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Abstract. In this paper, we propose an acceleration of collapsed vari-
ational Bayesian (CVB) inference for latent Dirichlet allocation (LDA)
by using Nvidia CUDA compatible devices. While LDA is an efficient
Bayesian multi-topic document model, it requires complicated computa-
tions for parameter estimation in comparison with other simpler docu-
ment models, e.g. probabilistic latent semantic indexing, etc. Therefore,
we accelerate CVB inference, an efficient deterministic inference method
for LDA, with Nvidia CUDA. In the evaluation experiments, we used
a set of 50,000 documents and a set of 10,000 images. We could obtain
inference results comparable to sequential CVB inference.

1 Introduction

In this paper, we present an application of general-purpose GPU to parameter in-
ference for probabilistic document models. We accelerate an inference method,
called collapsed variational Bayesian (CVB) inference [12], for a well-known
Bayesian multi-topic document model, latent Dirichlet allocation (LDA) [3], by
using Nvidia compute unified device architecture (CUDA) [1] compatible devices.
First of all, we summerize our two main contributions. Our research is the first
attempt to parallelize CVB inference, and also the first attempt to parallelize
inference for LDA by using GPU. The rest of the paper is organized as follows.
Section 2 includes the background of our research. Section 3 presents the details
of parallelized CVB inference for LDA. Section 4 shows how to implement par-
allelized CVB inference by using Nvidia CUDA compatible devices. Section 5
provides the results of our experiments. Section 6 concludes the paper.

2 Background

2.1 Latent Dirichlet allocation

LDA [3] is a Bayesian multi-topic document model. The term Bayesian refers
to probabilistic models where, after introducing prior distributions, posterior
distribution is estimated not by a specific set of parameter values, but as a



distribution over all possible parameter values. The meaning of the term multi-
topic can be explained as follows. In document modeling, topic is often identified
with a multinomial distribution defined over words, because semantic differences
are reflected in what kind of words are frequently used. In LDA, a set of words
constituting one document are drawn from more than one multinomials. Namely,
documents are modeled as a mixture of multiple topics.

While LDA is originally proposed as a probabilistic model of documents,
we can find its applications in various research fields [13][14]. However, due to
complicated model structure, LDA requires acceleration when applied to datasets
of large size. We can apply Expectation-Maximization (EM) algorithm to simpler
document models, e.g. Dirichlet compound multinomial [7] and probabilistic
latent semantic indexing [6]. EM algorithm can be efficiently implemented in a
parallelized manner [4]. In contrast, we cannot use EM for LDA. Therefore, we
propose an acceleration customized for LDA by using general-purpose GPU.

2.2 Collapsed variational Bayesian inference

The following three inference methods are so far proposed for LDA: variational
Bayesian (VB) inference [3], collapsed Gibbs sampling [5], and CVB inference.
In this paper, we focus on CVB inference due to the following two reasons. First,
both VB and CVB inferences use variational method to obtain a tractable poste-
rior distribution. While variational method introduces approximation, CVB in-
ference can achieve less approximation than VB for LDA [12]. Second, collapsed
Gibbs sampling incorporates randomization. Therefore, we should carefully de-
termine when to stop inference iteration. In contrast, CVB and VB inferences are
deterministic methods. It is relatively easy to decide when to terminate iteration.

Among these three inference methods, VB inference and collapsed Gibbs
sampling have already been parallelized by using PC clusters [8][11][10]. How-
ever, both methods divide a given dataset into smaller subsets and process the
subsets in parallel. As far as intermediate results are appropriately broadcasted
in the course of inference, we can adopt this coarse-grained parallelization only
by introducing negligible approximations. Our research focuses on another par-
allelism appearing in parameter update formula of CVB inference. Our method
is based on fine-grained parallelism, whose details are outlined below.

Parameters to be estimated in CVB inference for LDA are indexed by doc-
uments, words, and topics. Let j = 1, . . . , J , w = 1, . . . ,W , and k = 1, . . . ,K
be the indexes of documents, words, and topics, respectively. Let γjwk denote
parameters to be estimated for all document/word pairs j, w and for all topics
k. Intuitively speaking, γjwk means how strongly word w in document j relates
to topic k. An outline of one iteration, i.e. one dataset scan, of CVB inference
for LDA is shown in Fig. 1. When the number of unique document/word pairs
is M , time complexity of each iteration is O(MK).

Our fine-grained parallelism originates from the fact that parameters corre-
sponding to different topics can be updated independently. Namely, all values
required for updating parameters indexed by a specific k are also indexed by the
same k. Therefore, we can conduct K update computations in parallel, where K



for each document j in a given document set
for each word w appearing in document j

for each topic k
update γjwk

next
normalize γjw1, . . . , γjwK so that

∑K
k=1 γjwk = 1 holds

next
next

Fig. 1. An outline of one iteration of CVB inference for LDA.

is the number of topics. This is the fine-grained parallelism used by our method.
However,

∑
k γjwk = 1 should hold for each document/word pair j, w. This nor-

malization can be realized by a standard reduction (See Fig. 2) of O(logK) time.
Therefore, time complexity of each iteration is reduced to O(M logK). Further,
our fine-grained parallelism is orthogonal to coarse-grained parallelism, and thus
both types of parallelism can be combined.

Recently, a new acceleration method of collapsed Gibbs sampling for LDA
appears [9]. This method reduces time complexity by an algorithmic elaboration.
Interestingly, our method shares the same intuition, because both methods try
to reduce O(K) factor of time complexity for LDA inferences.

2

O(logK)

Fig. 2. A standard parallel reduction for parameter normalization

3 Details of Parallelized Inference

3.1 Task of CVB inference for LDA

We can describe LDA document model as a process of generating documents.
First, we draw a topic multinomial distribution Mul(θj) for each document j
from a symmetric Dirichlet prior distribution Dir(α). Second, we draw a word
multinomial Mul(φk) for each topic k from another symmetric Dirichlet prior
Dir(β). Then, we can generate document j by repeating the following procedure
as many times as the number of word tokens in document j: draw a topic from
Mul(θj), and then draw a word from Mul(φk) when the drawn topic is k. This
generative description leads to full joint distribution as follows:

p(x, z, θ, φ;α, β) =
∏

k

p(φk;α)
∏

j

p(θj ;β) ·
∏

j

∏

i

p(zji|θj)p(xji|φzij ) (1)



where xji is the random variable whose value is ith word token in document j,
and zji is the random variable whose value is the topic used to draw ith word
token in document j. In this paper, we say that topic k is assigned to a certain
word token when the word token is drawn from a word multinomial Mul(φk).

From Eq. (1), we obtain posterior distribution p(z, θ, φ|x;α, β) as p(x, z, θ, φ;
α, β) /p(x;α, β). However, marginal likelihood p(x;α, β) is intractable. There-
fore, we approximate posterior by variational method. Let q(z, θ, φ) denote an
approximated posterior. Then, log marginal likelihood can be lower bounded as:

log p(x;α, β) ≥
∫ ∫ ∑

z

q(z, θ, φ) log
p(x, z, θ, φ;α, β)

q(z, θ, φ)
dθdφ (2)

In CVB inference, we assume that topic assignments zji are mutually indepen-
dent and approximate posterior as:

q(z, θ, φ) = p(θ, φ|z,x, α, β)q(z) = p(θ, φ|z,x, α, β)
∏

j

∏

i

q(zji; γjxji) (3)

where q(zji; γjxji) is an approximated posterior probability of topic assignment
to ith word in document j. A set of K parameters γjw = {γjw1, . . . , γjwK} for
a fixed document/word pair j, w can be regarded as a topic multinomial distri-
bution. γjwk means how strongly word w in document j relates to topic k. By
using Eq. (3), the right hand side of Eq. (2) is reduced to

∑
z q(z) log p(x,z;α,β)

q(z) ,
where all model parameters θ, φ are marginalized out. This marginalization is de-
noted by the term collapsed. The task of CVB inference is to determine posterior
parameters by maximizing

∑
z q(z) log p(x,z;α,β)

q(z) .

3.2 Parameter update formula

We use CVB inference accompanied with Gaussian approximation presented
in [12]. In this paper, we only show resulting update formula. Three types of
mean/variance pairs, defined below, are needed to update posterior parameters:

Mjk ≡
∑
w

njwγjkw, Vjk ≡
∑
w

njwγjkw(1− γjkw)

Mkw ≡
∑

j

njwγjkw, Vkw ≡
∑

j

njwγjkw(1− γjkw)

Mk ≡
∑

j,w

njwγjkw, Vk ≡
∑

j,w

njwγjkw(1− γjkw) (4)

where njw is the number of tokens of word w in document j. By using these
three types of mean/variance pairs, posterior parameters are updated as shown
in Fig. 3, which is a detailed description of the innermost loop of Fig. 1. Fig. 3
shows that update computations for different ks can be executed in parallel. Only
normalization in Step 3 requires O(logK) time based on a standard reduction
technique in Fig. 2. Therefore, time complexity per iteration is O(M logK).



1. Subtract the contribution of γjwk from all three types of means and variances.

Mjk ←Mjk − njwγjwk, Vjk ← Vjk − njwγjwk(1− γjwk)

Mkw ←Mkw − njwγjwk, Vkw ← Vkw − njwγjwk(1− γjwk)

Mk ←Mk − njwγjwk, Vk ← Vk − njwγjwk(1− γjwk)

2. Update γjwk.

γjwk ← (α+Mjk)(β +Mkw)(Wβ +Mk)−1

· exp{− Vjk
2(α+Mjk)2

− Vkw
2(β +Mkw)2

+
Vk

2(Wβ +Mk)2
}

3. Normalize γjw1, . . . , γjwK so that
∑
k γjwk = 1 holds.

4. Add the contribution of γjwk to all three types of means and variances.

Mjk ←Mjk + njwγjwk, Vjk ← Vjk + njwγjwk(1− γjwk)

Mkw ←Mkw + njwγjwk, Vkw ← Vkw + njwγjwk(1− γjwk)

Mk ←Mk + njwγjwk, Vk ← Vk + njwγjwk(1− γjwk)

Fig. 3. How to update parameters in CVB inference.

4 Implementation on CUDA

4.1 Nvidia CUDA compatible devices

Fig. 4 shows execution model of Nvidia CUDA compatible GPU devices. We only
describe necessary details. The largest execution unit is called grid. In our case,
one grid roughly corresponds to one iteration, i.e., one scan of dataset. However,
when dataset is too large for graphics card RAM, called device memory, we
divide dataset into subsets and process the subsets sequentially. In this case, one
grid corresponds to processing of one data subset. Typical high-end graphics
cards provide up to 1 GBytes device memory.
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Fig. 4. Conceptual digram of Nvidia CUDA compatible devices.



Each grid contains hundreds of blocks, each of which corresponds to one docu-
ment in our case. Therefore, we process as many documents as blocks in parallel.
Each block includes hundreds of threads. Threads in the same block can com-
municate with each other by using a fast memory, called shared memory. Shared
memory is as fast as local memory assigned to each thread. Only four clock cycles
are required to both read from and write to shared memory or local memory.
However, threads from different blocks should communicate via device memory,
which requires hundreds of clock cycles to access. Further, shared memory size
is only tens of KBytes per block in existing graphics cards. Therefore, efficient
communication among threads can be realized only for small size data.

A typical usage of CUDA compatible devices is as follows: send data from host
memory (i.e., CPU memory) to device memory, execute computations on GPU,
and then write results back from device memory to host memory. Since data
transfer between host memory and device memory requires quite a large number
of clock cycles, threads should not access to host memory during computation.
Therefore, we send data to device memory before launching a grid on GPU.

4.2 Implementation details of CVB inference for LDA

By considering features of CUDA described above, we implement a parallelized
version of CVB inference for LDA. Different threads are responsible for compu-
tations relating to different topics. This is our fine-grained parallelization. We
assume that K is less than the maximum number of threads per block. This
assumption is admissible for most applications.

We have following variables in CVB inference: posterior parameters γjwk and
three types of mean/variance pairs (Mjk, Vjk), (Mkw, Vkw), (Mk, Vk) as shown
in Fig. 3. The number of posterior parameters is too large for shared memory.
Therefore, we store the parameters on device memory. However, the same set of
K parameters γjw1, . . . , γjwK are used for four consecutive steps in Fig. 3 with
respect to a fixed document/word pair. This means that, before executing each
sequence of these four steps, we can load the corresponding set of K parameters
from device memory to shared memory. Normalization can also be efficiently
conducted on shared memory.

We store the first type of mean/variance pairs (Mjk, Vjk) on local memory.
There are three reasons. First, this type of pairs is not shared by threads from dif-
ferent blocks, because different blocks process different documents. Second, both
local memory and shared memory are large enough to store all K mean/variance
pairs (Mj1, Vj1), . . . , (MjK , VjK) for a fixed j. Third, these pairs do not need to
be shared among different threads even in the same block.

The second type of mean/variance pairs (Mkw, Vkw) should be shared by
the threads processing the same word. However, the same word can appear in
many different documents. Therefore, we store these mean/variance pairs on
device memory. Further, multiple threads may access the same pair at the same
moment when they occasionally process the same word simultaneously. Mutual
exclusion is required here, because all mean/variance pairs are not only read,
but also modified, as shown in Fig. 3. Preliminary experiments show that atomic



functions prepared for CUDA largely increase execution time. Therefore, we do
not implement mutual exclusion. This leads to an introduction of approximation,
because non-atomic read and write operations from different threads are not
ordered appropriately. Further, some of these operations may fail. Preliminary
experiments show that this approximation is negligible as long as the number of
blocks per grid is small enough. Based on our experiences, the number of blocks
per grid should be at most 16. Therefore, at most 512× 16 = 8192 threads run
in parallel. With larger number of threads, inference will not proceed correctly.

The third type of mean/variance pairs (Mk, Vk) should also be shared by
threads from different blocks. However, we store this type of mean/variance pairs
on local memory and reduce access to device memory. As a result, different blocks
use different values. However, this type of mean/variance pairs is only indexed
by topics. Namely, these means and variances are obtained by summation over
document/word pairs. We can expect that only negligible discrepancy will be
observed among this type of mean/variance pairs localized to different blocks.

Only posterior parameters are written back from device memory to host
memory after a launch of a grid. Three types of means and variances are com-
puted based on Eq. (4) from scratch on CPU by using all posterior parameters.
In many realistic applications, we will divide an input dataset into smaller sub-
sets and process them on GPU sequentially, because device memory is not large
enough. Therefore, a single launch of grid updates only a small part of posterior
parameters. When we compute means and variances by using all posterior pa-
rameters including those which are not updated in the preceding launch of grid,
approximations introduced into our parallelized inference will be reduced.

5 Experiments

5.1 Settings

In this paper, we evaluate inference quality by test data perplexity. We use
one half of the tokens of each word in each document as training data for
CVB inference. Another half is used as test data for perplexity evaluation. Test
data perplexity is computed based on test data probability which is defined as

p(xtest) =
∏
j

∏
w

(∑
k

α+Mjk

Kα+
∑
kMjk

β+Mkw

Wβ+Mk

)n′jw
, where n′jw is the number of test

data tokens of word w in document j. Then, test data perplexity can be defined
as exp{− log p(xtest)/

∑
j,w n

′
jw}. After a large enough number of iterations, test

data perplexity reaches a minimum, which is not guaranteed to be a global min-
imum in CVB inference. We evaluate inference quality by test data perplexity
after convergence. When our parallelized CVB inference gives test data perplex-
ities comparable to sequential version, our parallelization is admissible.

All experiments are conducted on a PC equipped with Intel Core2 Quad
CPU Q9550 at 2.83GHz and with 8 GBytes host memory. As an Nvidia CUDA
compatible device, we used Leadtek WinFast GTX 260 with 896 MBytes device
memory, where shared memory size per block is 16 KBytes, maximum number
of threads per block is 512, and clock rate is 1.24 GHz. Based on preliminary



experiments, we set the number of blocks in a grid to 16. With larger number
of blocks per grid, inference will not proceed correctly due to too many simul-
taneous non-atomic accesses to device memory as described in Section 4.2. The
number of threads per block is set to 512. Therefore, 512×16 = 8192 threads can
run in parallel. With this setting, 20 GFLOPS was achieved for computations
on GPU in our experiments. When K is far less than the number of threads per
block, we can assign more than one documents to each block. For example, when
K = 64, we can process 512/64 = 8 documents in parallel per block.

5.2 Datasets

We used a document set and an image set for comparison experiments. The
document set consists of 56,755 Japanese newswire articles from Mainichi and
Asahi newspaper Web sites. Dates of articles range from November 16, 2007 to
May 15, 2008. By using morphological analyzer MeCab [2], we obtain 5,053,978
unique document/word pairs. The number of word tokens is 7,494,242, among
which 1,666,156 are used for perplexity evaluation. The number of words is
40,355 after removing rare words and stop words. For this dataset, we tested
two settings for the numbers of topics, i.e., K = 64 and K = 128.

The image set is 10,000 test images by Professor J.-Z. Wang [16] [15]. Since
our aim is not to propose a new image processing method, we used a simple
feature extraction. Regardless image size, we divide each image into 16 × 16 =
256 non-overlapping rectangle regions of the same width and height. Further,
we uniformly quantize RGB intensities and reduce the number of colors from
2563 to 83 = 512. Then, we count the frequency of quantized colors in each of
256 rectangle regions. Consequently, all images are represented as a frequency
distribution defined over 256× 512 = 131, 072 features. After removing features
appearing too frequently, we obtain 113, 181 features, which is the number of
words in LDA. Exact number of images in this dataset, i.e., the number of
documents, is 9,908. The number of unique document/word pair is 17,127,235,
and the number of tokens is 84,741,744, among which 40,941,092 tokens are used
for perplexity evaluation. For this dataset, we set the number of topics to 64.

5.3 Results

We run 10 trials of both parallel and sequential CVB inferences for LDA starting
from randomly initialized posterior parameters. We present test data perplexities
for the first 64 iterations, because further iterations give no significant changes.
Table 1 provides test data perplexity and execution time after 64 iterations.
Further, Fig. 5 shows test data perplexity versus execution time.

Space complexity scales with K in CVB inference for LDA. Therefore, we
need more frequent data transfers between host memory and device memory
for larger K. Table 1 shows that we could only achieve ×4.6 acceleration for
K = 128 in comparison with ×7.3 for K = 64 with respect to the same docu-
ment set. However, CUDA could provide comparable perplexities for our doc-
ument set. For Professor Wang’s image set, we even achieved less perplexities,



Table 1. Test data perplexity and execution time after 64 iterations. Mean values for
10 trials are presented. We also show standard deviation for test data perplexity.

document set, K = 64 document set, K = 128 image set, K = 64

without CUDA 1300.0± 10.7 1001.0± 9.3 5604.1± 30.3
(2h 06m 56s) (4h 12m 49s) (7h 10m 24s)

with CUDA 1295.2± 17.2 1005.4± 8.7 5015.4± 38.2
(17m 19s; ×7.3) (54m 25s; ×4.6) (2h 30m 50s; ×2.9)

because parallelized inferences may occasionally find better descent directions.
Similar arguments can be found in a previous paper proposing parallelized col-
lapsed Gibbs sampling for LDA [10]. For this image set, we provide a complete
result, where we use full dataset for inference, at the Web site of an author
(http://www.cis.nagasaki-u.ac.jp/~masada/LDAimage/page1.html).

Fig. 5 intuitively shows that we could obtain comparable perplexities in much
shorter time with CUDA. Based on these results, we can conlude that our par-
allelization is in fact a promising computational improvement.

6 Conclusions

In this paper, we propose an acceleration of collapsed variational Bayesian infer-
ence for latent Dirichlet allocation with Nvidia CUDA compatible GPU devices.
We could obtain inference results of quality comparable to original sequential
version in much shorter time only by introducing negligible approximations.

We are now implementing our method on a cluster of PCs equipped with
graphics cards. In the near future, this combination of our fine-grained paral-
lelization and exisiting coarse-grained parallelization will achieve further accel-
eration of collapsed variational Bayesian inference for latent Dirichlet allocation.
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