
Accelerating Phase Correlation functions using
GPU and FPGA: A comparison study

Kentaro Matsuo, Tsuyoshi Hamada, Masayuki Miyoshi, Yuichiro Shibata, and Kiyoshi Oguri
Graduate School of Science and Technology

Nagasaki University
Bunkyo 1–14, Nagasaki-shi, Nagasaki, 852–8521 Japan

Email: aniki@pca.cis.nagasaki-u.ac.jp

Abstract—In this paper, we present a comparison study about
implementatons of phase correlation function using GPUs, ASIC
and FPGAs. The Phase Only Correlation(POC) method demon-
strates high robustness and subpixel accuracy in the pattern
matching and the image registration. However, there is a disad-
vantage in computational speed because of the calculation of 2D-
FFT etc. We have proposed a novel approach to accelerate POC
method using GPU to solve the calculation cost problem. Using
our GPU-based POC implementation, each POC calculation can
be done within 2.36 milli seconds using a GPU for 256 ×

256 pixels, on the other hand, within 27.15 milli seconds for
Cinderella II 100 MHz (ASIC), 4.51 milli seconds for Xilinx
XC2V6000 66 MHz (FPGA). These results show that, for POC
calculation and FFT-based computations in general, GPUs are
very competitive in terms of performance and performance
figures, whereas FPGAs are competitive in terms of performance
per frequency figures.

I. INTRODUCTION
Image matching is one of the central tasks of image process-

ing, which detects image similarity, scaling, translation and
rotation between some target image and the reference image.
This has been widely used in machine vision industry for
the purposes of registration such as fingerprint matching or
position adjustment in machines.
There are a lot of methods of the image matching. A pixel

base direct matching between two images called template
matching is simple and efficient for the small patch of images.
However, this approach is not robust for illumination or
3D projection changes, and does not operate correctly when
the scale or angle of images is changed. Furthermore sub-
pixel matching is impossible in template matching. A Fourier
transform base matching is also direct matching between
both Fourier transforms of original images. A correlation
function base matching has sub-pixel accuracy, therefore this
method is used for position adjustment in machines. Since
the cross-correlation function between A and B is inverse
Fourier transform of the product of Fourier transform of A and
complex conjugate of Fourier transform of B, the performance
of FFT is the key in this method.
Recently, a high-accuracy image matching method using a

Phase-Only correlation (POC) function has been developed
[1], [2], [6], [7]. This POC base matching is more robust
in illumination changes than simple correlation function base
matching. Using the POC function, we can estimate the
translation displacement as well as the degree of similarity

between two image blocks from the location and height of
the correlation peak, respectively. It has been demonstrated
that this matching technique can estimate the displacement
between two images with 1/100-pixel accuracy when the
image size is about 100x100 pixels.
POC base image matching requires more computational

power than simple correlation function base matching, there-
fore it was not used in real applications at first. Progress
of the semiconductor technologies brings this method into
reality. POC base matching was implemented in a application
specific integrated circuits (ASIC). In this implementation, the
POC operation of 256x256 pixels is done in 27.15ms [3].
Fingerprint matching using POC was implemented in FPGA
[4]. Object search in machine vision using POC was also
implemented in FPGA [5].
In this paper, we present a new approach to accelerate

POC method using GPU (Graphics Processing Unit). GPU
is a dedicated hardware for rendering 3D object. Since new
type of GPU has more than 100 processing elements, not
only rendering process but also general purpose applications
are accelerated. Nvidia has developed a design language
and its environment called CUDA (Computer Unified Device
Architecture) in Nov. 2006. We have implemented POC base
image matching which detects translation and rotation between
2 images in CUDA.

II. ALGORITHM OF POC AND RIPOC

We have implemented POC for displacement and Rotation
Invariant Phase Only Correlation (RIPOC) for rotation on
GPU. We summarize these algorithm.

A. POC

Fourier transform’s phase component has many information
about object shape. POC uses this property. Figure 1 demon-
strates the outline of POC. Following is the detail of POC
algorithm.
1) definition: Now consider f̃(x1, x2) as a 2D image de-

fined in continuous space with real-number indices x1 and x2.
And δ1 and δ2 represent sub-pixel displacement of f̃(x1, x2).
The displaced image can be indicated as f̃(x1 − δ1, x2 − δ2).
f(x1, x2) and g(x1, x2) are spatially sampled images of
f̃(x1, x2) and f̃(x1 − δ1, x2 − δ2) , and are given by

2009 NASA/ESA Conference on Adaptive Hardware and Systems

978-0-7695-3714-6/09 $25.00 © 2009 IEEE

DOI 10.1109/AHS.2009.53

433

� � � � � � � � 	

� � � � � � � � 	

�� ��

�� ��

� � �
 � � � �

� � �
 � � � �

� � � �

� � � �

� � � � �
 � �
 � � � � � �

� �
 � � � � � � � � �

 � � � � � � � � 	

�� �� � �� �� �� �

�� �� � �� �� �� �
�� �� � � � � � �
 � � � � � � � � � � � � � � �

� � � �
 � �
 � � � � �
 � � � � � � � � � � � � � � �

Fig. 1. Algorithm of POC

f(n1, n2) = f̃(x1, x2) |x1=n1T1,x2=n2T2
, (1)

g(n1, n2) = f̃(x1 − δ1, x2 − δ1) |x1=n1T1,x2=n2T2
,

(2)

where T1 and T2 are the sampling intervals, and index ranges
are given by n1 = −M1, · · · , M1 and n2 = −M2, · · · , M2,
and N1 = 2M1 + 1 and N2 = 2M2 + 1 are image size.
2) Fourier transformation: F (k1, k2) and G(k1, k2) are

2D Discrete Fourier Transforms (2D-DFTs) of f(n1, n2) and
g(n1, n2) which are spatially sampled images. F (k1, k2) and
G(k1, k2) are defined as

F (k1, k2) =
∑

n1,n2

f(n1, n2)W
k1n1

N1
W k2n2

N2

= AF (k1, k2)e
jθF (k1,k2), (3)

G(k1, k2) =
∑

n1,n2

g(n1, n2)W
k1n1

N1
W k2n2

N2

= AG(k1, k2)e
jθG(k1,k2), (4)

where k1 and k2 are index of frequency, and are given by
k1 = −M1, · · · , M1 and k2 = −M2, · · · , M2, and W k1n1

N1

and W k2n2

N2
are twiddle factor, and are defined as W k1n1

N1
=

e
−j 2π

N1
k1n1 and W k2n2

N2
= e

−j 2π

N2
k2n2 . The operator

∑
n1,n2

means
∑M1

n1=−M1

∑M2

n2=−M2. AF (k1, k2) and AG(k1, k2) are
amplitude components, and ejθF (k1,k2) and ejθG(k1,k2) are
phase components.
3) normalized cross spectrum: The normalized cross spec-

trum R(k1, k2) is given by

R(k1, k2) =
F (k1, k2)G(k1, k2)

|F (k1, k2)G(k1, k2)|

= ej{θF (k1,k2)−θG(k1,k2)}, (5)

where G(k1, k2) mean the complex conjugate of G(k1, k2).
ej{θF (k1,k2)−θG(k1,k2)} are differential between phase compo-
nents of two images.
4) Phase Only Correlation function: The Phase Only Cor-

relation function r(n1, n2) is defined as

r(n1, n2) =
1

N1N2

∑

k1,k2

R(k1, k2)W
−k1n1

N1
W−k2n2

N2
. (6)

� � � ! " # $ % &

� � � ! " # $ % &

'' ''

'' ''

� () $ *+ ((* , " � $! &

$ # �) " ! , &
� - $. &

� - $. &

'' '' / 0/ 0/ 0/ 0
'' '' 1 2 (* " & * ! * $ � . 3 (* # $! " (�

1 " � 4 & * . & 2 (* " & * ! * $ � . 3 (* # $! " (�
'' ''

'' ''

$ # �) " ! , &

$ # �) " ! , &
� - $. &

� - $. &
5 (* # $) " 6 & , + * (. .. � & + ! * # 7 (* * &) $! " (�" # $ % &

'' '' / 0/ 0/ 0/ 0

� () $ *+ ((* , " � $! &

$ # �) " ! , &

8 9
7 (� & * $! " (�

Fig. 2. Algorithm of RIPOC

r(n1, n2) is the 2D Inverse Discrete Fourier Trans-
form (2D IDFT) of R(k1, k2). Where

∑
k1,k2

denotes∑M1

k1=−M1

∑M2

k2=−M2.
5) peak estimate: The POC function ṙ(n1, n2) between

f(n1, n2) and g(n1, n2) also be given by

ṙ(n1, n2) �
α

N1N2

sin{π(n1 + δ1)}

sin{ π
N1

(n1 + δ1)}

sin{π(n2 + δ2)}

sin{ π
N2

(n2 + δ2)}
.

(7)
This notation is valid for exactly same image. It is possible to
find the location of the peak that may exist between image
pixels, because ṙ(n1, n2) is fitted to the r(n1, n2) around
the correlation peak. Where α < 1, and δ1 and δ2 are
fitting parameters. The peak of r(n1, n2) shows degree of
similarity between two images. The location of the peak shows
displacement between two images.

B. RIPOC
Since phase component is associated with displacement,

amplitude component is associated with rotation. RIPOC uses
this property. Figure 2 demonstrates the outline of RIPOC.
Following is the detail of RIPOC algorithm.
1) definition: Consider f̃(x1, x2) as a 2D image defined

in continuous space with real number indices x1 and x2.
g̃(x1, x2) is what rotated f̃(x1, x2) is. θ represent this rotation
angle. f(x1, x2) and g(x1, x2) are spatially sampled images
of f̃(x1, x2) and g̃(x1, x2) , and are given by

f(n1, n2) = f̃(x1, x2) |x1=n1T1,x2=n2T2
,

g(n1, n2) = g̃(x1, x2) |x1=n1T1,x2=n2T2
. (8)

2) Fourier transformation: F (k1, k2) and G(k1, k2) are
2D-DFTs of f(n1, n2) and g(n1, n2) that are spatially sampled
images.
3) logarithm: | F (k1, k2) | and | G(k1, k2) | are given by

calculating logarithm of F (k1, k2) and G(k1, k2).
4) polar coordinate: Fp(m1, m2) and Gp(m1, m2) are im-

ages that are converted to polar coordinate from | F (k1, k2) |
and | G(k1, k2) |. Fp(m1, m2) and Gp(m1, m2) are defined
as

Fp(m1, m2) = | F (rm2cosφm1, rm2sinφm1) |,

Gp(m1, m2) = | G(rm2cosφm1, rm2sinφm1) |,

(9)

434

Fig. 4. A high-speed POC/RIPOC calculation system by GPU

where m1 and m2 are the coordinates of images that were
converted to the polar coordinate, and that are given by m1 =
−M, · · · , M and m = −M, · · · , M . In addition, φm1

that is
angle and rm2

that is radius are defined as

φm1
=

π

N
m1, rm2

= m2 + M. (10)

In addition, the converter use bilinear interpolation.
5) POC operation: We can get the rotation by applying

POC operation to Fp(m1, m2) and Gp(m1, m2).

III. IMPLEMENTATION

This section describes the GPU implementation of POC and
RIPOC. In this implementation, we use the CUFFT function of
CUDA library for 2D FFT. At first, elapsed time of the other
part is ten times longer than the elapsed time of CUFFT. After
tuning the memory layout and the order of each processes,
elapsed time of CUFFT is about half of total processing time.
The following subsections describe the implementation details.
Figure 3 indicates the ability of our implementation. Each two
pictures from many pictures which we took of our GPU cluster
are examined using POC and RIPOC to detect similarity,
displacement, and rotation. Then using this information, all
pictures are rearranged into one picture successfully.

A. Implementation environment

We use a Nvidia’s GeForce 8800 GTS GPU. Figure 5 shows
GeForce 8800 GTS architecture. In the figure, SP indicates
Stream Processor. This is a 32-bits scalar processor. 8 SPs
compose a SIMD type multi processors (MP). GPU chip
consists of 16 MPs. Each MP has a 16KB shared memory
which is shared by 8 SPs. Outside of the chip, there is a
512MB on board memory, which is called GPU memory. In
CUDA, CPU is called Host, and GPU is called Device. A
CUDA program consists of a host program and GPU kernel
functions. The host program which runs on CPU transfers the
data between CPU memory and GPU memory and invokes
GPU kernel functions. While CUDA language is based on
C language, CUDA inhibits recursive operations nor some
pointer operations in kernel functions. A typical flow of a
CUDA program is as below (figure 6).

Shared
Memory

SP

MP

Shared
Memory

SP

MP

Shared
Memory

SP

MP

Shared
Memory

SP

MP

Shared
Memory

SP

MP

Shared
Memory

SP

MP

Shared
Memory

SP

MP

Shared
Memory

SP

MP

Shared
Memory

SP

MP

Shared
Memory

SP

MP

Shared
Memory

SP

MP

Shared
Memory

SP

MP

Shared
Memory

SP

MP

Shared
Memory

SP

MP

Shared
Memory

SP

MP

Shared
Memory

SP

MP

crossbar switch

G
P
U

M
e
m
o
r
y

H
o
s
t

I
n
t
e
r
f
a
c
e

Fig. 5. Architecture of GeForce 8800 GTS

� � � �
� � � � � � 	

 �

�
 �
� � � � � �

�
 �

 �

� � � � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � ! � � � � �

Fig. 6. Typical flow of processing in the CUDA

1) CPU transfers the date from CPU memory to GPU
memory.

2) CPU invokes GPU.
3) Cores of GPU operate in parallel.
4) CPU transfers the data from GPU memory to CPU
memory.

B. Implementation of POC
Each step of the POC algorithm mentioned in II-A is

implemented as kernel functions.

Fig. 7. Programing model of the CUDA

435

Fig. 3. Picture composition example

1) Fourier transfer: We uses CUFFT library of the CUDA
for 2D DFT. As the range of n1Cn2 is defined as −M, · · · , M
in expression (3), in order to use CUFFT it is necessary to
rearrange those into 0, · · · , 2M and to shift the data.
2) Thread and memory allocation: In CUDA architecture,

a large number of threads require a small number of physical
processing units, or SPs. By these mechanism almost all
physical processing unit operate simultaneously. A block is a
component where those threads which share the same shared
memory are described. And every inter-memory transfers are
done by some continuous size. Therefore we must allocate
thread and memory in continous order. For example, mem-
ory of 0, · · · , 99 must be allocated in block 1, memory of
100, · · · , 199 must be allocated in block 2, and so on.
3) Phase only correlation function: Phase only correlation

function is 2D IDFT of normalized cross spectrum. We use
CUFFT for this 2D IDFT.
4) Peak estimation: At first values of phase only correlation

function are examined pixel by pixel. Then the pixel where the
value is maximum is detected. Then sub-pixel fitting near the
maximum pixel is done.
C. The details of the implementation at the code level
In order to explain clearly, we compare two codes. The first

one is RIPOC code (figure 8) in C language which runs total
in CPU. The second one is RIPOC code in CUDA. The CPU
only code is summarized as follow.
12-13 line

2D FFT of initial images ... FFT
14-21 line

polar coordinates conversion of the of spectrum
amplitude ... POL

22 line
POC operation ... POC

23 line
rotation of image ... ROT

24 line
POC operation ... POC

The my_FFTW function includes data shift operation men-
tioned before.

 1 struct PocData {
 2 double min_dx, min_dx2;
 3 double min_dy, min_dy2;
 4 double score_min;
 5 double max;
 6 int peak_x, peak_y;
 7 };

 8 PocData
 9 cal_poc_on_cpu (double *img1, double *img2, int X, int Y)
10 {
11 PocData result;

12 my_FFTW(img1, fftw_out1);
13 my_FFTW(img2, fftw_out2);

14 for(int i=0 ; i<Y*(X/2+1) ; ++i) {
15 fftw_out1_power[i] = log(sqrt(fftw_out1[i][0]*fftw_out1[i][0] +
16 fftw_out1[i][1]*fftw_out1[i][1]));
17 fftw_out2_power[i] = log(sqrt(fftw_out2[i][0]*fftw_out2[i][0] +
18 fftw_out2[i][1]*fftw_out2[i][1]));
19 }
20 xy2rs(fftw_out1_power, polar_coordinates1);
21 xy2rs(fftw_out2_power, polar_coordinates2);

22 my_poc(polar_coordinates1, polar_coordinates2, NULL, &result);

23 my_rot(img1, result.min_dy/Y*M_PI, img1);

24 my_poc(img1, img2, NULL, &result);

25 return (result);
26 }

Fig. 8. RIPOC in C language

Next, we compare GPU code with above CPU only code.
The GPU code is summarized as follow.

11-14 line
data transfer form CPU to GPU ... CPY

15-18 line
data shift, and CUFFT ... FFT

19-22 line
polar coordinates conversion of the spectrum ampli-
tude ... POL

436

 1 struct PocData {
 2 double min_dx, min_dx2;
 3 double min_dy, min_dy2;
 4 double score_min;
 5 double max;
 6 int peak_x, peak_y;
 7 };

 8 PocData cal_poc_on_gpu(float *img1, float *img2, int X, int Y)
 9 {
10 PocData result;

11 cudaMemcpyAsync(d_img1, img1, sizeof(float)*Y*X,
12 cudaMemcpyHostToDevice, my_stream);
13 cudaMemcpyAsync(d_img2, img2, sizeof(float)*Y*X,
14 cudaMemcpyHostToDevice, my_stream);

15 my_shift_exe2<<<BLKNUM,THLNUM>>>(d_img1, d_shift1,
16 d_img2, d_shift2, X, Y);
17 cufftExecR2C(fft_plan_r2c, d_shift1, d_ffted1);
18 cufftExecR2C(fft_plan_r2c, d_shift2, d_ffted2);

19 my_power_exe2<<<BLKNUM, THLNUM>>>(d_ffted1, d_pow1,
20 d_ffted2, d_pow2, Y*(X/2+1));
21 my_xy2rs_exe2<<<BLKNUM, THLNUM>>>(d_pow1, d_rs1,
22 d_pow2, d_rs2, X, Y);

23 my_poc_on_gpu(d_rs1, d_rs2, NULL, &result , X, Y);

24 my_rot_exe<<<BLKNUM, THLNUM>>>(d_img1, d_rs1,
25 result.min_dy/Y*M_PI, X, Y);

26 my_poc_on_gpu(d_rs1, d_shift2, NULL, &result, X, Y);

27 return (result);
28 }

Fig. 9. RIPOC in CUDA

23 line
execute of POC ... POC

24-25 line
rotation of image ... ROT

26 line
execute of POC ... POC

Except the initial image data transfer, there is very little data
transfer in this code and every process use GPU internal
memory. List I shows breakdown of processing time for
RIPOC in CPU and GPU [8].

TABLE I
BREAKDOWN OF PROCESSING TIME (MILLISECOND)

256x256 512x512 1024x1024
GPU CPU GPU CPU GPU CPU

CPY 0.18 - 0.48 - 1.64 -
FFT 0.30 4.47 1.17 23.30 4.23 111.62
POL 0.37 8.02 1.78 32.75 6.26 134.45
POC 0.70 33.99 2.04 67.88 6.97 223.91
ROT 0.11 1.10 0.41 4.42 1.59 17.83
POC 0.70 34.20 2.04 64.63 6.96 224.37
Total 2.36 81.78 7.92 192.98 27.65 712.18

TABLE II
EXECUTING TIME COMPARISON

Cinderella II FPGA XC2V6000 Core 2 Quad GeForce
Function @ 100MHz @ 66MHz @ 2.4GHz 8800GTS
2D-FFT 8.88ms 2.01ms 2.23ms 0.13ms
POC 27.15ms 4.51ms 82.7ms 2.36ms

 0.1

 1

 10

 100

GeForce 8800GTSCore 2 QuadFPGA XC2V6000Cindeella II

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

C
om

pu
tin

g
tim

e
[m

s]

S
pe

ed
-u

p
fa

ct
or

 [t
im

es
]

2DFFT
[ms]

2DFFT
[ms]

2DFFT
[ms]

2DFFT
[ms]

POC
[ms]

POC
[ms]

POC
[ms]

POC
[ms]

POC
 [times]

2DFFT
 [times]

Fig. 10. Executing time comparison

IV. EXPERIMENT RESULT

List 2 and figure 10 show comparison result. There are
four cases. The first one is ASIC implementation [3], the
second one is FPGA implementation [9], the third one is CPU
(Core 2 Quad) implementation, the last one is proposed GPU
implementation. And this comparison is done at 256 × 256
pixels image size. There are little condition difference. The
first and the second POC exclude RIPOC, the third and the last
POC include RIPOC. Processing time of only POC operation
is 34ms on Core 2 Quad, and 0.7ms on GPU. Estimation
of sub-pixel displacement is done by 11 × 11 points fitting.
The gettimeofday function is used for estimating of processing
time. The processing time doesn’t contain memory allocation
time and memory free time.

V. ARGUMENT

The processing time on GPU is about 10 times faster than
ASIC. However, it is necessity to have more debate because
ASIC data is very old and methods for estimating sub-pixel
displacement are different. The processing time on GPU is
about twice faster than FPGA. However, it is necessity to
have more debate because FPGA implementation excludes
RIPOC and there are few data of FPGA implementation.
The processing time on GPU is 30.6 times faster than core
2 quad CPU. However, it is necessity to have more debate
because only one core of CPU is used. If 4 core and single
precision float point operation are used, CPU performance
become octuple. In addition, this experiment uses only one
GPU. There must be more consideration about the case of
using plural GPUs on one PC or plural GPUs on plural
PCs. This implementation uses CUDA general-purpose FFT
library CUFFT for FFT operations. The performance of POC
and RIPOC can be improved if dedicated FFT routine is

437

implemented. For example, the mixing two FFT operations
of two images increases the total performance, because two
FFT operation have great amount of common part. Because
the normalised cross spectrum’s amplitude is 1, it is possible to
simplify IFFT operation. This also contributes to the speedup.

VI. CONCLUSION
We have devised the speedup technique using

GPU(Graphics Processing Unit), and have implemented
POC(Phase Only Correlation) and RIPOC(Rotation Invariant
Phase Only Correlation) operations on Nvidia GeForce8800
GTS with CUDA environment. In this implementation, we
use the CUFFT function of CUDA library for 2D FFT. At
first, elapsed time of the other part is ten times longer than
the elapsed time of CUFFT. After tuning the memory layout
and the order of each processes, elapsed time of CUFFT is
about half of total processing time.
We have also compared the GPU implementation with ASIC

or FPGA implementations. The processing time is 2.36ms at
256 × 256 image size, 7.92ms at 512 × 512 image size, and
27.65ms at 1024×1024 image size on one GPU. POC/RIPOC
operation is more 10 times faster than dedicated LSI and 2
times faster than FPGA.

REFERENCES
[1] C. D. Kuglin, D. C. Hines, ”The phase correlation image alignment

method”, Proc. Int. Conf. Cybernetics and Society, pp. 163-165, 1975.
[2] Q. S. Chen, M. Defrise, F. Deconinck, ”Symmetric phase-only matched

filtering of Fourier-Mellin transforms for image registration and recog-
nition”, IEEE Trans. Pattern Anal. Mach. Intell. ,vol. 16, no. 12, pp.
1156-1168, Dec. 1994.

[3] M. MAKOTO, K. ATSUSHI, I. HIDEAKI, ”Development of ”Cinderella
II” Image Processing LSI”, Savemation Rev, vol. 17, no. 2, pp. 64-71,
1999.

[4] K. Ito, H. Nakajima, K. Kobayashi, T. Aoki, and T. Higuchi, ”A
fingerprint matching algorithm using phase-only correlation”, IEICE
Trans. Fundamentals, vol. E87-A, no. 3, pp. 682-691, March 2004.

[5] S. Yamamoto and S. Hirai, ”Robust and Video-frame Rate Tracking of
Planar Motion by Matched Filtering on FPGA”, Proc. of IEEE Int. Conf.
on Robotics and Automation, pp. 4707-4712, New Orleans, April, 2004.

[6] T. Kenji, A. Takafumi, S. Yoshifumi, H. Tatsuo, K. Koji, ”High-
Accuracy Subpixel Image Registration Based on Phase-Only Correla-
tion”, IEICE trans. fundamentals, vol. E86-A, no. 8, pp. 1925-1934,
august 2003.

[7] K. Takita, T. Aoki, Y. Sasaki, T. Higuchi, K.Kobayashi, ”A sub-pixel
correspondence search technique for computer vision applications”,
IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, 2004.

[8] M. Frigo, and S. G. Johnson, ”The Design and Implementation of
FFTW3”, Proceedings of the IEEE, vol. 93, no. 2, pp. 216-231, 2005.

[9] K. Shimizu, S. Hirai, ”Realtime and Robust Motion Tracking by
Matched Filter on CMOS+FPGA Vision System”, Proc. IEEE Int. Conf.
on Robotics and Automation, pp. 788-793, Rome, April, 2007.

438

