, 143.0, 145.3, 147.6, 148.0, 148.2, 148.5, 148.8, 154.4. HRDARTMS m/z. Calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{NO}_{8}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 500.13454$. Found: 500.13512.

4.2.4. Synthesis of debenzylated lamellarins 12a-d

4.2.4.1. 3-Hydroxy-11-isopropoxy-14-(3-isopropoxy-4-methoxyphenyl)-2,12-dimethoxy-6H-
[1]benzopyrano[4', 3':4,5]pyrrolo[2,1-a]isoquinolin-6-one (12a)
Under an argon atmosphere, ammonium formate ($1.14 \mathrm{~g}, 18.0$ mmol) was added portionwise to a mixture of $\mathbf{1 0 d}(405 \mathrm{mg}$, 0.601 mmol), palladium carbon ($\mathrm{Pd}: 10 \%, 80.8 \mathrm{mg}$), ethyl acetate $(15 \mathrm{~mL})$, and $\mathrm{EtOH}(15 \mathrm{~mL})$ at room temperature and the mixture was refluxed for 1 h . After cooling to room temperature, the mixture was passed through a pad of Celite. The filtrate was evaporated under reduced pressure. The residue was purified by column chromatography over silica gel 60 N (hexane-ethyl acetate $=1: 1$) to give 12a as a pale yellow powder (328 mg , 93%). Recrystallization from DCM-hexane gave a yellow powder. Mp 260-261 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3421, 1701, 1432, 1264, 1223, $1042 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.36(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 3.45$ $(\mathrm{s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 4.57(\mathrm{sep}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.70 ($\mathrm{sep}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.95(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~s}$, $1 \mathrm{H}), 6.99$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=1.7$ and $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 9.18(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 21.9,21.9,22.0,22.0,55.1,55.5,56.4,71.2,71.4$, 103.6, 104.7, 105.6, 107.7, 109.9, 110.4, 110.9, 112.3, 112.8, 118.2, 119.0, 123.2, 124.2, 124.8, 128.3, 129.5, 134.4, 143.4, 146.3, 147.0, 148.2, 148.5, 150.2, 150.3, 155.6. HRDARTMS m / z. Calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{NO}_{8} \quad\left[(\mathrm{M}+\mathrm{H})^{+}\right]:$584.22844. Found: 584.22588.
4.2.4.2. 2-Hydroxy-11-isopropoxy-14-(3-isopropoxy-4-methoxyphenyl)-3,12-dimethoxy-6H-
[1]benzopyrano[4', 3':4,5]pyrrolo[2,1-a]isoquinolin-6-one (12b)
According to the procedure described for the preparation of 12a, 10e ($292 \mathrm{mg}, 0.434 \mathrm{mmol}$), palladium carbon ($\mathrm{Pd}: 10 \%, 58$ mg), ethyl acetate (25 mL), and EtOH (15 mL) were reacted for 0.5 h . After purification by column chromatography over silica gel 60 N (acetone), 12b was obtained as a pale yellow powder ($240 \mathrm{mg}, 95 \%$). Recrystallization from DCM-hexane gave a pale yellow powder. Mp 286-289 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3260, 1679, 1421, 1263, 1209, 1160, $1046 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): δ $1.20(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 6 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.57(\mathrm{sep}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{sep}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H})$, $7.07(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=1.9$ and $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40$ $(\mathrm{s}, 1 \mathrm{H}), 9.06(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.06(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(126$ MHz, DMSO- d_{6}): $\delta 21.7,21.7,21.7,21.9,54.3,55.7,55.9,100.8$, $104.9,106.8,108.8,109.6,110.4,111.2,112.8,113.5,117.8$, 118.2, 122.1, 123.6, 124.4, 127.0, 128.4, 133.9, 143.1, 145.2, 147.6, 148.0, 148.8, 149.6, 150.1, 154.4. HRDARTMS m/z. Calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{NO}_{8}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 584.22844$. Found: 584.22655.
4.2.4.3. 3-Hydroxy-2,11-diisopropoxy-14-(3-isopropoxy-4-methoxyphenyl)-12-methoxy-6H-
[1]benzopyrano[4', 3':4,5]pyrrolo[2,1-a]isoquinolin-6-one (12c)

According to the procedure described for the preparation of 12a, $\mathbf{1 0 f}$ ($84.9 \mathrm{mg}, 0.121 \mathrm{mmol}$), palladium carbon (Pd: $10 \%, 17$ $\mathrm{mg})$, ethyl acetate (5 mL), and EtOH (5 mL) were reacted for 0.5 h. After purification by column chromatography over silica gel 60 N (acetone), 12c was obtained as a pale brown powder (71.2 $\mathrm{mg}, 96 \%$). Recrystallization from DCM-hexane gave a pale brown powder. Mp $256.5-257.5^{\circ} \mathrm{C}$. IR (KBr): 3482, 1706, 1434, $1219,1135,1030 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.19$ (d, J $=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.35(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.44(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{sep}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{sep}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{sep}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}$, $1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.12-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 9.18(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.9,21.9,22.0$, 22.0, 55.2, 56.4, 71.1, 71.2, 71.8, 103.5, 105.6, 106.7, 107.7, $109.8,110.3,110.8,112.2,112.7,117.7,119.0,123.2,123.8$, 124.7, 128.4, 129.5, 134.4, 141.4, 146.8, 147.0, 148.4, 148.4, 150.1, 150.2, 155.5. HRDARTMS m/z. Calcd for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{NO}_{8}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 612.25974$. Found: 612.26035.
4.2.4.4. 2,3-Dihydroxy-11-isopropoxy-14-(3-isopropoxy-4-methoxyphenyl)-12-methoxy-6H-
[1]benzopyrano[4',3':4,5]pyrrolo[2,1-a]isoquinolin-6-one (12d)
Method 1: According to the procedure described for the preparation of $\mathbf{1 2 a}, \mathbf{1 0 g}(200 \mathrm{mg}, 0.267 \mathrm{mmol})$, palladium carbon (Pd: $10 \%, 40 \mathrm{mg}$), ethyl acetate (10 mL), and EtOH (10 mL) were reacted for 1 h . After purification by column chromatography over silica gel 60 N (acetone), 12d was obtained as a pale yellow powder ($71.2 \mathrm{mg}, 93 \%$).

Method 2: Pentamethylbenzene ($59.3 \mathrm{mg}, 0.400 \mathrm{mmol}$) and $\mathbf{1 0 g}(15 \mathrm{mg}, 20.0 \mu \mathrm{~mol})$ was dissolved in TFA (2.0 mL). After stirring for 24 h at room temperature, the mixture was concentrated. The residue was purified by column chromatography over silica gel 60 N (hexane-ethyl acetate $=1: 1$) to give $\mathbf{1 2 d}$ as a pale yellow powder ($9.5 \mathrm{mg}, 83 \%$).

Recrystallization from acetone-hexane gave a pale gray powder. Mp 270-290 ${ }^{\circ} \mathrm{C}$ (dec) (sealed capillary). IR (KBr): 3461, 1700, 1668, 1429, 1278, 1222, 1137, $1033 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 1.21(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.31(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 4.58$ (sep, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{sep}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~s}$, $1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 7.08-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.27 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ (s, 1H), 9.04 (br s, 1H), 9.08 (d, $J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 9.76 (br s, 1 H). ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}): δ 21.7, 21.7, 21.7, 21.9, 54.3, 55.7, 70.1, 70.1, 103.5, 104.9, 106.6, 108.6, 109.2, 110.4, 111.0, 112.6, 113.5, 117.8, 118.2, 122.1, 123.6, 124.4, 127.1, 128.7, 133.9, 142.4, 145.3, 147.0, 147.6, $147.9,149.6,150.1,154.5$. HRDARTMS m / z. Calcd for $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{NO}_{8}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 570.21279$. Found: 570.21008.

4.2.5. Synthesis of ammonium-tethered lamellarin N analogues 14a-e

4.2.5.1. 3-[2-(Dimethylamino)ethoxy]-11-isopropoxy-14-(3-isopropoxy-4-methoxyphenyl)-2,12-dimethoxy-6H-
[1]benzopyrano[4',3':4,5]pyrrolo[2,1-a]isoquinolin-6-one (13a)
Under an argon atmosphere, a mixture of 12a ($20.0 \mathrm{mg}, 34.3$ $\mu \mathrm{mol}$), 2-(dimethylamino)ethyl chloride hydrochloride (5.9 mg , $41 \mu \mathrm{~mol}), \mathrm{K}_{2} \mathrm{CO}_{3}(23.8 \mathrm{mg}, 0.172 \mathrm{mmol})$, and acetone (4.0 mL) was refluxed for 7 h . After cooling to room temperature, saturated aqueous NaHCO_{3} was added to the mixture. The mixture was evaporated and the products were extracted with DCM. The extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by column chromatography over Chromatorex NH-DM1020 (DCM-ethyl acetate $=1: 1$) to give 13a as a pale yellow solid ($19.8 \mathrm{mg}, 88 \%$).

Recrystallization from DCM-hexane gave a colorless needles. Mp 188-189 ${ }^{\circ} \mathrm{C}$ IR (KBr): 1704, 1431, 1267, 1224, 1167, 1039 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.36(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H})$, $1.44(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}), 2.80(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.45(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 4.13(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, 4.55 (sep, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.70 (sep, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 6.74 (s, $1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}$, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J$ $=1.7$ and $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.21(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.9,22.0,22.0,45.9,55.2,55.4,56.4,57.8$, 67.1, 71.2, 71.3, 101.9, 105.4, 105.6, 107.8, 110.2, 110.4, 111.1, $112.4,112.8,118.2,119.1,123.2,124.1,124.7,128.2,129.4$, $134.5,145.9,146.6,148.2,148.5,148.8,150.2,150.3,155.5$. HRDARTMS m/z. Calcd for $\mathrm{C}_{38} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{8}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 655.30194 . Found: 655.29902.
4.2.5.2. 3-[3-(Dimethylamino)propoxy]-11-isopropoxy-14-(3-isopropoxy-4-methoxyphenyl)-2,12-dimethoxy-6H-
[1]benzopyrano[4',3':4,5]pyrrolo[2,1-a]isoquinolin-6-one (13b)
According to the procedure described for the preparation of 13a, 12a ($150 \mathrm{mg}, 0.257 \mathrm{mmol}$), 3-(dimethylamino) propyl chloride hydrochloride ($48.7 \mathrm{mg}, 0.308 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(178 \mathrm{mg}$, $1.29 \mathrm{mmol})$, and acetone (7.0 mL) were reacted for 24 h . After purification by column chromatography over Chromatorex NHDM1020 (hexane-ethyl acetate $=3: 2$), 13b was obtained as a colorless powder ($120 \mathrm{mg}, 70 \%$). Recrystallization from DCMhexane gave a colorless needles. Mp 192.5-193.5 ${ }^{\circ} \mathrm{C}$. IR (KBr): 1706, 1432, 1267, 1225, 1166, $1040 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 1.36(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.43$ (d, $J=6.1 \mathrm{~Hz}, 6 \mathrm{H}$), 2.01 (quin, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.25(\mathrm{~s}, 6 \mathrm{H})$, $2.44(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H})$, $4.07(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{sep}, J=$ $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.09(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.18(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=1.8$ and $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.18(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.9,21.9,22.0,27.2$, $45.5,55.1,55.5,56.2,56.4,67.4,71.1,71.3,101.8,105.4,105.6$, $107.8,109.9,110.4,111.0,112.3,112.7,118.2,119.0,123.1$, 124.1, 124.7, 128.2, 129.4, 134.4, 145.8, 146.7, 148.2, 148.4, $149.0,150.2,150.2,155.5$. HRDARTMS m / z. Calcd for $\mathrm{C}_{39} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{8}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 669.31759$. Found: 669.31472 .

4.2.5.3. 2-[2-(Dimethylamino)ethoxy]-11-isopropoxy-14-(3-isopropoxy-4-methoxyphenyl)-3,12-dimethoxy-6H-
 [1]benzopyrano[4', $3^{\prime}: 4,5$]pyrrolo[2,1-a]isoquinolin-6-one (13c)

According to the procedure described for the preparation of 13a, 12b ($47.1 \mathrm{mg}, 80.7 \mu \mathrm{~mol}$), 2-(dimethylamino)ethyl chloride hydrochloride ($13.9 \mathrm{mg}, 96.5 \mu \mathrm{~mol}), \mathrm{K}_{2} \mathrm{CO}_{3}(55.8 \mathrm{mg}, 0.404$ $\mathrm{mmol})$, and acetone (5.0 mL) were reacted for 24 h . After purification by column chromatography over Chromatorex NHDM1020 (DCM-ethyl acetate $=1: 1$), 13c was obtained as a colorless powder ($43.2 \mathrm{mg}, 82 \%$). Mp $188-189{ }^{\circ} \mathrm{C}$. IR (KBr): 1703, 1418, 1268, 1219, 1162, $1026 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta 1.34(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.44$ (d, $J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H}), 2.56-2.66(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H})$, $3.69(\mathrm{dt}, J=0.9$ and $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 4.54$ (sep, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H})$, $6.93(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.19$ (dd, $J=$ 1.8 and $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 9.21(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.9,22.0,22.0,45.8,55.2,56.0,56.2,57.9$, $67.0,71.2,71.2,100.8,105.6,107.2,107.8,110.0,110.4,111.1$, $112.3,112.7,118.0,119.1,123.2,123.9,124.7,128.1,129.4$, $134.5,144.8,146.9,148.3,148.5,150.2,150.2,150.3,155.5$. HRDARTMS m / z. Calcd for $\mathrm{C}_{38} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{8}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 655.30194$. Found: 655.30250.
4.2.5.4. 3-[3-(Dimethylamino)propoxy]-2,11-diisopropoxy-14-(3-isopropoxy-4-methoxyphenyl)-12-methoxy-6H-
[1]benzopyrano[4',3':4,5]pyrrolo[2,1-a]isoquinolin-6-one (13d)
According to the procedure described for the preparation of 13a, 12c ($30.0 \mathrm{mg}, 49.0 \mu \mathrm{~mol}$), 3-(dimethylamino)propyl chloride hydrochloride $(9.3 \mathrm{mg}, 58.8 \mu \mathrm{~mol}), \mathrm{K}_{2} \mathrm{CO}_{3}(40.6 \mathrm{mg}$, $0.294 \mathrm{mmol})$, and acetone (2.0 mL) were reacted for 21 h . After purification by column chromatography over silica gel 60 N (hexane-ethyl acetate $=1: 1$ to $\mathrm{DCM}-\mathrm{MeOH}=1: 1$), 13d was obtained as a pale yellow powder (11.6 mg , 34\%). Recrystallization from DCM -hexane gave a pale yellow powder. Mp 191-192 ${ }^{\circ} \mathrm{C}$. IR (KBr): 1702, 1434, 1259, 1221, 1136, 1031 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.17(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.17(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~d}, J=6.1$ $\mathrm{Hz}, 3 \mathrm{H}$), 1.43 (d, $J=6.1 \mathrm{~Hz}, 6 \mathrm{H}$), 2.00 (quin, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.25(\mathrm{~s}, 6 \mathrm{H}), 2.47(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H})$, $3.97(\operatorname{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.53(\mathrm{sep}, J=$ $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H})$, $7.02(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 2 \mathrm{H})$, $7.17(\mathrm{~s}, 1 \mathrm{H}), 9.22(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 21.9,21.9,22.0,22.0,22.0,27.3,45.5,55.2,56.3,56.4$, $67.4,71.2,71.3,72.2,102.5,105.6,107.8,110.2,110.4,110.6$, $111.1,112.3,112.8,117.7,119.1,123.2,123.8,124.7,128.3$, $129.5,134.5,144.2,147.1,148.4,148.4,150.2,150.2,150.5$, 155.6. HRDARTMS m / z. Calcd for $\mathrm{C}_{41} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{8}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 697.34889. Found: 697.35000.
4.2.5.5. 2,3-Bis[2-(dimethylamino)ethoxy]-11-isopropoxy-14-(3-isopropoxy-4-methoxyphenyl)-12-methoxy-6H-
[1]benzopyrano[4',3':4,5]pyrrolo[2,1-a]isoquinolin-6-one (13e)
Under an argon atmosphere, a mixture of $\mathbf{1 2 d}(40.3 \mathrm{mg}, 70.8$ $\mu \mathrm{mol}), 2-($ dimethylamino) ethyl chloride hydrochloride (51.0 mg , $0.354 \mathrm{mmol})$, sodium iodide $(10.0 \mathrm{mg}, 66.7 \mu \mathrm{~mol}), \mathrm{K}_{2} \mathrm{CO}_{3}(147$ $\mathrm{mg}, 1.06 \mathrm{mmol})$, and acetone $(10.0 \mathrm{~mL})$ was refluxed for 10 h . After cooling to room temperature, 2-(dimethylamino)ethyl chloride hydrochloride $(51.0 \mathrm{mg}, 0.354 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(147$ $\mathrm{mg}, 1.06 \mathrm{mmol}$) was added to the mixture and then refluxed for 12 h . After cooling to room temperature, the mixture was diluted with DCM and passed through a pad of Celite. The filtrate was evaporated under reduced pressure. The residue was purified by column chromatography over Chromatorex NH-DM1020 (hexane-ethyl acetate $=1: 2$ to ethyl acetate) to give $\mathbf{1 3 e}$ as a pale yellow solid ($27.0 \mathrm{mg}, 54 \%$). Mp $142-145{ }^{\circ} \mathrm{C}$. IR (KBr): 1704, $1434,1260,1221,1163,1032 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 1.34(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=$ 6.1 Hz, 6H), $2.28(\mathrm{~s}, 6 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}), 2.55-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{t}$, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}$, $3 \mathrm{H}), 4.12(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.53(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.70$ (sep, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=1.8$ and $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 9.22(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 21.9,22.0,22.0$, $45.8,46.0,55.2,56.2,57.8,57.9,67.1,67.3,71.2,71.2,102.2$, $105.6,107.4,107.8,110.3,110.4,111.1,112.4,112.7,118.0$, $119.1,123.2,124.0,124.7,128.1,129.4,134.5,145.2,146.9$, 148.2, 148.5, 149.4, 150.2, 150.3, 155.5. HRDARTMS m/z. Calcd for $\mathrm{C}_{41} \mathrm{H}_{50} \mathrm{~N}_{3} \mathrm{O}_{8}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 712.35979$. Found: 712.36040 .
4.2.5.6. 2,3-Bis[3-(dimethylamino)propoxy]-11-isopropoxy-14-(3-isopropoxy-4-methoxyphenyl)-12-methoxy-6H-
[1]benzopyrano[4',3':4,5]pyrrolo[2,1-a]isoquinolin-6-one (13f)
According to the procedure described for the preparation of 13a, 12d ($146 \mathrm{mg}, 0.256 \mathrm{mmol}$), 3-(dimethylamino)propyl chloride hydrochloride ($194 \mathrm{mg}, 1.23 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(708 \mathrm{mg}$, $5.12 \mathrm{mmol})$, and acetone $(25.0 \mathrm{~mL})$ were reacted for 48 h . After purification by recrystallization from DCM-hexane, 13f was obtained as a pale brown powder (134 mg, 71\%). Mp 174
$176{ }^{\circ} \mathrm{C}$. IR (KBr): $1705,1678,1434,1265,1223,1166,1036 \mathrm{~cm}^{-}$ ${ }^{1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.34(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.35$ $(\mathrm{d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.81$ (quin, $J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}), 2.00$ (quin, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 6 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H})$, $2.31-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{t}$, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 4.08(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.53$ (sep, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~s}$, $1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=1.8$ and 8.1 Hz, 1H), $9.22(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 21.9,22.0,22.0,27.3,27.4,45.6,45.6,55.2,56.3,67.1$, $67.4,71.2,71.3,102.2,105.6,107.4,107.8,110.1,110.4,111.1$, $112.3,112.7,118.2,119.1,123.2,124.1,124.7,128.2,129.5$, $134.5,145.2,146.8,148.3,148.4,149.6,150.2,150.3,155.6$. HRDARTMS m / z. Calcd for $\mathrm{C}_{43} \mathrm{H}_{54} \mathrm{~N}_{3} \mathrm{O}_{8}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 740.39109$. Found: 740.39380.
4.2.5.7. 11-Isopropoxy-14-(3-isopropoxy-4-methoxyphenyl)-12-methoxy-2,3-bis(3-morpholinopropoxy)-6H-
[1]benzopyrano[4', $\left.3^{\prime}: 4,5\right]$ pyrrolo[2,1-a]isoquinolin-6-one (13g)
Under an argon atmosphere, a mixture of $\mathbf{1 2 d}(73.5 \mathrm{mg}, 0.129$ mmol), 4-(3-chloropropyl)morpholine ($98.0 \mu \mathrm{~L}, 0.647 \mathrm{mmol}$), sodium iodide $(20.0 \mathrm{mg}, 0.133 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(178 \mathrm{mg}, 1.29$ $\mathrm{mmol})$, and acetone (20.0 mL) was refluxed for 5 h . After cooling to room temperature, 4-(3-chloropropyl)morpholine $(49.0 \mu \mathrm{~L}, 0.323 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(89.0 \mathrm{mg}, 0.644 \mathrm{mmol})$ was added to the mixture and then refluxed for 18 h . After cooling to room temperature, the mixture was diluted with DCM and passed through a pad of Celite. The filtrate was evaporated under reduced pressure. The residue was purified by column chromatography over Chromatorex NH-DM1020 (hexane-ethyl acetate $=1: 1$ to $1: 2$) and subsequent trituration with ether to give $\mathbf{1 3 g}$ as a pale brown solid ($103 \mathrm{mg}, 97 \%$). Recrystallization from DCM-hexane gave a pale brown powder. Mp $186-187{ }^{\circ} \mathrm{C}$. IR (KBr): $1699,1435,1266,1223,1170,1114,1032 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.34(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~d}, J=6.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.44(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.81$ (quin, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.01 (quin, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.39-2.49(\mathrm{~m}, 10 \mathrm{H}), 2.53(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{t}, J=4.3 \mathrm{~Hz}$, $8 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 4.09(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.53(\mathrm{sep}, J=6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.70(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=1.8$ and $8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $9.22(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 21.9$, $22.0,22.1,26.2,26.3,53.8,53.8,55.2,55.4,55.5,56.4,67.0$, $67.3,71.2,71.3,102.2,105.6,107.4,107.8,110.1,110.4,111.0$, $112.4,112.7,118.2,119.0,123.2,124.0,124.7,128.3,129.4$, $134.5,145.1,146.8,148.3,148.5,149.5,150.2,150.3,155.5$. HRDARTMS m/z. Calcd for $\mathrm{C}_{47} \mathrm{H}_{58} \mathrm{~N}_{3} \mathrm{O}_{10}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 824.41222. Found: 824.40976.
4.2.5.8. Trifluoroacetic acid salt of 3-[2-(dimethylamino)ethoxy]-11-hydroxy-14-(3-hydroxy-4-methoxyphenyl)-2,12-dimethoxy-
6H-[1]benzopyrano[4', 3':4,5]pyrrolo[2,1-a]isoquinolin-6-one
(14a)
Under an argon atmosphere, a nitrobenzene solution of AlCl_{3} $(1.0 \mathrm{M}, 230 \mu \mathrm{~L}, 0.230 \mathrm{mmol})$ was added dropwise to a solution of $13 \mathbf{a}(25.0 \mathrm{mg}, 38.2 \mu \mathrm{~mol})$ in $\mathrm{DCM}(2.0 \mathrm{~mL})$ at room temperature. After stirring for 18 h at room temperature, a solution of $\mathrm{NaHCO}_{3}(115 \mathrm{mg}, 1.37 \mathrm{mmol})$ and Rochelle salt (194 $\mathrm{mg}, 0.687 \mathrm{mmol})$ in water $(1.0 \mathrm{~mL})$ was added. The mixture was stirred for an additional 1 h and then evaporated. The nitrobenzene was removed azeotropically with water under reduced pressure. To the residue was added water and the precipitate was collected by filtration, washed with water, and dried under reduced pressure to give 3-[2-(dimethylamino)ethoxy]-11-hydroxy-14-(3-hydroxy-4-
methoxyphenyl)-2,12-dimethoxy-6 H -
[1]benzopyrano[4',3':4,5]pyrrolo[2,1-a]isoquinolin-6-one (14a') as a pale brown powder ($21.2 \mathrm{mg}, 97 \%$). Mp $213-218{ }^{\circ} \mathrm{C}$. IR (KBr): 3362, 1689, 1425, 1282, 1222, 1168, $1037 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{t}, J=$ $5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.38$ (s, 3H), 3.39 (s, 3H), 3.87 (s, 3H), 4.10 (t, $J=$ $5.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 7.00-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.18$ (s, 1H), $7.20(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 9.01(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta 45.6,54.6,55.0,56.2,57.5,66.8$, 101.7, 105.3, 105.3, 106.7, 109.2, 110.7, 111.6, 112.5, 113.6, $117.5,118.3,122.0,122.2,124.7,127.4,128.4,133.9,145.3$, 146.1, 147.7, 148.0, 148.4, 148.6, 148.7, 154.3. HRDARTMS m / z. Calcd for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{8} \quad\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 571.20804. Found: 571.20778.

To a suspension of $\mathbf{1 4 a ^ { \prime }}(20.0 \mathrm{mg}, 35.1 \mu \mathrm{~mol})$ in DCM (1.0 mL) was added trifluoroacetic acid (1.0 mL) at room temperature. After stirring for 0.5 min at room temperature, the mixture was evaporated. The crude product was purified by column chromatography over Sephadex LH-20 (MeOH containing 0.1\% TFA) to give 14a as a brown solid (23.9 mg , quant). Mp 166.5$167.5^{\circ} \mathrm{C}$. IR (KBr): 3419, 1681, 1424, 1277, 1205, 1132, 1041 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 2.89(\mathrm{~s}, 6 \mathrm{H}), 3.40(\mathrm{~s}$, $3 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.86$ (s, 3H), $4.40(\mathrm{t}, J$ $=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.99-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.20$ (s, 1H), 7.22 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.26$ (s, $1 \mathrm{H}), 8.99(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $10.03(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}): $\delta 43.1,54.5$, $55.0,55.2,56.1,63.9,103.2,105.3,105.4,106.8,110.4,110.9$, 111.6, 112.8, 113.6, 117.4, 118.2, 122.0, 122.1, 124.7, 127.2, 128.1, 134.0, 145.5, 145.9, 147.4, 147.8, 148.0, 148.4, 148.6, 154.2. HRDARTMS m/z. Calcd for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{8}$ [(M$\left.\left.\mathrm{CF}_{3} \mathrm{COO}\right)^{+}\right]: 571.20804$. Found: 571.20854.

4.2.5.9. Trifluoroacetic acid salt of 3-[3-

(dimethylamino)propoxy]-11-hydroxy-14-(3-hydroxy-4-methoxyphenyl)-2,12-dimethoxy-6H-
[1]benzopyrano[4',3':4,5]pyrrolo[2,1-a]isoquinolin-6-one (14b)
Under an argon atmosphere, a nitrobenzene solution of AlCl_{3} ($1.0 \mathrm{M}, 540 \mu \mathrm{~L}, 0.540 \mathrm{mmol}$) was added dropwise to a solution of 13b ($60.0 \mathrm{mg}, 89.7 \mu \mathrm{~mol}$) in DCM (4.0 mL) at room temperature. After stirring for 18 h at room temperature, a solution of $\mathrm{NaHCO}_{3}(200 \mathrm{mg}, 2.38 \mathrm{mmol})$ and Rochelle salt (440 $\mathrm{mg}, 1.56 \mathrm{mmol})$ in water $(7.0 \mathrm{~mL})$ was added. The mixture was stirred for an additional 1 h and then evaporated. The nitrobenzene was removed azeotropically with water under reduced pressure. To the residue was added water and the precipitate was collected by filtration, washed with water, and dried under reduced pressure to give 3-[3-(dimethylamino)propoxy]-11-hydroxy-14-(3-hydroxy-4-methoxyphenyl)-2,12-dimethoxy-6H-
[1]benzopyrano $\left[4^{\prime}, 3^{\prime}: 4,5\right]$ pyrrolo[2,1- a]isoquinolin-6-one (14b ${ }^{\prime}$) as a pale gray powder $(47.5 \mathrm{mg}, 91 \%) . \mathrm{Mp} 250-255^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}): 3525,3401,1704,1427,1278,1218,1169,1041 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): $\delta 1.85$ (quin, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.14 (s, 6H), $2.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.87$ (s, 3H), $4.04(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 7.00-7.04(\mathrm{~m}, 2 \mathrm{H})$, $7.08(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.24(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.00(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}): $\delta 26.7,45.2,54.5,55.0,55.5$, 56.1, 66.9, 101.8, 105.3, 105.3, 106.6, 109.1, 110.7, 111.5, 112.5, $113.6,117.4,118.2,122.0,122.1,124.6,127.2,128.4,133.9$, $145.4,146.1,147.7,148.0,148.3,148.5,148.9,154.2$. HRDARTMS m / z. Calcd for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{8}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 585.22369$. Found: 585.22183.

To a suspension of $\mathbf{1 4 b} \mathbf{b}^{\prime}(20.0 \mathrm{mg}, 34.2 \mu \mathrm{~mol})$ in DCM (1.0 $\mathrm{mL})$ was added trifluoroacetic acid $(1.0 \mathrm{~mL})$ at room temperature. After stirring for 0.5 min at room temperature, the mixture was evaporated. The crude product was purified by column chromatography over Sephadex LH-20 (MeOH containing 0.1\% TFA) to give 14b as a brown solid ($21.6 \mathrm{mg}, 90 \%$). Mp 203$206{ }^{\circ} \mathrm{C}$. IR (KBr): 3409, 3132, 1682, 1424, 1277, 1205, 1169 , $1041 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 2.13$ (quin, $J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}$), $2.82(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}), 3.21$ (quin, $J=5.1 \mathrm{~Hz}, 2 \mathrm{H}$), $3.40(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.13(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.81(\mathrm{~s}, 1 \mathrm{H}), 7.00-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.21$ (s, 1H), 7.25 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.25$ (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.01$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.43(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 9.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}): $\delta 23.8,42.4,54.4,54.5,55.0,56.1,66.1,102.3$, 105.3, 106.7, 109.6, 110.7, 111.5, 112.7, 113.6, 117.4, 118.2, $121.9,122.0,124.6,127.2,128.2,133.9,145.4,146.0,147.7$, 148.0, 148.2, 148.4, 148.6, 154.2. HRDARTMS m / z. Calcd for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{8}\left[\left(\mathrm{M}-\mathrm{CF}_{3} \mathrm{COO}\right)^{+}\right]: 585.22369$. Found: 585.22208.
4.2.5.10. Trifluoroacetic acid salt of 2-[2-
(dimethylamino)ethoxy]-11-hydroxy-14-(3-hydroxy-4-methoxyphenyl)-3,12-dimethoxy-6H-
[1]benzopyrano[4', 3':4,5]pyrrolo[2,1-a]isoquinolin-6-one (14c)
Under an argon atmosphere, a nitrobenzene solution of AlCl_{3} ($1.0 \mathrm{M}, 400 \mu \mathrm{~L}, 0.400 \mathrm{mmol}$) was added dropwise to a solution of $\mathbf{1 3 c}(43.2 \mathrm{mg}, 66.0 \mu \mathrm{~mol})$ in $\mathrm{DCM}(3.0 \mathrm{~mL})$ at room temperature. After stirring for 40 h at room temperature, a solution of $\mathrm{NaHCO}_{3}(150 \mathrm{mg}, 1.79 \mathrm{mmol})$ and Rochelle salt (325 $\mathrm{mg}, 1.15 \mathrm{mmol})$ in water $(5.0 \mathrm{~mL})$ was added. The mixture was stirred for an additional 1 h and then evaporated. The nitrobenzene was removed azeotropically with water under reduced pressure. To the residue was added water and the precipitate was collected by filtration, washed with water, and dried under reduced pressure to give 2-[2-(dimethylamino)ethoxy]-11-hydroxy-14-(3-hydroxy-4-methoxyphenyl)-3,12-dimethoxy-6H-
[1]benzopyrano $\left[4^{\prime}, 3^{\prime}: 4,5\right]$ pyrrolo[2,1- a isoquinolin-6-one (14c') as a pale brown powder ($35.3 \mathrm{mg}, 94 \%$). Mp 189.5-192.5 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3435, 1677, 1417, 1272, 1217, 1163, $1027 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 2.16(\mathrm{~s}, 6 \mathrm{H}), 2.47(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.39(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, $6.78(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=1.8$ and 8.2 $\mathrm{Hz}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.21-7.24(\mathrm{~m}$, $2 \mathrm{H}), 9.00(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.38$ (br s, 1 H), 9.96 (br s, 1 H). ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}): $\delta 45.3,54.6,55.9,55.9,57.2,66.3$, 101.1, 105.3, 106.5, 106.7, 109.1, 110.7, 111.6, 112.6, 113.4, $117.5,118.1,122.0,122.0,124.7,127.2,128.4,134.0,144.3$, 146.3, 147.7, 148.0, 148.4, 148.6, 149.8, 154.3. HRDARTMS m / z. Calcd for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{8} \quad\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 571.20804. Found: 571.21021.

To a suspension of $\mathbf{1 4 \mathbf { c } ^ { \prime }}(20.0 \mathrm{mg}, 35.1 \mu \mathrm{~mol})$ in DCM (1.0 mL) was added trifluoroacetic acid (1.0 mL) at room temperature. After stirring for 0.5 min at room temperature, the mixture was evaporated. The crude product was purified by column chromatography over Sephadex LH-20 (MeOH containing 0.1\% TFA) to give 14 c as a brown solid ($22.6 \mathrm{mg}, 94 \%$). Mp 134$135{ }^{\circ} \mathrm{C}$. IR (KBr): $3395,1685,1418,1277,1205,1131,1024 \mathrm{~cm}^{-}$ ${ }^{1} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 2.83$ (s, 6 H), 3.38 (t, $J=6.1$ $\mathrm{Hz}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{q}, J=5.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=2.1$ and $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.00(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 9.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}): $\delta 42.9,54.5,55.3,56.1,56.2,64.3,101.6$, 105.3, 106.6, 109.4, 109.4, 110.8, 111.6, 112.8, 113.5, 117.4, $118.2,122.0,122.0,124.7,127.1,127.9,134.1,143.1,147.5$,
147.7, 148.0, 148.4, 148.6, $150.5,154.1$. HRDARTMS m / z. Calcd for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{8}\left[\left(\mathrm{M}-\mathrm{CF}_{3} \mathrm{COO}\right)^{+}\right]$: 571.20804. Found: 571.21068.
4.2.5.11. Trifluoroacetic acid salt of 3-[3-
(dimethylamino)propoxy]-2,11-dihydroxy-14-(3-hydroxy-4-methoxyphenyl)-12-methoxy-6H-
[1]benzopyrano[4',3':4,5]pyrrolo[2,1-a]isoquinolin-6-one (14d)
Under an argon atmosphere, a nitrobenzene solution of AlCl_{3} ($1.0 \mathrm{M}, 218 \mu \mathrm{~L}, 0.218 \mathrm{mmol}$) was added dropwise to a solution of $\mathbf{1 3 d}(20.0 \mathrm{mg}, 28.7 \mu \mathrm{~mol})$ in $\mathrm{DCM}(5.0 \mathrm{~mL})$ at room temperature. After stirring for 48 h at room temperature, a solution of $\mathrm{NaHCO}_{3}(55.0 \mathrm{mg}, 0.654 \mathrm{mmol})$ and Rochelle salt $(185 \mathrm{mg}, 0.654 \mathrm{mmol})$ in water $(3.3 \mathrm{~mL})$ was added and the mixture was evaporated. The nitrobenzene was removed azeotropically with water under reduced pressure. To the residue was added DCM (2.0 mL) and TFA (2.0 mL) and then the mixture was evaporated. The residue was purified by column chromatography over Sephadex LH-20 using following solvent systems (water containing $0.1 \% \mathrm{TFA}$, water $-\mathrm{MeOH}=1: 1$ containing 0.1% TFA, and MeOH containing $0.1 \% \mathrm{TFA}$) to give 14d as a brown solid ($19.3 \mathrm{mg}, 98 \%$). Mp 170-190 ${ }^{\circ} \mathrm{C}$ (dec) (sealed capillary). IR (KBr): 3351, 1682, 1425, 1280, 1202, 1163, $1041 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): $\delta 2.12$ (quin, $J=5.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.82(\mathrm{~s}, 6 \mathrm{H}), 3.28(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.90$ (s, 3H), $4.12(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.94$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=2.0$ and $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~s}$, $1 \mathrm{H}), 7.18$ (s, 1H), 7.21 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.23 (d, $J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 9.03(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 9.53 (br s, 1H), $9.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}): $\delta 23.8,42.4,54.4,54.5,55.9,65.9,102.1,105.2,106.7,109.1$, $110.2,111.1,111.6,112.7,113.6,117.5,118.0,122.0,122.0$, 124.7, 127.2, 128.1, 134.2, 143.1, 145.2, 147.5, 147.7, 148.0, 148.3, 148.5, 154.4. HRDARTMS m / z. Calcd for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{8}$ [(M-CF $\left.\left.{ }_{3} \mathrm{COO}\right)^{+}\right]: 571.20804$. Found: 571.20608.
4.2.5.12. Trifluoroacetic acid salt of 2,3-bis[2-(dimethylamino)ethoxy]-11-dihydroxy-14-(3-hydroxy-4-methoxyphenyl)-12-methoxy-6 H -
[1]benzopyrano[4', 3':4,5]pyrrolo[2,1-a]isoquinolin-6-one (14e)
Under an argon atmosphere, a nitrobenzene solution of AlCl_{3} $(1.0 \mathrm{M}, 120 \mu \mathrm{~L}, 0.120 \mathrm{mmol})$ was added dropwise to a solution of $\mathbf{1 3 e}(13.4 \mathrm{mg}, 18.8 \mu \mathrm{~mol})$ in $\mathrm{DCM}(1.0 \mathrm{~mL})$ at room temperature. After stirring for 48 h at room temperature, a solution of $\mathrm{NaHCO}_{3}(30.3 \mathrm{mg}, 0.361 \mathrm{mmol})$ and Rochelle salt $(102 \mathrm{mg}, 0.361 \mathrm{mmol})$ in water $(0.7 \mathrm{~mL})$ was added. The mixture was stirred for an additional 1 h and then evaporated. The nitrobenzene was removed azeotropically with water under reduced pressure. To the residue was added water and the precipitate was collected by filtration, washed with water, and dried under reduced pressure. To the product was added DCM $(1.0 \mathrm{~mL})$ and TFA $(1.0 \mathrm{~mL})$ and then the mixture was evaporated. The residue was purified by column chromatography over Sephadex LH-20 (MeOH containing 0.1\% TFA) to give 14e as a brown solid ($15.0 \mathrm{mg}, 93 \%$). Mp $95-100{ }^{\circ} \mathrm{C}$. IR (KBr): 3441, 1693, 1424, 1280, 1204, 1177, $1133 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): $\delta 2.82(\mathrm{~s}, 6 \mathrm{H}), 2.88(\mathrm{~s}, 6 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{t}, J=$ $4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.90-3.98(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{t}, J=5.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$ (dd, $J=2.1$ and $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.27 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 9.02(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 9.48 (br s, 1H), 10.04 (br s, 3H). ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSOd_{6}): $\delta 43.0,43.1,54.6,55.2,55.2,56.1,64.0,64.2,103.4,105.3$, 106.7, 108.9, 110.5, 110.9, 111.6, 113.0, 113.6, 117.4, 118.1, 122.0, 122.0, 124.7, 127.0, 127.7, 134.1, 143.4, 147.0, 147.7, 148.1, 148.3, 148.5, 148.7, 154.0. HRDARTMS m / z. Calcd for $\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{8}\left[\left(\mathrm{M}-2 \mathrm{CF}_{3} \mathrm{COO}-\mathrm{H}\right)^{+}\right]: 628.26589$. Found: 628.26746 .
4.2.5.13. Trifluoroacetic acid salt of 2,3-bis[3-
(dimethylamino)propoxy]-11-hydroxy-14-(3-hydroxy-4-methoxyphenyl)-12-methoxy-6H-
[1]benzopyrano[4',3':4,5]pyrrolo[2,1-a]isoquinolin-6-one (14f)
Under an argon atmosphere, a nitrobenzene solution of AlCl_{3} $(1.0 \mathrm{M}, 780 \mu \mathrm{~L}, 0.780 \mathrm{mmol})$ was added dropwise to a solution of $\mathbf{1 3 f}(90.2 \mathrm{mg}, 0.122 \mathrm{mmol})$ in $\mathrm{DCM}(19.5 \mathrm{~mL})$ at room temperature. After stirring for 84.5 h at room temperature, a solution of $\mathrm{NaHCO}_{3}(166 \mathrm{mg}, 1.97 \mathrm{mmol})$ and Rochelle salt (557 $\mathrm{mg}, 1.97 \mathrm{mmol})$ in water $(3.9 \mathrm{~mL})$ was added. The mixture was stirred for an additional 1 h and then evaporated. The nitrobenzene was removed azeotropically with water under reduced pressure. To the residue was added water and the precipitate was collected by filtration, washed with water, and dried under reduced pressure to give 2,3-bis[3-(dimethylamino)propoxy]-11-hydroxy-14-(3-hydroxy-4-
methoxyphenyl)-12-methoxy-6 H -
[1]benzopyrano[4', $\left.3^{\prime}: 4,5\right]$ pyrrolo[2,1- a]isoquinolin-6-one ($\left.\mathbf{1 4 f}^{\prime}\right)$ as a brown powder (80.0 mg , quant). $\mathrm{Mp} 180-210{ }^{\circ} \mathrm{C}$ (dec) (sealed capillary). IR (KBr): 3410, 1686, 1428, 1283, 1217, 1174 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): $\delta 1.63-1.70(\mathrm{~m}, 2 \mathrm{H})$, $1.82-1.89(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 6 \mathrm{H}), 2.17(\mathrm{~s}, 6 \mathrm{H}), 2.23-2.30(\mathrm{~m}, 2 \mathrm{H})$, 2.36-2.43 (m, 2H), $3.39(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$, 4.01-4.08 (m, 2H), $6.76(\mathrm{~s}, 1 \mathrm{H}), 6.97-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H})$, $7.15(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.24(\mathrm{~m}, 2 \mathrm{H}), 8.99(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}): $\delta 26.5,26.6,45.0,45.1$, $54.6,55.3,55.5,56.0,66.5,66.8,102.1,105.3,106.7,107.0$, $109.3,110.7,111.6,111.6,112.6,113.4,117.5,118.2,122.0$, 124.7, 127.2, 128.4, 133.9, 144.6, 146.2, 147.7, 148.1, 148.4, 148.6, 149.3, 154.3. HRDARTMS m/z. Calcd for $\mathrm{C}_{37} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{8}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 656.29719$. Found: 656.30016.

To a suspension of $\mathbf{1 4 f}^{\prime}(78.3 \mathrm{mg}, 0.106 \mathrm{mmol})$ in DCM (3.0 $\mathrm{mL})$ was added trifluoroacetic acid $(3.0 \mathrm{~mL})$ at room temperature. After stirring for 0.5 min at room temperature, the mixture was evaporated. The crude product was purified by column chromatography over Sephadex LH-20 (MeOH containing 0.1\% TFA) to give $\mathbf{1 4 f}$ as a brown solid (94.2 mg , quant). Mp 110$130{ }^{\circ} \mathrm{C}$ (dec) (sealed capillary). IR (KBr): $3435,1682,1426$, $1279,1206,1132 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 1.92-$ $2.00(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.81(\mathrm{~s}, 6 \mathrm{H}), 2.83(\mathrm{~s}, 6 \mathrm{H})$, $3.06-3.13(\mathrm{~m}, 2 \mathrm{H}), 3.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.59-$ $3.70(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.13(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H})$, $7.01(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=2.0$ and $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ (s, 1H), $7.19(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $9.00(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.84$ (br s, 1H), $9.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}): $\delta 23.7,23.7,42.3,42.4,54.1,54.2,54.6,56.1,65.7$, 66.1, 102.6, 105.3, 106.7, 107.3, 109.7, 110.8, 111.6, 112.8, 113.6, 117.4, 118.2, 122.0, 122.1, 124.7, 127.2, 128.1, 134.0, $144.1,146.5,147.7,148.0,148.5,148.6,148.7,154.2$. HRDARTMS m/z. Calcd for $\mathrm{C}_{37} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{8}\left[\left(\mathrm{M}-2 \mathrm{CF}_{3} \mathrm{COO}-\mathrm{H}\right)^{+}\right]$: 656.29719. Found: 656.29442.
4.2.5.14. Methanesulfonic acid salt of 11-hydroxy-14-(3-hydroxy-4-methoxyphenyl)-12-methoxy-2,3-bis(3-morpholinopropoxy)-6H-[1]benzopyrano[4',3':4,5]pyrrolo[2,1-a]isoquinolin-6-one (14g)

Under an argon atmosphere, a nitrobenzene solution of AlCl_{3} $(1.0 \mathrm{M}, 310 \mu \mathrm{~L}, 0.310 \mathrm{mmol})$ was added dropwise to a solution of $\mathbf{1 2 g}(40.0 \mathrm{mg}, 48.5 \mu \mathrm{~mol})$ in $\mathrm{DCM}(3.0 \mathrm{~mL})$ at room temperature. After stirring for 42 h at room temperature, a solution of $\mathrm{NaHCO}_{3}(78.0 \mathrm{mg}, 0.928 \mathrm{mmol})$ and Rochelle salt $(262 \mathrm{mg}, 0.928 \mathrm{mmol})$ in water $(1.0 \mathrm{~mL})$ was added. The mixture was stirred for an additional 2 h and then evaporated. The nitrobenzene was removed azeotropically with water under reduced pressure. The residue was diluted with water and the
precipitate was collected by filtration, washed with ether, and dried under reduced pressure to give 11-hydroxy-14-(3-hydroxy-4-methoxyphenyl)-12-methoxy-2,3-bis(3-morpholinopropoxy)$6 H$-[1]benzopyrano $\left[4^{\prime}, 3^{\prime}: 4,5\right]$ pyrrolo $[2,1-a]$ isoquinolin- 6 -one
$\left(\mathbf{1 4 g} \mathbf{g}^{\prime}\right)$ as a pale brown powder $(28.0 \mathrm{mg}, 78 \%)$. The filtrate was extracted with ethyl acetate-THF (1:1). The extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by column chromatography over silica gel 60 N (ethyl acetate to ethyl acetate $-\mathrm{MeOH}=1: 1$) to give an additional $\mathbf{1 4 g} \mathbf{g}^{\prime}(4.8 \mathrm{mg}, 13 \%)$. $\mathrm{Mp}>300^{\circ} \mathrm{C}$ (sealed capillary). IR (KBr): 1697, 1423, 1276, 1205, $1165,1115,1032 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 1.67$ (quin, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 1.87 (quin, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), $2.28(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.30-2.38(\mathrm{~m}, 8 \mathrm{H}), 2.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{~s}$, $3 \mathrm{H}), 3.53-3.61(\mathrm{~m}, 10 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.06(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H})$, $6.77(\mathrm{~s}, 1 \mathrm{H}), 6.98-7.01(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.19$ (s, 1H), 7.20-7.24 (m, 2H), 8.99 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 9.41 (br s, $1 \mathrm{H}), 9.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}): $\delta 25.6$, 25.8, 53.3, 53.4, 54.6, 54.6, 54.8, 56.0, 66.2, 66.2, 66.6, 66.9, $102.2,105.3,106.7,107.1,109.3,110.7,111.6,112.6,113.4$, $117.5,118.2,122.0,122.0,124.7,127.2,128.4,133.9,144.6$, 146.2, 147.7, 148.0, 148.3, 148.6, 149.3, 154.3. HRDARTMS m / z. Calcd for $\mathrm{C}_{41} \mathrm{H}_{46} \mathrm{~N}_{3} \mathrm{O}_{10}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 740.31832. Found: 740.31675.

To a suspension of $\mathbf{1 4 \mathbf { g } ^ { \prime }}(19.3 \mathrm{mg}, 26.1 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(4.0$ mL) was added a MeOH solution of $\mathrm{MsOH}(0.105 \mathrm{M}, 498 \mu \mathrm{~L}$, $52.2 \mu \mathrm{~mol})$ at room temperature. The solution was passed through a pad of Sephadex LH-20 using MeOH as an eluent. The filtrate was evaporated and the residue was dried under reduced pressure to give $\mathbf{1 4 g}$ as a brown powder ($23.1 \mathrm{mg}, 95 \%$). Mp $225-228^{\circ} \mathrm{C}$. IR (KBr): 3400, 1698, 1423, 1278, 1193, $1059 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 1.99$ (br s, 2H), 2.16 (br s, 2H), $2.36(\mathrm{~s}, 6 \mathrm{H}), 3.00-3.55(\mathrm{~m}, 12 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.60-4.10(\mathrm{~m}$, $10 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 4.15(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=2.0$ and $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H})$, $7.21(\mathrm{~s}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $9.00(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.71$ (br s, 2H), 10.01 (br s, 1 H). ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}): $\delta 23.1,39.8,51.4$, 53.6, 53.7, 54.6, 56.2, 63.6, 65.9, 66.2, 102.8, 105.3, 106.7, 107.6, $109.8,110.8,111.6,112.8,113.7,117.5,118.2,122.0,122.2$, $124.8,127.2,128.2,134.1,144.1,146.5,147.7,148.0,148.5$, 148.7, 148.7, 154.2. HRDARTMS m / z. Calcd for $\mathrm{C}_{41} \mathrm{H}_{46} \mathrm{~N}_{3} \mathrm{O}_{10}$ [(M-2 $\left.\left.\mathrm{CH}_{3} \mathrm{SO}_{3}-\mathrm{H}\right)^{+}\right]: 740.31832$. Found: 740.31617 .

4.2.6. Synthesis of guanidinium-tethered lamellarin N analogues $18 a$ and $18 b$

4.2.6.1. 3-[2-(tert-Butoxycarbonylamino)ethoxy]-11-isopropoxy-14-(3-isopropoxy-4-methoxyphenyl)-2,12-dimethoxy-6H[1]benzopyrano[4', 3':4,5]pyrrolo[2,1-a]isoquinolin-6-one (15a)

Under an argon atmosphere, triphenylphosphine (59.0 mg , 0.227 mmol) and DIAD ($45.0 \mu \mathrm{~L}, 0.229 \mathrm{mmol}$) were added in sequence to a mixed solution of $\mathbf{1 2 a}(88.2 \mathrm{mg}, 0.151 \mathrm{mmol})$ and 2-(tert-butoxycarbonylamino)-1-ethanol ($36.7 \mathrm{mg}, 0.228 \mathrm{mmol}$) in THF (5 mL). After stirring for 5 h at room temperature, one drop of water was added to the mixture and the product was evaporated. The residue was purified by column chromatography over silica gel 60 N (hexane-ethyl acetate $=1: 1$) to give a mixture of 15a and diisopropyl hydrazinedicarboxylate. The latter hydrazine derivative was easily removed by bulb-to-bulb distillation ($120{ }^{\circ} \mathrm{C}, 0.1 \mathrm{mmHg}$) to leave $\mathbf{1 5 a}$ as a pale yellow solid ($99.0 \mathrm{mg}, 90 \%$). Mp $130-132{ }^{\circ} \mathrm{C}$. IR (KBr): 1709,1432 , 1267, 1224, 1166, $1038 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 1.36 (d, $J=6.1 \mathrm{~Hz}, 3 \mathrm{H}$), 1.36 (d, $J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.44$ (d, $J=6.1$ $\mathrm{Hz}, 6 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{q}, J=4.9$ $\mathrm{Hz}, 2 \mathrm{H}), 3.97$ (s, 3H), $4.09(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.55$ (sep, $J=6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.70(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H})$,
$6.95(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=$ 1.8 and $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.21(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.9,22.0,22.0,28.4,39.9,55.2,55.4,56.4$, $68.9,71.2,71.3,79.6,102.8,105.5,105.6,107.9,110.4,110.8$, 111.1, 112.4, 112.7, 118.1, 119.0, 123.2, 124.1, 124.7, 128.2, $129.2,134.5,146.0,146.6,148.2,148.5,148.5,150.2,150.3$, 155.4, 155.9. HRDARTMS m/z. Calcd for $\mathrm{C}_{41} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{10}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 727.32307$. Found: 727.32476.
4.2.6.2. 3-[3-(tert-Butoxycarbonylamino)propoxy]-11-
isopropoxy-14-(3-isopropoxy-4-methoxyphenyl)-2,12-dimethoxy-
6H-[1]benzopyrano[4', 3':4,5]pyrrolo[2,1-a]isoquinolin-6-one (15b)

According to the procedure described for the preparation of 15a, 12a ($50.0 \quad \mathrm{mg}, \quad 85.7 \quad \mu \mathrm{~mol}$) and 3 -(tert-butoxycarbonylamino)-1-propanol ($22.6 \mathrm{mg}, 0.129 \mathrm{mmol}$) were reacted. After purification by column chromatography over silica gel 60 N (hexane-ethyl acetate $=2: 1-1: 1$), a mixture of $\mathbf{1 5 b}$ and diisopropyl hydrazinedicarboxylate was obtained. The latter hydrazine derivative was easily removed by bulb-to-bulb distillation ($120^{\circ} \mathrm{C}, 0.1 \mathrm{mmHg}$) to leave $\mathbf{1 5 b}$ as a pale yellow solid ($55.4 \mathrm{mg}, 87 \%$). Mp $108-115{ }^{\circ} \mathrm{C}$. IR (KBr): 1705, 1432, 1268, 1223, 1165, $1038 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $1.36(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 6 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.98-2.08(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{q}, J=5.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{t}, J=5.6 \mathrm{~Hz}$, 2H), 4.56 (sep, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.70 (sep, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.51 (br s, 1H), $6.74(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.10(\mathrm{~s}, 1 \mathrm{H}), 7.14-7.23(\mathrm{~m}, 4 \mathrm{H}), 9.20(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.9,22.0,22.0,28.5,29.1,39.0$, $55.1,55.3,56.4,68.4,71.2,71.3,78.9,101.6,105.1,105.6,107.8$, $110.3,110.4,111.0,112.4,112.7,118.1,119.0,123.1,124.1$, $124.7,128.2,129.3,134.5,145.8,146.6,148.2,148.5,148.6$, $150.2,150.2,155.5,156.1$. HRDARTMS m / z. Calcd for $\mathrm{C}_{42} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{10}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 741.33872$. Found: 741.33968.
4.2.6.3. Trifluoroacetic acid salt of 3-(2-aminoethoxy)-11-isopropoxy-14-(3-isopropoxy-4-methoxyphenyl)-2,12-dimethoxy-6H-[1]benzopyrano[4',3':4,5]pyrrolo[2,1-a]isoquinolin-6-one (16a)

To a solution of $\mathbf{1 5 a}(49.5 \mathrm{mg}, 68.1 \mu \mathrm{~mol})$ in $\mathrm{DCM}(1.0 \mathrm{~mL})$ was added trifluoroacetic acid (1.0 mL) at room temperature. After stirring for 0.5 h , the mixture was concentrated to give 16a as a brown solid (50.6 mg , quant). Mp $150-160{ }^{\circ} \mathrm{C}$. IR (KBr): 1700, 1422, 1267, 1206, 1171, 1136, $1013 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 1.21$ (d, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}$), 1.22 (d, $J=6.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.31$ (d, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.31$ (d, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.24$ (br s, $2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.24(\mathrm{t}, J=5.2 \mathrm{~Hz}$, 2H), 4.57 (sep, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.75$ (sep, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$ (s, 1H), $7.11(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=1.8$ and $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J$ $=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 9.05(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}): $\delta 21.7,21.7,21.7,21.8$, $38.2,54.4,54.9,56.0,65.9,70.3,70.4,103.1,105.0,105.4,106.9$, $110.3,110.5,111.1,113.1,113.6,118.1,118.2,122.1,123.7$, $124.5,127.0,128.3,133.8,145.6,146.0,147.8,147.9,148.2$, 149.8, 150.3, 154.2. HRDARTMS m / z. Calcd for $\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{8}$ [$\left.\left(\mathrm{M}-\mathrm{CF}_{3} \mathrm{COO}\right)^{+}\right]: 627.27064$. Found: 627.27098.
4.2.6.4. Trifluoroacetic acid salt of 3-(3-aminopropoxy)-11-isopropoxy-14-(3-isopropoxy-4-methoxyphenyl)-2,12-dimethoxy-6H-[1]benzopyrano[4',3':4,5]pyrrolo[2,1-a]isoquinolin-6-one (16b)

According to the procedure described for the preparation of $\mathbf{1 6 a}, \mathbf{1 5 b}(26.7 \mathrm{mg}, 36.0 \mu \mathrm{~mol})$ was reacted to give $\mathbf{1 6 b}$ as a brown solid ($26.2 \mathrm{mg}, 96 \%$). Mp 140-145 ${ }^{\circ} \mathrm{C}$. IR (KBr): 1696,

1432, 1268, 1205, 1170, $1134 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO$\left.d_{6}\right): \delta 1.22$ (d, $\left.J=6.0 \mathrm{~Hz}, 6 \mathrm{H}\right), 1.30(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{~d}, J$ $=6.0 \mathrm{~Hz}, 3 \mathrm{H}$), 2.02 (quin, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.96 (sext, $J=6.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.09(\mathrm{t}, J=6.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.57$ ($\mathrm{sep}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.73 ($\mathrm{sep}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.67 (s, 1H), 7.08 (s, 1H), $7.08(\mathrm{~s}, 1 \mathrm{H}), 7.13$ (dd, $J=2.0$ and 8.2 Hz , $1 \mathrm{H}), 7.18$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ (d, J $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 8.98(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}): $\delta 21.7,21.7,21.7,21.8$, $26.7,36.4,54.4,54.9,56.0,65.7,70.2,70.5,102.0,105.0,105.1$, $106.8,109.5,110.4,110.9,112.9,113.5,118.1,122.0,123.8$, $124.5,127.1,128.4,133.8,145.4,146.1,147.8,148.1,148.4$, 149.7, $150.2,154.2$. HRDARTMS m / z. Calcd for $\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{8}$ $\left[\left(\mathrm{M}-\mathrm{CF}_{3} \mathrm{COO}\right)^{+}\right]: 641.28629$. Found: 641.28500 .

4.2.6.5. 3-\{2-[Bis(tert-

butoxycarbonylamino)methylideneaminolethoxy\}-11-isopropoxy-14-(3-isopropoxy-4-methoxyphenyl)-2,12-dimethoxy-6H-[1]benzopyrano[4',3':4,5]pyrrolo[2,1-a]isoquinolin-6-one (17a)

Under an argon atmosphere, a mixture of 16a ($91.2 \mathrm{mg}, 0.123$ mmol),
N, N^{\prime}-bis(tert-butoxycarbonyl)-1 H -pyrazole-1carboxamidine ($76.3 \mathrm{mg}, 0.246 \mathrm{mmol}$) and triethylamine ($34 \mu \mathrm{~L}$, 0.243 mmol) in chloroform (15 mL) was stirred for 19 h at room temperature. The mixture was evaporated and the residue was purified by column chromatography over silica gel 60 N (hexaneethyl acetate $=2: 1-1: 1$) to give 17a as a colorless powder (93.0 $\mathrm{mg}, 87 \%$). Mp 200-210 ${ }^{\circ} \mathrm{C}$ (dec) (sealed capillary). IR (KBr): 3326, 1716, 1643, 1420, 1268, 1159, 1139, $1041 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.35(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{~d}, J=6.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.44(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 3.45$ $(\mathrm{s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{dq}, J=1.6$ and $5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.97$ (s, $3 \mathrm{H}), 4.18(\mathrm{dt}, J=1.6$ and $5.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.70(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~s}$, $1 \mathrm{H}), 7.03$ (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.13$ (d, $J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=1.8$ and $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.76(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.23(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.9,22.0,22.0,28.1,28.3,40.0$, $55.2,55.6,56.4,68.1,71.2,71.3,79.4,83.0,103.5,105.6,106.0$, $107.9,110.4,111.1,111.1,112.4,112.8,118.1,119.1,123.2$, 124.1, 124.7, 127.3, 128.2, 128.4, 129.2, 134.5, 146.4, 146.6, $148.2, \quad 148.5,150.2,150.2,153.0,155.5,156.4,163.5$. HRFABMS m / z. Calcd for $\mathrm{C}_{47} \mathrm{H}_{57} \mathrm{~N}_{4} \mathrm{O}_{12}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 869.3973. Found: 869.3970.

4.2.6.6. 3-\{3-[Bis(tert-

butoxycarbonylamino)methylideneamino]propoxy\}-11-isopropoxy-14-(3-isopropoxy-4-methoxyphenyl)-2,12-dimethoxy-6H-[1]benzopyrano[4', $\left.3^{\prime}: 4,5\right]$ pyrrolo[2,1-a]isoquinolin- 6 -one (17b)

According to the procedure described for the preparation of $\mathbf{1 7 a}, \mathbf{1 6 b}(26.2 \mathrm{mg}, 34.7 \mu \mathrm{~mol})$ was reacted. After purification by column chromatography over silica gel 60 N (hexane-ethyl acetate $=2: 1-1: 1$), 17b was obtained as a colorless powder (23.1 $\mathrm{mg}, 75 \%$). Mp $120-170{ }^{\circ} \mathrm{C}$ (dec) (sealed capillary). IR (KBr): $3334,1725,1642,1421,1267,1165,1135 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.35(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.44(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 2.15$ (quin, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), $3.45(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{q}, J=6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.96$ (s, 3H), $4.10(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{sep}, J=6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.70(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H})$, 7.03 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.16 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ (s, 1H), $7.20(\mathrm{dd}, J=1.8$ and 8.1 $\mathrm{Hz}, 1 \mathrm{H}), 8.45(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.23(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 11.49$ (br s, 1H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.9,22.0,22.0,28.1$, 28.3, 28.7, 37.9, 55.2, 55.4, 56.4, 66.6, 71.2, 71.3, 79.3, 83.1, $102.1,105.4,105.6,107.9,110.3,110.4,111.1,112.4,112.7$, 118.1, 119.1, 123.2, 124.1, 124.7, 128.2, 129.4, 134.5, 146.0,
146.6, 148.2, $148.5,148.8,150.2,150.2,153.3,155.5,156.3$, 163.6. HRFABMS m/z. Calcd for $\mathrm{C}_{48} \mathrm{H}_{59} \mathrm{~N}_{4} \mathrm{O}_{12} \quad\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 883.4129. Found: 883.4133.
4.2.6.7. Trifluoroacetic acid salt of 3-(2-guanidinoethoxy)-11-isopropoxy-14-(3-isopropoxy-4-methoxyphenyl)-2,12-dimethoxy-6H-[1]benzopyrano[4',3':4,5]pyrrolo[2,1-a]isoquinolin-6-one (18a)

Under an argon atmosphere, a nitrobenzene solution of AlCl_{3} ($1.0 \mathrm{M}, 461 \mu \mathrm{~L}, 0.461 \mathrm{mmol}$) was added dropwise to a solution of $17 \mathrm{a}(40.0 \mathrm{mg}, 46.0 \mu \mathrm{~mol})$ in $\mathrm{DCM}(7.0 \mathrm{~mL})$ at room temperature. After stirring for 48 h at room temperature, a solution of $\mathrm{NaHCO}_{3}(116 \mathrm{mg}, 1.38 \mathrm{mmol})$ and Rochelle salt (389 $\mathrm{mg}, 1.38 \mathrm{mmol})$ in water $(2.7 \mathrm{~mL})$ was added and the mixture was evaporated. The nitrobenzene was removed azeotropically with water under reduced pressure. To the residue was added DCM (2.0 mL) and TFA (2.0 mL) and then the mixture was evaporated. The residue was purified by column chromatography over Sephadex LH-20 using following solvent systems (water containing 0.1% TFA, water $-\mathrm{MeOH}=1: 1$ containing 0.1% TFA, and MeOH containing $0.1 \% \mathrm{TFA}$) to give $\mathbf{1 8 a}$ as a brown powder ($14.7 \mathrm{mg}, 46 \%$). $\mathrm{Mp} 130-170{ }^{\circ} \mathrm{C}$ (dec) (sealed capillary). IR (KBr): 3166, 1685, 1422, 1275, 1205, 1170, $1131 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 3.40(\mathrm{~s}, 6 \mathrm{H}), 3.55(\mathrm{q}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}$), $3.87(\mathrm{~s}, 3 \mathrm{H}), 4.14(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=$ 2.1 and $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.17$ (s, 1H), $7.20(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.30$ (br s, 4H), 7.75 (t, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.99$ (d, $J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 9.42$ (br s, 1 H), 10.01 (br s, 1H). ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}): $\delta 29.6,54.6,55.0,56.1,67.1,102.4,105.3,105.4$, 106.7, 109.9, 110.8, 111.6, 112.7, 113.6, 117.4, 118.2, 122.0, $122.1,124.7,127.2,128.2,134.0,145.3,146.0,147.7,148.0$, 148.1, 148.4, 148.6, 154.2, 157.2. HRFABMS m/z. Calcd for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{8}\left[\left(\mathrm{M}-\mathrm{CF}_{3} \mathrm{COO}\right)^{+}\right]: 585.1985$. Found: 585.1989.
4.2.6.8. Trifluoroacetic acid salt of 3-(3-guanidinopropoxy)-11-isopropoxy-14-(3-isopropoxy-4-methoxyphenyl)-2,12-dimethoxy-6H-[1]benzopyrano[4',3':4,5]pyrrolo[2,1-a]isoquinolin-6-one (18b)

According to the procedure described for the preparation of $\mathbf{1 8 a}, \mathbf{1 7 b}(13.0 \mathrm{mg}, 14.7 \mu \mathrm{~mol})$ was reacted. After purification by column chromatography over Sephadex LH-20 using following solvent systems (water containing 0.1% TFA, water- $\mathrm{MeOH}=$ $1: 1$ containing $0.1 \% \mathrm{TFA}$, and MeOH containing $0.1 \% \mathrm{TFA}$),
18b was obtained as a brown powder ($8.9 \mathrm{mg}, 81 \%$). Mp 150$170{ }^{\circ} \mathrm{C}$ (dec) (sealed capillary). IR (KBr): 3366, 1678, 1423, 1277, 1204, $1168,1132 \mathrm{~cm}^{-1} .{ }^{1}$ H NMR (500 MHz, DMSO- d_{6}): δ 1.95 (quin, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), $3.26(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H})$, $3.40(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.08(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H})$, $7.01(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=2.1$ and $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (s, 1H), $7.18(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 7.23(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.00$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $9.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}): $\delta 28.0,37.8,54.6,55.0,56.1,65.8,102.1$, 105.3, 105.3, 106.7, 109.5, 110.7, 111.6, 112.7, 113.6, 117.4, $118.2,122.0,122.1,124.7,127.2,128.3,134.0,145.4,146.1$, 147.7, 148.0, $148.4,148.5,148.6,154.2,156.8$. HRFABMS m / z. Calcd for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{8}\left[\left(\mathrm{M}-\mathrm{CF}_{3} \mathrm{COO}\right)^{+}\right]$: 599.2142 . Found: 599.2145.

4.3. Determination of the water solubility of $\mathbf{1 4 b}$ and $\mathbf{1 4 f}$

Water solubility for $\mathbf{1 4 b}$ and $\mathbf{1 4 f}$ was determined by an HPLC method. ${ }^{43}$ An excess amount of the solid sample was added to water and the resulting mixture was sonicated for 15 min at room temperature and then passed through a Minisart RC syringe filter (pore size, $0.2 \mu \mathrm{~m}$; Sartorius). Aliquots ($0.4 \mu \mathrm{~L}$) of the filtrate were injected into the HPLC system equipped with an Inertsil

Diol column (particle size, $5 \mu \mathrm{~m} ; 250 \times 4.6 \mathrm{~mm}$ I.D.; GL Sciences), eluting with methanol (0.01% trifluoroacetic acid). One point calibration was done by injecting $0.4 \mu \mathrm{~L}$ aliquots of the corresponding water solutions of $\mathbf{1 4 b}$ and $\mathbf{1 4 f}$ with known concentrations.

4.4. In vitro kinase assay-general

Recombinant kinase domains (amino residues 696 to the Cterminus) of the EGFR WT and T790M/L858R (Cell Signaling Technology) (100 ng) were preincubated with $1-10,000 \mathrm{nM}$ of lamellarins in 25 mL of kinase reaction buffer (120 mM HEPES, pH 7.5; $10 \mathrm{mM} \mathrm{MnCl} 2 ; 6 \mathrm{mM} \mathrm{Na} 3 \mathrm{VO}_{4}$; and 2.5 mM DTT) at $25{ }^{\circ} \mathrm{C}$ for 30 min . Then, 25 mL ATP/substrate solution containing 20 mM of ATP and 6 mM poly (Glu-Tyr) biotinylated peptide (Cell Signaling Technology) was added to the preincubation. The kinase reaction was performed at $25^{\circ} \mathrm{C}$ for 30 min and terminated by adding 50 mL of 50 mM of EDTA, pH 8.0. Phosphorylation levels were quantified using ELISA with avidin-coated 96 -well plates and an anti-phosphotyrosine antibody (PY20). Relative inhibitions were calculated from at least three independent experiments, and IC_{50} values were estimated using the mean relative inhibition. ${ }^{47}$

4.5. Docking simulation

Docking studies were performed using MOE 2014.0901. ${ }^{34}$ Crystal structures of EGFR (T790M/L858R/V948R)-gefitinib complex (PDB ID: 4I22) ${ }^{33}$ was obtained from the Protein Data Bank. The protein structures for the docking was prepared by the following sequence: (i) A EGFR (T790M/L858R/V948R)gefitinib complex was loaded. (ii) To the complex was added hydrogen atoms and electric charge by Protonate 3D (default settings), (iii) The hydrogen atoms were optimized by MMFF94x force field (the heavy atoms were fixed during the optimization). (iv) The dummy atoms were disposed in the docking site by Site Finder (default settings). On the other hand, the conformers of 2, $\mathbf{1 4 b}, \mathbf{1 4 d}, \mathbf{1 4 f}$, and 18b were obtained by Conformational Search using the LowModeMD search method with default parameters except for the followings: the hydrogens check box was selected in order to include both hydrogen and heavy atoms in the RMSD calculation for duplication detection and the value of energy window was set to $10 \mathrm{kcal} / \mathrm{mol}$. Finally, the ligands were docked into the binding site of the kinases by using the Dock docking program according to the following sequence: (i) Initial poses were obtained using the Triangle Matcher placement (timeout: 3000 s ; No. of return poses: 10000), London dG rescoring 1 (the maximum number of poses: 500), GridMin refinement (default settings), and GBVI/WSA dG rescoring 2 (the maximum number of poses: 100). (ii) The poses obtained in (i) were refined by Forcefield refinement (default settings) and rescored by GBVI/WSA dG scoring function (the maximum number of poses: 100). (iii) The poses obtained in (ii) were refined by Forcefield refinement (sidechain: tether, the tether value was set to 10) and rescored by GBVI/WSA dG scoring function (the maximum number of poses: 100). (iv) The poses obtained in (iii) were refined by Forcefield refinement (sidechain: free) and rescored by GBVI/WSA dG scoring function (the maximum number of poses: 100). The obtained poses were evaluated using the GBVI/WSA dG scoring function and the plausible low energy binding modes of these lamellarins in the kinase are shown in Fig. 6.

Acknowledgments

This work was financially supported by Grant-in-Aids for Scientific Research (B) (Grant No. 26293028) and for Scientific Research (C) (Grant No. 15K01802) from the Japan Society for
the Promotion of Science (JSPS). We thank Screening Committee of Anticancer Drugs supported by Grant-in-Aid for Scientific Research on Innovative Areas, Scientific Support Programs for Cancer Research, from The Ministry of Education, Culture, Sports, Science and Technology, Japan for the compound evaluations.

Supplementary data

Supplementary data (synthesis of $\mathbf{8 a - g}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of all compounds synthesized in this work) can be found, in the online version, at doi:10.1016/j.bmc.2017.00.000.

References

1. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2:127-137.
2. Hynes NE, Lane HA. ERBB receptors and cancer: The complexity of targeted inhibitors. Nat Rev Cancer. 2005;5:341-354.
3. Ferguson KM. Structure-based view of epidermal growth factor receptor regulation. Annu Rev Biophys. 2008;37:353-373.
4. Wang Z, Longo PA, Tarrant MK, Kim K, Head S, Leahy DJ, Cole PA. Mechanistic insights into the activation of oncogenic forms of EGF receptor. Nat Struct Mol Biol. 2011;18:1388-1393.
5. Valley CC, Arndt-Jovin DJ, Karedla N, Steinkamp MP, Chizhik AI, Hlavacek WS, Wilson BS, Lidke KA, Lidke DS. Enhanced dimerization drives ligand-independent activity of mutant epidermal growth factor receptor in lung cancer. Mol Biol Cell 2015;26:4087-4099.
6. Cohen MH, Williams GA, Sridhara R, Chen G, Pazdur R. FDA drug approval summary gefitinib (ZD1839) (Iressa) tablets. Oncologist. 2003;8:303-306.
7. Dowell J, Minna JD, Kirkpatrick P. Erlotinib hydrochloride. Nat Rev Drug Discovery. 2005;4:13-14.
8. Engelman JA, Jänne PA. Mechanism of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. Clin Cancer Res. 2008;14:2895-2899.
9. Yun CH, Mengwasser KE, Toms AV, Woo MS, Greulich H, Wong KK, Meyerson M, Eck MJ. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci U S A. 2008;105:2070-2075.
10. Li D, Ambrogio L, Shimamura T, Kubo S, Takahashi M, Chirieac L R, Padera RF, Shapiro GI, Baum A, Himmelsbach F, Rettig WJ, Meyerson M, Solca F, Greulich H, Wong KK. BIBW2992, an irreversible EGFR/HER 2 inhibitor highly effective in preclinical lung cancer models. Oncogene. 2008;27:4702-4711.
11. Kim Y, Ko J, Cui ZY, Abolhoda A, Ahn JS, Ou SH, Ahn MJ, Park K. The EGFR T790M mutation in acquired resistance to an irreversible second-generation EGFR inhibitor. Mol Cancer Ther. 2012;11:784-791.
12. Zhou W, Ercan D, Chen L, Yun CH, Li D, Capelletti M, Cortot AB, Chirieac L, Icob RE, Padera R, Engen JR, Wong KK, Eck MJ, Gray NS, Jänne PA. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature. 2009;462:1070-1074.
13. Walter AO, Sjin RTT, Haringsma HJ, Ohashi K, Sun J, Lee K, Dubrovskiy A, Labenski M, Zhu Z, Wang Z, Sheets M, Martin TS, Karp R, van Kalken D, Chaturvedi P, Niu D, Nacht M, Petter RC, Westlin W, Lin K, Jaw-Tsai S, Raponi M, Dyke TV, Etter J, Weaver Z, Pao W, Singh J, Simmons AD, Harding TC, Allen A. Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790Mmediated resistance in NSCLC. Cancer Discov. 2013;3:1404-1415.
14. Cross, DAE, Ashton SE, Ghiorghiu S, Eberlein C, Nebhan CA, Spitzler PJ, Orme JP, Finlay MRV, Ward RA, Mellor MJ, Hughes G, Rahi A, Jacobs VN, Brewer MR, Ichihara E, Sun J, Jin H, Ballard P, AlKadhimi K, Rowlinson R, Klinowska T, Richmond GHP, Cantarini M, Kim DW, Ranson MR, Pao W. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 2014;4:1046-1061.
15. Thress KS, Paweletz CP, Felip E, Cho BC, Stetson D, Dougherty B, Lai Z, Markovets A, Viancos A, Kuang Y, Ercan D, Mattews SE, Cantarini M, Barrett JC, Jänne PA, Oxnard GR. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat Med. 2015;21:560-564.
16. Ercan D, Choi HG, Yun CH, Capelletti M, Xie T, Eck MJ, Gray NS, Jänne PA. EGFR mutations and resistance to irreversible pyrimidinebased EGFR inhibitors. Clin Cancer Res. 2015;21:3913-3923.
17. Jia Y, Yun CH, Park E, Ercan D, Manulia M, Juarez J, Rhee K, Chen T, Zhang H, Palakurthi S, Jang J, Lelais G, DiDonato M, Bursulaya B, Michellys PY, Epple R, Marsilje TH, McNeill M, Lu W, Harris J, Bender S, Wong KK, Jänne PA, Eck MJ. Overcoming EGFR(T790M)
and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature. 2016;534:129-132.
18. Uchibori K, Inase N, Araki M, Kamada M, Sato S, Okuno Y, Fujita N, Katayama R. Brigatinib combined with anti-EGFR antibody overcomes osimertinib resistant in EGFR-mutated non-smal-cell lung cancer. Nat Commun. 2017;8:14768.
19. Heald R, Bowman KK, Bryan MC, Burdick D, Chan B, Chan E, Chen Y, Clausen S, Dominguez-Fernandez B, Eigenbrot C, Elliott R, Hanan EJ, Jackson P, Knight J, La H, Lainchbury M, Malek S, Mann S, Merchant M, Mortara K, Purkey H, Schaefer G, Schmidt S, Seward E, Sideris S, Shao L, Wang S, Yeap K, Yen I, Yu C, Heffron TP. Noncovalent mutant selective epidermal growth factor receptor inhibitors: A lead optimization case study. J Med Chem. 2015;58:88778895.
20. Zhang R, Chen S, Zhang X, Yu R, Wan S, Geng M, Jiang T. Synthesis and evaluation of non-covalent binding quinazoline glycoside derivatives targeting the L858R and T790M variants of EGFR. RSC Adv. 2016;6:36857-36862.
21. Juchum M, Günther M, Döring E, Sievers-Engler A, Lämmerhofer M, Laufer S . Trisubstituted imidazoles with a rigidized hinge binding motif motif act as single digit nM inhibitors of clinically relevant EGFR L858R/T790M and L858R/T790M/C797S mutants: An example of target hopping. J Med Chem. 2017;60:4636-4656.
22. Fan H, Peng J, Hamann MT, Hu JF. Lamellarins and related pyrrolederived alkaloids from marine organisms. Chem Rev. 2008;108:264287.
23. Fukuda T, Ishibashi F, Iwao M. Synthesis and biological activity of lamellarins: An overview. Heterocycles. 2011;83:491-529.
24. Quesada AR, Grávalos MDG, Puentes JLF. Polyaromatic alkaloids from marine invertebrates as cytotoxic compounds and inhibitors of multidrug resistance caused by P-glycoprotein. Br J Cancer. 1996;74:677-682.
25. Ishibashi F, Tanabe S, Oda T, Iwao M. Synthesis and structure-activity relationship study of lamellarin derivatives. J Nat Prod. 2002;65:500504.
26. Chittchang M, Batsomboon P, Ruchirawat S, Ploypradith P. Cytotoxicity and structure-activity relationships of natural and unnatural lamellarins toward cancer cell lines. ChemMedChem. 2009;4:457-465.
27. Bailly, C. Anticancer Properties of Lamellarins. Mar Drugs. 2015;13:1105-1123.
28. Facompré M, Tardy C, Bal-Mahieu C, Colson P, Perez C, Manzanares I, Cuevas C, Bailly C. Lamellarin D: A novel potent inhibitor of topoisomerase I. Cancer Res. 2003;63:7392-7399.
29. Marco E, Laine W, Tardy C, Lansiaux A, Iwao M, Ishibashi F, Bailly C, Gago F. Molecular determinants of topoisomerase I poisoning by lamellarins: Comparison with camptotecin and structure-activity relationships. J Med Chem. 2005;48:3796-3807.
30. Baunbæk D, Trinkler N, Ferandin Y, Lozach O, Ploypradith P, Ruchirawat S, Ishibashi F, Iwao M, Meijer L. Anticancer alkaloid lamellarins inhibit protein kinases Mar Drugs. 2008;6:514-527.
31. Yoshida K, Itoyama R, Yamahira M, Tanaka J, Loaëc N, Lozach O, Durieu E, Fukuda T, Ishibashi F, Meijer L, Iwao M. Synthesis, resolution, and biological evaluation of Atroisomeric ($\mathrm{a} R$)- and (aS)-16methyllamellarin N : Unique effects of the axial chirality on the
selectiveity of protein kinases inhibition. J Med Chem. 2013;56:72897301.
32. Fukuda T, Itoyama R, Minagawa T, Iwao M. Rotational energy barrier around the C1-C11 single bond in lamellarins: A study by variabletemperature NMR. Heterocycles. 2014;88:1121-1133.
33. Gajiwala KS, Feng J, Ferre R, Ryan K, Brodsky O, Weinrich S, Kath JC, Stewart A. Insights into the aberrant activity of mutant EGFR kinase domain and drug recognition. Structure. 2013;21:209-219.
34. Molecular Operating Environment (MOE), version 2014.0901; Chemical Computing Group Inc.: Montreal, Quebec, Canada, 2014; http://www.chemcomp.com.
35. Komatsubara M, Umeki T, Fukuda T, Iwao M. Modular synthesis of lamellarins via regioselective assembly of 3,4,5-differentially arylated pyrrole-2-carboxylates. J Org Chem. 2014;79:529-537.
36. Imbri D, Tauber J, Opatz T. Synthetic approaches to the lamellarins-A comprehensive review. Mar Drugs. 2014;12:6142-6177.
37. Murata S, Suzuki M, Noyori R. Trimethylsilyl triflate catalyzed aldoltype reaction of enol silyl ethers and acetals or related compounds. Tetrahedron. 1988;44:4259-4275.
38. Fujikawa N, Ohta T, Yamaguchi T, Fukuda T, Ishibashi F, Iwao M. Total synthesis of lamellarins D, L, and N. Tetrahedron. 2006;62:594604.
39. Kamiyama H, Kubo Y, Sato H, Yamamoto N, Fukuda T, Ishibashi F, Iwao M. Synthesis, structure-activity relationships, and mechanism of action of anti-HIV-1 lamellarin α 20-sulfate analogues. Bioorg Med Chem. 2011;19:7541-7550.
40. Theppawong A, Ploypradith P, Chuawong P, Ruchirawat S, Chittchang M. Facile and divergent synthesis of lamellarins and lactam-containing derivatives with improved drug likeness and biological activities. Chem Asian J. 2015;10:2631-2650.
41. Yoshino H, Tsuchiya Y, Saito I, Tsuji M. Promoting effect of pentamethylbenzene on the deprotection of O-benzyltyrosine and N^{ε} benzyloxycarbonyllysine with trifluoroacetic acid. Chem Pharm Bull. 1987;35:3438-3441.
42. Banwell MG, Flynn BL, Stewart SG. Selective cleavage of isopropyl aryl ethers by aluminum trichloride. J Org Chem. 1998;63:9139-9144.
43. Vogel GH. Determination of Solubility by Hyphenated HPLC Methods. In Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays; Springer: New York, 2006; pp 400-402.
44. Conley MP, Valero J, de Mendoza J. Guanidinium-based receptors for oxyanions. Supramol Chem Mol Nanomater. 2012;1101-1123.
45. Bernatowicz MS, Wu Y, Matsuda GR. Urethane protected derivatives of 1-guanylpyrazole for mild and efficient preparation of guanidines. Tetrahedron Lett. 1993;34:3389-3392.
46. Noguchi, T, Roy B, Yoshihara D, Tsuchiya Y, Yamamoto T, Shinkai S. Translation of dicarboxylate structural information to fluorometric optical signals through self-assembly of guanidinium-tethered oligophenylenevinylene. Chem Eur J. 2014;20:13938-13944.
47. Nishiya N, Sakamoto Y, Oku Y, Nonaka T, Uehara Y. JAK3 inhibitor VI is a mutant specific inhibitor for epidermal growth factor receptor with the gatekeeper mutation T790M. World J Biol Chem. 2015;6:409418.

[^0]: * Corresponding author.

 E-mail address: iwao@nagasaki-u.ac.jp (M. Iwao).

