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Abstract. This paper provides a new method for multi-topic Bayesian analysis 
for microarray data. Our method achieves a further maximization of lower 
bounds in a marginalized variational Bayesian inference (MVB) for Latent 
Process Decomposition (LPD), which is an effective probabilistic model for 
microarray data. In our method, hyperparameters in LPD are updated by 
empirical Bayes point estimation. The experiments based on microarray data of 
realistically large size show efficiency of our hyperparameter reestimation 
technique. 

1 Introduction 

Latent Dirichlet allocation (LDA) [4], an epoch-making Bayesian multi-topic analysis 
method, finds its application in various research fields including natural language 
processing, information retrieval and image analysis [2][5][6][13][14]. We can also 
apply an LDA-like Bayesian multi-topic analysis to microarray data, where we regard 
samples as documents and genes as words. However, microarray data are given as a 
real matrix, not as a non-negative integer matrix. Therefore, researchers apply LDA 
after introducing Gaussian distributions in place of word multinomial distributions 
and provide an efficient probabilistic model, Latent Process Decomposition (LPD) 
[9], where topics in LDA are called processes. 

As we can find Dirichlet prior distributions for word multinomials in LDA, we can 
find prior distributions for Gaussian distributions in LPD. To be precise, Gaussian 
priors are prepared for mean parameters, and Gamma priors are for precision 
parameters. However, as far as we know, there are still no reports on how we can 
reestimate hyperparameters, i.e., parameters of these prior distributions, and there are 
also no reports on whether we can improve microarray analysis by using 
hyperparameter reestimation. Therefore, in this paper, we provide a hyperparameter 
reestimation technique for LPD and show the results of experiments using microarray 
data of realistically large size. 

Our method is based on a marginalized variational Bayesian inference (MVB) 
proposed by Ying et al. [15]. Marginalized variational Bayesian inference, 
alternatively called collapsed variational Bayesian inference [12], theoretically 
achieves better lower bounds than conventional variational Bayesian inferences 
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[4][9]. In this paper, we propose a method for maximizing lower bounds further by 
reestimating hyperparameters, where we use empirical Bayes point estimates [4] as 
new values for hyperparameters. We denote our method by MVB+. 

The experiments presented in [15] are only based on microarray data of small size. 
Therefore, we use microarray data of realistically large size, where the number of 
genes (features) ranges from 3,000 to 18,000. Our experiments using large microarray 
data will show that hyperparameter reestimation can achieve better results in lower 
bound maximization and also in sample clustering. 

The rest of the paper is organized as follows. Section 2 describes MVB for LPD. In 
Section 3, we provide the details of MVB+. Section 4 presents the results of our 
experiments. Section 5 concludes the paper with future works. 

2 Latent Process Decomposition (LPD) 

Latent Process Decomposition (LPD) [9] can be regarded as a latent Dirichlet 
allocation (LDA) [4] re-designed for microarray data. LPD and LDA share a special 
feature, topic multiplicity. That is, both in LDA and in LPD, each document (sample) 
is modeled as a mixture of multiple topics (processes). With respect to this point, LPD 
and LDA are completely the same. 

However, LPD is different from LDA with respect to observed data generation, 
because microarray data are always given as a matrix of real values. Therefore, LPD 
uses Gaussian distributions in place of word multinomial distributions in LDA. A 
generative description of LPD can be given as follows: 

─ Draw a Gaussian distribution ),;( gkgkxN λμ  for each pair of gene g  and process 
k  from prior distributions. To be precise, a mean parameter gkμ  is drawn from 
a Gaussian prior ),;( 00 λμμN  and a precision parameter gkλ  is drawn from a 
Gamma prior ),;(Gam 00 baλ .  
In LDA, this part corresponds to a determination of word probability with 
respect to a specific topic by drawing a topic-wise word multinomial 
distribution from a corpus-wide Dirichlet prior. 

─ Draw a multinomial distribution );(Mult dz θ  for each sample d  from a 
symmetric Dirichlet prior distribution );(Dir αθ . 
This part is completely the same with LDA by identifying samples in LPD with 
documents in LDA, and processes in LPD with topics in LDA. 

─ For an occurrence of gene g  in sample d , draw a process dgz  from );(Mult dz θ , 
and then draw an observed real value dgx  from                           . 
This part is similar to a topic drawing from );(Mult dz θ  followed by a word 
drawing from the word multinomial corresponding to the drawn topic in LDA. 
However, in case of LPD, observed data are real, and each gene occurs exactly 
once in each sample. 

While LPD is described as a generative model for microarray data, it can be easily 
applied to other real matrix data. 

The generative description shown above leads to the full joint distribution: 

),;(
dgdg gzgzxN λμ
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In this paper, we adopt a marginalized variational Bayesian inference (MVB) 
proposed in [15] for LPD and introduce hyperparameter reestimation to MVB, 
because MVB achieves better inference results than without marginalization as shown 
in [15]. An outline of MVB for LPD is given below. 

We first marginalize process multinomial parameters dkθ  in Eq. (1) as follows: 
 
 
 
 
 
 
 
 
 
where dkn  denotes the number of genes whose observed data in sample d  are 
generated from a Gaussian distribution corresponding to process k . Our aim is to 
obtain a parameter values maximizing the log likelihood: 
 
 
 
The maximization of this log likelihood is intractable. Therefore, we use a variational 
method and introduce an approximated posterior ),,( λμzq  to obtain a lower bound of 
the log likelihood via Jensen’s inequality: 
 
 
 
 
 
Further, we assume that ),,( λμzq  can be factorized as )()()( λμ qqq z . For each of 

)(zq , )(μq , and )(λq , we choose a multinomial distribution defined over processes 
);(Mult dgdgz γ , a Gaussian distribution ),;( gkgkgk lmN μ , and a Gamma distribution 

),;(Gam gkgkgk baλ , respectively. Among the parameters of the approximated posterior, 
multinomial parameters dgkγ  of );(Mult dgdgz γ  can be interpreted as showing how 
closely gene g  in sample d  relates to process k . This interpretation is important in 
applications. 
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After some calculations, we obtain a lower bound L  of the log likelihood: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where dgkδ  is 1 when kzdg =  and 0 otherwise, and )(⋅ψ  means digamma function. 
Our aim is now to maximize L . The details of update formula derivation are referred 
to [15]. Here we only include the resulting formulas. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The lower bound L  in Eq. (5) will also be utilized to estimate inference quality in the 
experiments presented in Section 4. However, the first term in Eq. (5) is intractable. 
[15] gives the following approximation: 
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3 MVB+ 

As shown in Eq. (5), , the lower bound L  includes the following hyperparameters: α , 0μ , 0λ , 

0a , 0b . We can maximize L  by taking derivatives of L  with respect to these hyperparameters. 
This idea is not pursued in previous researches [9][15]. Therefore, we show how to reestimate 
hyperparameters in this section. We denote MVB for LPD accompanied with hyperparameter 
reestimation by MVB+. 

First, we consider the reestimation of α . However, the derivative of L  with respect to α  
suggests a difficulty in obtaining an update efficient in execution time even after introducing an 
approximation in Eq. (11). Further, a marginalized variational Bayesian inference for LDA [12] 
uses a fixed value for α . Therefore, we do not update α  in MVB+. We leave as an open 
problem deriving an efficient update for α . 

Second, by taking the derivative of L  with respect to 0μ , we can obtain a simple update 
formula: 
 
 
 
 
Third, the derivative of L  with respect to 0λ  is 
 
 
 
 
While we can obtain an update                                                       , preliminary experiments 
reveal that this update often results in unstable numerical computations. Therefore, we do not 
reestimate 0λ . 

Finally, we take the derivatives of L  with respect to the rest two hyperparameters, 0a  and 

0b . For 0b , a simple update formula 
 
 
 
 
follows. However, some trick is required for 0a , because the derivative leads to: 
 
 
 
 
and digamma function should be inverted. We use a method in [8] for digamma function 
inversion. We reproduce the method for evaluating )(1 y−ψ  here.  

1. If 22.2−≥y  then 5.0)exp( +← yx , else ))1((1 ψ−−← yx . 
2. Repeat the following until convergence: )())(( xyxxx ψψ ′−−← . 

We denote trigamma function by )(⋅′ψ . 
It should be noted that we can use the same formula Eq. (5) for computing L  even when we 

reestimate hyperparameters. Therefore, we can compare inference quality of MVB+ with that 
of MVB by using L . 
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4 Experiments 

4.1 Comparison strategy 

In this section, we present the results of our experiments to reveal how our hyperparameter 
reestimation works. We compare MVB+ with MVB by (i) lower bound L  (see Eq. (5)) and 
also by (ii) quality of sample clusters. In comparing MVB+ with MVB by L , larger values are 
better, because our task is to maximize L  as far as possible. On the other hand, when we 
compare MVB+ with MVB by sample clustering, we take the following strategy. 

A clustering of samples is induced by determining a process k  satisfying  
  

 
 
for each sample d , where dgkγ  for all kgd ,,  are obtained as a result of a sufficient number of 
update iterations in MVB+ or in MVB. We evaluate the quality of a clustering of samples by, 
first, computing precision and recall for each cluster. Then, for each pair of precision P and 
recall R, we compute an F-score as their harmonic mean, i.e., F = 1 / (1/P + 1/R). We use the 
precision, recall, and F-score averaged over all clusters as an evaluation measure for each 
clustering results. 

4.2 Datasets 

Previous research [15] only use datasets of small size, where the number of genes ranges from 
500 to 1,000. Therefore, in this paper, we use datasets of realistically large size, available at [1] 
and [16], whose specification is given in Table 1. 

“Leukemia” dataset from [1], referred as LK in this paper, provides three labels 
ALL/MLL/AML as a prefix of each sample name. When we use these three labels as true 
cluster labels, both MVB+ and MVB give quite poor performance. Therefore, we compare 
MVB+ with MVB based on the binary clustering task (ALL,MLL)/AML after identifying ALL 
with MLL.1 

For “Five types of breast cancer” dataset from [16], referred as D1 in this paper, we find a 
description telling that meaningfull classifier should try to distinguish labels A from B in [16]. 
However, LPD seems quite week in this task, because both MVB+ and MVB rarely give a 
cluster where the number of B samples is larger than that of A samples. In other words, almost 
all resulting clusters are dominated by A samples. Therefore, D1 dataset is used only for 
comparison based on lower bounds. 

For “Three types of bladder cancer” dataset from [16], referred as D2, the prepared three 
labels T1/T2+/Ta are used as is. 

“Healthy tissues” dataset from [16], referred as D3, has too many true cluster labels (35 
labels) for only 103 samples. We faced difficulty in obtaining clustering results worthy to 
evaluate by precision, recall, and F-score. Therefore, D3 dataset is also used only for 
comparison based on lower bounds. 
Implementation 

                                                           
1  ALL: acute lymphoblastic leukemias, AML: acute myelogenous leukemias, MLL: 

lymphoblastic leukemias with mixed-lineage leukemia gene translocations [1]. 
 

(16)                                        maxarg  ′′=
g kdgkk γ
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Table 1. Dataset specification. 

Dataset name (abbreviation) # of samples # of genes 

Leukemia (LK) [1] 72 12582 

Five types of breast cancer (D1) [16] 286 17816 

Three types of bladder cancer (D2) [16] 40 3036 

Healthy tissues (D3) [16] 103 10383 

 

4.3 Implementation 

We implemented MVB+ and MVB in C language and compile by gcc -O3. Inference 
computations are executed on a PC equipped with Intel Core2 Quad CPU Q9550 @ 2.83 GHz 
and 8GBytes memory. Digamma and trigamma functions are estimated from asymptotic series 
[10]. We used the wine dataset [3] to prove the soundness of our implementation by comparing 
lower bounds with Figure 1 of [15]. 

As an initialization for both MVB+ and MVB, we choose real random numbers for dgkγ  
satisfying 1=k dgkγ  and then initialize parameters, gkm , gkl , gka , and gkb , based on 
randomly initialized dgkγ . Hyperparameter values are set as follows: 1=α , 00 =μ , 10 =λ , 

200 =a , and 200 =b . These values are also regarded as initial values for hyperparameter 
reestimation in MVB+. Observed real values dgx  in each microarray data are normalized in the 
same manner with [15]. 

The running time of MVB+ and MVB is proportional to the product of the following four 
numbers: the number of samples, the number of genes, the number of processes, and the 
number of iterations. For example, in case of dataset D1, MVB+ requires about 174 minutes for 
500 iterations when the number of processes is 10. We found that MVB+ increases running 
time by at most 10% when compared with MVB. 

4.4 Results 

Figure 1 presents lower bounds obtained for LK (top left panel), D1 (top right), D2 (bottom 
left), and D3 (bottom right). The horizontal axis shows the number of iterations, and the 
vertical axis shows the lower bounds. We tested the integers from 2 to 10 as the number of 
processes. 500 iterations of updates are enough for most cases. However, lower bounds for 
1,000 iterations are shown only for LK dataset, because convergence is slow. As Figure 1 
shows, lower bounds obtained by MVB+ (solid lines) are larger than that by MVB (dashed 
lines). We can conclude that lower bound improvement is achieved. 

Previous research [15] discusses that we can select an appropriate number of processes by 
comparing lower bounds obtained for different numbers of processes. Figure 2 shows the 
average and the standard deviation of 10 lower bounds obtained by MVB+ (solid line) and 
MVB (dashed line) staring from 10 different initializations for each number of processes 
ranging from 2 to 10. The horizontal axis shows the number of processes. Lower bounds are 
recorded when a change no more than 1.0-6 can be observed. It seems difficult to find a unique 
significant peak in all cases. We may need other methods, e.g. a nonparametric Bayesian 
approach [11], to choose an appropriate number of processes for large datasets. 
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Fig. 1. Lower bounds obtained by MVB+ (solid lines) and MVB (dashed lines). Each graph 
gives the average of lower bounds obtained by inferences starting from 10 different random 
initializations. The number of processes ranges from 2 to 10. The datasets are LK (top left 

panel), D1 (top right), D2 (bottom left), and D3 (bottom left). MVB+ provides better results. 

 
Table 2 provides precisions, recalls, and F-scores averaged over inferences starting from 100 

different initializations for LK and D2 datasets. Actually, we discard 10 least frequently 
occurred clustering results among 100, because extraordinarily good or bad clusters are 
occasionally obtained for both MVB+ and MVB. We assume that an appropriate number of 
clusters is chosen beforehand in accordance with the true number of clusters. Namely, we set 
the number of processes to two and three for LK and D2 datasets, respectively. As Table 2 
shows, MVB+ realizes better clustering than MVB. Since 100 clustering results given by MVB 
for LK dataset are the same, the standard deviation is zero. 

 

Table 2. Precisions, recalls, and F-scores averaged over inferences starting from 100 different 
initializations. Standard deviations are also presented. 

dataset method precision recall F-score 

LK 
MVB+ 0.934+0.007 0.931+0.010 0.932+0.009 

MVB 0.930+0.000 0.924+0.000 0.927+0.000 

D2 
MVB+ 0.837+0.038 0.822+0.032 0.829+0.033 

MVB 0.779+0.084 0.751+0.069 0.763+0.071 
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Fig. 2. Averages and standard deviations of lower bounds obtained by MVB+ (solid line) and 
MVB (dashed line) starting from 10 different random initializations. The datasets are LK (top 

left panel), D1 (top right), D2 (bottom left), and D3 (bottom left). MVB+ always provides 
better lower bounds than MVB for all numbers of processes. However, it is difficult to find a 

clear peak among different numbers of processes. 

 
Our experiments also revealed an important difference between MVB+ and MVB. Figure 3 

includes two images visualizing posterior parameters dgkγ  for LK dataset when the number of 
processes is two. These images are constructed as follows. We first select an inference result 
arbitrarily among a lot of results for each of MVB+ and MVB. Then, we choose the larger one 
among 1dgγ  and 2dgγ  for each pair of gene g  and sample d . That is, we assign one among the 
two processes to each gene/sample pair. The assignments of different processes are shown by 
different colors. Rows and columns of images in Figure 3 correspond to genes and samples, 
respectively. Namely, each pixel in these images corresponds to a gene/sample pair. 

When we compare the image for MVB+ (left) with that for MVB (right), the former shows 
row-wise diversity in process assignments. Intuitively speaking, the visualization for MVB+ is 
more “noisy” than MVB. Therefore, it can be concluded that MVB+ preserves diversity among 
genes as diversity among process assignments. In contrast, MVB is likely to give almost the 
same process assignments for all genes. In fact, the rows in the visualization for MVB looks 
quite similar to each other. While we arbitrarily select an inference result for each of MVB+ 
and MVB, other results also lead to the same conclusion. 

Since we can use the set of dgkγ  for a fixed g  as a feature vector of gene g  in clustering or 
classifying genes, this difference between MVB+ and MVB will show importance in such 
applications. 
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Fig. 3. Visualization of dgkγ  for the first 288 genes in LK dataset. The width of images is 
scaled to 400% for visibility. Each row corresponds to a gene, and each column to a sample. 

For each gene/sample pair, we choose one process based on $\gamma_{dgk}$. Different 
processes are shown by different colors. MVB+ (left panel) preserves diversity among genes 

better than MVB (right). 

5 Conclusion 

In this paper, we provide a hyperparamter reestimation technique MVB+ for marginalized 
variational Bayesian inference of LPD. MVB+ achieves further maximization of lower bounds. 
Also for sample clustering, MVB+ gives better results. Further, MVB+ can preserve diversity 
among genes as diversity among process assignments. 

Our experiments also show that it is difficult to guess an appropriate number of processes 
based on lower bounds for microarray data of realistically large size. It is a future work to 
devise a method for determining an appropriate number of processes. Further, with respect to 
computational efficiency, MVB+ consist of complicated numerical operations. Especially, 
evaluating digamma and trigamma functions from asymptotic series is time-consuming. 
Therefore, it is also an important future work to accelerate inferences, e.g. by using GPGPU 
[7]. 
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