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Abstract 

Cortactin, an F-actin binding protein, stabilizes F-actin networks and promotes actin polymerization by 

activating the Arp2/3 complex. Overexpression of cortactin has been reported in several human cancers. 

Cortactin stimulates cell migration, invasion, and experimental metastasis. However, the underlying 

mechanism is not still understood. In the present study, we therefore evaluated the possibility that cortactin 

could be appropriate as a molecular target for cancer gene therapy. In 70 primary oral squamous cell 

carcinomas and 10 normal oral mucosal specimens, cortactin expression was evaluated by immunological 

analyses, and the correlations of the overexpression of cortactin with clinicopathologic factors were 

evaluated. Overexpression of cortactin was detected in 32 of 70 oral squamous cell carcinomas; 

significantly more frequently than in normal oral mucosa. Cortactin overexpression was more frequent in 

higher grade cancers according to T classification, N classifications, and invasive pattern. Moreover, 

RNAi-mediated decrease in cortactin expression reduced invasion. Downregulation of cortactin expression 
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increased the expression levels of E-cadherin, β-catenin, and EpCAM. The siRNA of cortactin also reduced 

PTHrP expression via EGF signaling. These results consistently indicate that the overexpression of 

cortactin is strongly associated with an aggressive phenotype of oral squamous cell carcinoma. In 

conclusion, we propose that cortactin could be a potential molecular target of gene therapy by RNAi 

targeting in oral squamous cell carcinoma.
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Introduction 

Oral squamous cell carcinoma (OSCC) is the most common malignant tumor of the head and neck 

region and accounts for more than 90% of cancers of the oral cavity.1 The primary therapeutic modality for 

OSCC is surgery. Although recent advances in surgical techniques and anticancer agents have improved 

tumor regression and survival for patients with OSCC, wide surgical resection of OSCC causes various oral 

dysfunctions. Therefore, new treatment strategies are urgently needed.  

The presence of neck lymph node metastasis is strongly related to a poor prognosis in squamous cell 

carcinoma of the head and neck.2-4 Moreover, alterations in the expression of adhesion-related molecules 

are reported to be associated with poor prognosis among OSCC patients.5-8 

Gene amplification, leading to an increase of DNA copy numbers and overexpression of oncogenes in 

many tumors, is reported to contribute to the growth advantage of cells, subsequently changing their 

biological behaviors, and causing carcinogenesis.9-11 Chromosomal band 11q13 is a frequently amplified 
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genomic segment in a large number of malignant neoplasms, and is thought of as a potential biomarker for 

diagnosis and prognosis12,13 .In head and neck squamous cell carcinoma, this amplification is one of the 

most frequently observed genetic alterations 14-23 and is reportedly correlated with aggressive tumor 

growth,12,16,22 the presence of lymph node metastases,20,24-26 and poor prognosis.12,22,27  The amplified 

11q13 region is 3-5 megabases in size and includes four putative oncogenes: CCND1 (PRAD1), FGF3 

(INT2), FGF4 (HST1), and EMS1. Because CCND1 and EMS1 were found to be overexpressed in all 

carcinomas carrying the 11q13 amplification, they are believed to be the more important candidate 

oncogenes.13 

Cortactin, which is encoded by the EMS1 gene, is amplified in 30% of head and neck squamous cell 

carcinomas and 13% of primary breast cancers.16,28-31 Cortactin is an actin-associated scaffolding protein 

that binds and activates the actin-related protein (Arp) 2/3 complex, and regulates branched actin networks 

in the formation of dynamic cortical actin-associated structures.32,33 Amplification of the EMS1 gene and 
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the overexpression of cortactin have been reported in breast cancer, bladder cancer, hepatocellular 

carcinoma, esophageal carcinoma, and head and neck squamous cell carcinoma.22,23,27,34-38 Cortactin 

overexpression has been postulated to mediate the increased invasive and metastatic behaviors of tumor 

cells because of its effects in the organization and the functioning of cytoskeleton and cell adhesion 

structures.37 However, the relationship between cortactin expression and invasiveness and metastatic 

potential remain unknown for OSCC. In this study, we initially immunohistochemically examined cortactin 

expression in OSCC. We then determined the clinicopathological significance of cortactin expression in 

relation to various parameters such as patient characteristics and histopathological findings. Moreover, 

siRNA analysis was also performed to assess whether cortactin could be a potent molecular target for 

cancer gene therapy in OSCC.
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Materials and methods 

Patients 

Paraffin-embedded sections were obtained from biopsy specimens of 70 patients with OSCC who 

underwent radical surgery in our department. Tumor stage was classified according to the TNM 

classification of the International Union Against Cancer, histological differentiation was defined according 

to the WHO classification, and invasion pattern was determined according to Bryne’s classification.22 As 

controls, samples of normal oral epithelium were obtained after informed consent from ten patients 

undergoing routine surgical removal of their third molars. 

 

Cell lines 

SAS, a human OSCC cell line, was obtained from the Human Science Research Resource Bank (Osaka, 

Japan). The cells were cultured under conditions recommended by their depositors.  



 9

 

Immunohistochemical staining and evaluation 

Serial 4-μm thick specimens were taken from tissue blocks. Sections were deparaffinized in xylene, 

soaked in target retrieval solution buffer (Dako, Glostrup, Denmark) and placed in an autoclave at 121°C 

for 5 min for antigen retrieval. Endogenous peroxidase was blocked by incubation with 0.3% H2O2 in 

methanol for 30 min. Immunohistochemical staining was performed using the Envision system (Envision+, 

Dako, Carpinteria, CA). The primary antibody used was directed against cortactin (4D10, Abnova, Taipei, 

Taiwan). The sections were incubated with the monoclonal antibody overnight at 4°C. Reaction products 

were visualized by immersing the sections in diaminobenzidine (DAB) solution, and the samples were 

counterstained with Meyer’s hematoxylin and mounted. Negative controls were performed by replacing the 

primary antibody with phosphate-buffered saline. Cortactin expression was defined as the presence of 

specific staining in the cytoplasm and cytoplasm membrane of tumor cells. The immunoreactivity of 
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cortactin was scored by staining intensity and immunoreactive cell percentage as follows37: staining index 0 

= tissue with no staining; 1 = tissue with faint or moderate staining in �25% of tumor cells; 2 = tissue with 

moderate or strong staining in 25% to 50% of tumor cells; 3 = tissue with strong staining in �50% of tumor 

cells. Overexpression of cortactin was defined as staining index �2. 

 

RNA isolation and semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) 

Total RNA was isolated with TRIzol Reagent (Invitrogen, Carlsbad, CA) and first-strand cDNA was 

synthesized from 1 μg total RNA using Oligo d (T) primer (Invitrogen) and ReverTra Ace (Toyobo, Osaka, 

Japan). For PCR analysis, cDNA was amplified by Taq DNA polymerase (Takara, Otsu, Japan). 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as the endogenous expression standard. 

Each PCR program involved a 3-min initial denaturation step at 94°C, followed by 23 cycles (for cortactin), 

or 18 cycles (for GAPDH) at 94°C for 30 s, 55°C for 30 s, and 72°C for 1 min, on a PCR Thermal Cycler 
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MP (Takara). Primer sequences were as follows: TGGGGAGGGGAATATACACA for cortactin (F); 

CTCTAGAGGAAGCCCCTCGT for cortactin (R); GCCCCATTCGTTCAAGTAGTCA for E-cadherin 

(F) ; TTCCGAAGCTGCTAGTCTGAGC for E-cadherin (R), TGGCCTGGTTTGATACTGACCT 

forβ-catenin (F); CTCTACAGGCCAATCACAATGC for β-catenin (R); CCAGAACAATGATGGGCTTT 

for EpCAM (F); ACGCGTTGTGATCTCCTTCT for EpCAM (R); GGTGGCACCAAAGCTGTATT for 

FGFR (F); GGTGCAGGAGAGGAGAACTG for EGFR (R); ACAGTTGGAGTAGCCGGTTG for PTHrP 

(F); TCAGCTGTGTGGATTTCTGC for PTHrP (R); ATGTCGTGGAGTCTACTGGC for GAPDH (F); 

and TGACCTTGCCCACAGCCTTG for GAPDH (R). The amplified products were separated by 

electrophoresis on ethidium bromide-stained 2% agarose gels. Band intensity was quantified by Image J 

software. 

 

Invasion assay 
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A BioCoat Matrigel invasion chamber (Becton Dickinson, Bedford, MA) was used for the invasion 

assay. This contains an internal chamber with an 8-μm porous membrane bottom that was coated with 

Matrigel. Six-well cell culture inserts and a 6-well multiwell companion plate were used for the experiment. 

The membranes were rehydrated with warm serum-free medium for 2 h. The internal chamber was filled 

with 1.25 ×105 cells in medium containing 10% FBS as a chemoattractant. Cells were incubated for 72 h at 

37°C in a 5% CO2 atmosphere. After the incubation, noninvading cells were removed from the top of the 

wells with a cotton swab, and cells that transferred to the inverse surface of the membrane were subjected 

to Diff-Quick staining. Cells were counted under a microscope at 100× magnification. For the control cell 

count, cells that passed through a control chamber without Matrigel were counted. All experiments were 

performed in triplicate, and cell numbers at least in 4 fields/well were counted. The ratio of the cell count 

that passed through the Matrigel chamber to the control cell count was defined as the invasion index, 

expressed as a percentage. 
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RNA interference (RNAi) 

All siRNAs were purchased from Takara Bio Inc. (Otsu, Japan). Cells were transfected with 

double-strand RNA using TransIT-siQUEST® transfection reagent (Mirus, Madison, USA) according to the 

manufacturer’s protocol. The SAS tongue cancer cell line was used for this experiment. Briefly, 1.0×105 

SAS cells were plated in each well of six-well plates and allowed to grow for 24 h, till they reached 50% 

confluence. Cells were then transfected with siRNA at a concentration of 200 nM using the transfection 

reagent and serum-free medium. Following 24 h of incubation, serum-rich medium was added. The EMS1 

siRNA sequences were 5’-CAAGACCGAAUGGAUAAGUTT-3’ and 

5’-ACUUAUCCAUUCGGUCUUGTT-3’. The scrambled control siRNA sequences were 

5’-CGUAUGCGCGUACUCUAAUTT-3’ and 5’-TTGCAUACGCGCAUGAGAUUA-3’. All sequences 

were submitted to the National Institutes of Health Blast program to ensure gene specificity. 
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Western blot analysis 

Cells were harvested by trypsinization, washed, and precipitated by centrifugation. The Mammalian 

Cell Extraction Kit (BioVision Research Products, Mountain View, CA) was used for the extraction of 

proteins. All subsequent manipulations were performed on ice. The cells were incubated in the Extraction 

Buffer Mix. The lysed cells were centrifuged at 15,000 rpm for 3 min and the supernatant was collected as 

the cytoplasmic fraction. Protein concentration of each sample was measured with micro-BCA protein 

assay reagent (Pierce Chemical Co.). Samples were denatured in SDS sample buffer and loaded onto 

12.5 % polyacrylamide gels. After electrophoresis, the proteins were transferred onto a polyvinylidine 

difluoride membrane and immunoblotted with anti-cortactin (H-191, Sanra Cruz, California, USA), 

anti-E-cadherin (Cell Signaling, MA, USA), anti-β-actin (Cell Signaling, MA, USA), 

anti-EpCAM(HEA-125, Gene Tax, San Antonio, TX), or anti-EGFR(H11,Thermo, Cheshire, UK). Signals 
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were detected using a horseradish peroxidase-conjugated secondary antibody (ECL antimouse IgG, 

Amersham Biosciences, Piscataway, NJ; 0.01 μg/ml), and then visualized using an ECL Kit (Amersham 

Pharmacia Biotech, Buckinghamshire, UK). 

Statistical analysis 

Statistical analysis was performed using StatMate® (ATMS Co., Tokyo, Japan). The associations 

between cortactin expression and clinicopathologic features were assessed by Fischer’s exact test. To 

determine significant prognostic factors related to survival, multivariate analysis was performed using the 

Cox proportional hazards regression model. Continuous data are given as mean ± standard deviation. Data 

sets were examined by one-way analysis of variance (ANOVA) followed by Scheffe’s post-hoc test. The 

correlation between cortactin mRNA expression and invasion index was determined using Person’s 

correlation coefficient. P values less than 0.05 were considered significant.
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Results 

Correlation between cortactin overexpression and clinicopathologic features 

Immunohistochemistry with an anti-cortactin-specific monoclonal antibody was performed on a series 

of 70 patients with oral squamous cell carcinoma. Representative immunohistochemical stainings are 

shown in Figure 1. Overexpression of cortactin was undetectable in the normal epithelium (Fig. 1A). In the 

squamous cell carcinoma cells, strong cortactin staining was apparent at the invasive front and the diffuse 

invasive area. Cortactin overexpression was detected significantly more frequently in OSCC (32 of 70, 

45.7%) than in normal oral epithelium (0 of 10, 0%; p<0.01). Moreover, cortactin overexpression was 

significantly more frequent in cancers with higher grade according to T classification (T 3/4 vs. 1/2; 

p<0.001), N classification (N 3/4 vs. 1/2; p<0.05), or invasive pattern (grade 3/4 vs. 1/2; p<0.001, Table 1).   

Cox regression analysis was performed with the parameters of histologic differentiation (T 

classification, N classification, and pattern of invasion) and cortactin overexpression. Cox regression 
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analysis revealed a correlation between N classification (hazard ratio: 3.71, 95% CI: 0.420-2.20, P: 0.004), 

pattern of invasion (hazard ratio: 2.65, 95% CI: 0.055-1.89, P: 0.038), and cortactin overexpression (hazard 

ratio: 2.80, 95% CI: 0.091-1.97, P: 0.032, Table 2). These findings strongly suggested that cortactin 

overexpression would be a significant independent predictor of survival. 

 

Effect of decreasing cortactin expression on the invasion potential of SAS cells 

To determine the effect of decreasing cortactin expression on invasion potential, we transfected 

SAS cells with cortactin siRNA (Fig. 2A,B) and performed the Matrigel invasion assay. Transfection with 

cortactin siRNA significantly decreased the mRNA and protein levels of cortactin, compared with those in 

non-transfected cells and cells transfected with scrambled siRNA (Fig.2A, B). Concomitantly, the invasion 

index of the SAS cells decreased significantly from 13.2% (in cells treated with vehicle alone) and 12.4% 

(in cells transfected with scrambled siRNA) to 0.02% in cells transfected with cortactin siRNA (Fig. 2C). 
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Furthermore, the mRNA expressions of E-cadherin, β-catenin and EpCAM were significantly decreased in 

cortactin-targeted siRNA transfected SAS cells (Fig. 3A). A very similar tendency was seen in the protein 

levels, with the exception of β-catenin (Fig. 3B). Therefore, downregulation of cortactin expression by 

siRNA drastically suppressed the mobility of SAS cells in vitro. 

 

Effect of decreasing cortactin expression on PTHrP expression via the EGFR signaling pathway 

PTHrP was firstly discovered as a causative protein for hypercalcemia, which is frequently 

encountered during the terminal phase of malignant tumors.39,40 PTHrP contributes to the malignancy of 

oral cancers downstream of EGFR signaling.41 We therefore examined the effect of decreasing cortactin 

expression on PTHrP expression via the EGFR signaling pathway. Cortactin-targeted siRNA transfection of 

SAS cells significantly decreased EGFR and PTHrP gene expressions (Fig. 3A). In terms of protein level, 

EGFR expression was decreased by the cortactin-targeted siRNA transfection (Fig. 3B). These results 
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suggest that cortactin also may act as a mediator of EGFR signaling, as well as PTHrP, in OSCC.  
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Discussion 

Cortactin has been described as an actin associated scaffolding protein. It binds and activates the Arp 

2/3 complex and regulates the branched actin networks in the formation of dynamic cortical 

actin-associated structures.32,33 Cortactin is also thought to relate to functions involving membrane 

dynamics and cortical actin assembly, including cell migration, morphogenesis, adhesion, 

receptor-mediated endocytosis, and pathogen invasion to improve the connection with the list of 

functions.42 The amplification of cortactin has been reported in 30% of head and neck squamous cell 

carcinomas and 13% of primary breast cancers.16,28-31 In head and neck squamous cell carcinoma, the 

amplification of cortactin correlates with poor prognosis.21 In nude mice with esophageal squamous cell 

carcinoma, tail vein injection of cortactin siRNA-transfected cells decreased lung metastasis and prolonged 

survival time compared with controls.37 In addition, in the same animal model, amplification and 

overexpression of cortactin contribute to metastasis, anoikis resisitance,37 and carcinogesis.38 In NIH3T3 
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fibroblasts, overexpression of EMS1/cortactin increases cell motility and invasion in vitro.43 Enhancement 

of migration ability facilitates tumor invasion, which is the principal mechanism reported to account for the 

role of cortactin in tumor metastasis.33 The ectopic expression of cortactin potentiates bone metastasis of 

breast cancer by increasing the adhesive affinity of tumor cells for bone marrow endothelial cells.44 

Therefore, the overexpression of cortactin endows cancer cells with various capabilities for metastasis. 

In previous studies, cortactin overexpression has reported to be correlated with carcinogenesis,38 lymph 

node metastasis,37 and poor prognosis.21 In this study, cortactin overexpression was strongly correlated with 

cancers of higher grade according to T classification, N classification, and invasive pattern. Additionally, 

Cox regression analysis revealed a correlation between N classification, pattern of invasion, and cortactin 

overexpression, respectively. We demonstrated that cortactin overexpression in OSCC could reflect a large 

tumor size, regional lymph node metastasis, and diffuse invasion. Moreover, it was suggested that cortactin 

expression could be a prognostic factor in OSCC patients.  
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The present study also demonstrated that cortactin expression could be associated with invasiveness in 

the human tongue squamous cell carcinoma cell line, SAS. Our study indicated that the de novo 

overexpression of cortactin increased the invasion potential of tongue squamous cell carcinoma cells. 

Moreover, the immunohistochemical staining of cortactin revealed strong positivity in the invasive front of 

the diffuse invasion pattern. However, the mechanism by which cortactin increases the invasive potential 

remains unclear.  

There is a correlation between the ability of cells to locally degrade the matrix at invadopodia, which 

are actin-containing protrusions extending into the matrix and participating in matrix degradation, and their 

invasive potential as measured in other in vivo and in vitro assays for motility and invasion.45 Cortactin 

binds to F-actin in vitro, colocalizing with cortical actin at ruffling membranes, and possesses 

actin-bundling activity that is modulated by c-Src, suggesting a role in membrane motility.46,47 Cortactin is 

reportedly recruited to cell-cell adhesive contacts in response to homophilic cadherin ligation.48 Moreover, 
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one of the molecular mechanisms that links cadherins and actin assembly is likely to involve the interaction 

between E-cadherin and the Arp2/3 actin nucleator complex.48 Cadherin adhesive ligation can recruit the 

Arp2/3 complex to the cell surface49, and cortactin can interact with Arp2/3 (via an NH2-terminal acidic 

[NTA] domain) and F-actin (via the fourth of six tandem repeats located in the NH2-terminal half of the 

molecule)50. In contrast, cortactin inhibits the disassembly of Arp2/3-generated actin filaments, and 

potentially stabilizes the cortical actin network.51 Cortactin activity is necessary for the Arp2/3-dependent 

actin assembly that occurs in response to E-cadherin homophilic ligation.48  

Colocalization and association of cortactin with E-cadherin have been reported in epithelial cells.48 In 

previous reports, reduction of cortactin expression levels had no effect on E-cadherin or β-catenin 

levels.48,52 However, RNAi-mediated downregulation of cortactin resulted in significant reduction of 

intercellular adhesion.52 Additionally, cortactin downregulation delayed the formation of early nascent 

E-cadherin-based-cell-cell contacts.48 Catenin links cadherin with the actin cytoskeleton, and can also form 
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a complex with EGFR.53 It was reported that EpCAM expression could be associated with invasiveness in 

human tongue cancer cell lines.8 The EpCAM overexpression decreased adhesion mediated by the 

cadherin-catenin complex.54,55 In this study, siRNA of cortactin resulted in the downregulation of adhesion 

molecules such as E-cadherin, β-batenin, and EpCAM levels, in contrast to previous reports.48,52 It is 

suggested that cortactin expression might also affect expression levels of these molecules and thereby 

contribute to invasive ability in OSCC cells.  

Epidermal growth factor (EGF) is enriched in the oral region, and most OSCC cells express abundant 

EGF receptor(EGFR).56 The increased expressions of EGFR or its ligand are associated with reduced 

disease-free survival.57 The overexpression of cortactin in head and neck squamous cell carcinoma cells 

attenuates ligand-induced downregulation of the EGFR, which leads to sustained receptor signaling to the 

mitogenic extracellular signal-regulated kinase (ERK)/ mitogen-activated protein kinase pathway 

(MAPK).58 PTHrP was first reported as a major factor responsible for hypercalcemia in malignancies,59 and 
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acts classically as a stimulator of osteoclastic bone resorption.60 EGF signaling up-regulates PTHrP gene 

expression through the MAPK cascades, leading to malignant conversion of OSCC by enhanced cell 

proliferation, migration, and invasion.41 EGF activated ERK, p38 MAPK, and JNK in OSCC, and in 

particular, ERK and p38 MAPK were involved in PTHrP expression.41 In this report, we examined the 

effect of cortactin expression on the PTHrP expression via EGF signaling by the siRNA downregulation of 

cortactin. Cortactin down-regulation reduced EGFR and PTHrP mRNA expression levels. It is suggested 

that cortactin expression might contribute to PTHrP expression via EGF signaling and accordingly enhance 

cell proliferation and invasiveness of OSCC. 

In summary, we showed the significance of cortactin expression as a potential prognostic factor of 

OSCC and the possibility of an association between cortactin and PTHrP expression via EGF signaling. 

RNAi technology is a specific and powerful tool to turn off the expression of oncogenic target genes.61 In 

oral cancer, the possibility of RNA-mediated gene therapy has been reported.62,63 We successfully applied 
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RNA silencing to inhibit the expression of cortactin, thereby decreasing the invasion potential of OSCC. 

Therefore, we propose that RNAi-mediated gene silencing of cortactin might be a useful modality for 

OSCC treatment in the future. 
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Figure Legends 

Figure 1  

Representative immunohistochemical staining for cortactin. (A) Negative staining without cortactin 

overexpression is shown in normal oral epithelium (40×). (B) Well-differentiated squamous cell carcinoma 

demonstrating strong cortactin expression (staining index of 3) and diffuse invasion (40×). (C) 

Immunohistochemical staining for cortactin demonstrates strong cytoplasmic expression in the cancer nests 

(200×). (D) Cortactin overexpression (intense staining) is shown in squamous cell carcinoma cells at the 

invasive front of the tumor (200×). 

 

Figure 2 

(A) Representative RT-PCR for the suppression of cortactin in SAS cells. Cells were transfected with 

scrambled siRNA (control) or cortactin siRNA. After 72 h, isolated total RNA was analyzed using RT-PCR. 



 41

(B) Western blot analysis for the suppression of cortactin in SA cells. Western blot analyses show cortactin 

and β-actin expression in the whole cell lysate proteins. (C) The graph shows a significant decrease of the 

invasion index in SAS cells treated with cortactin siRNA (P<0.01).  

 

Figure 3 

(A) Representative RT-PCR for the suppression of cortactin in SAS cells. Cells were transfected with 

scrambled siRNA (control) or cortactin siRNA. After 72 h, isolated total RNA was analyzed using 

RT-PCR. The siRNA of cortactin reduced the mRNA expression levels of E-cadherin, β-catenin, EpCAM, 

FGFR, and PTHrP. (B) Western blot analysis for the suppression of cortactin in SAS cells. Western blot 

analysis show the decreased expression of E-cadherin, EpCAM, and EGFR. 
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Normal epithelium

Squamous cell carcinoma

ｃortactin overexpressiom

(－) （＋）

Male

Female

60≦

60＞

T1 ＋ T2

T3 ＋ T4

N0

N1 ＋ N2

Well

Moderate/Poor

Grades1/2

Grades3/4

Gender

Age

T classification

N classification

Differentiation

Pattern of invasion

p value

10 0

38 32
p＜0.01

22 17

16 15
p=0.689

10 11

28 21
p=0.464

33 13

5 19

p＜0.001

34 21

4 11

p＜0.05

32 28

6 4
p=0.695

32 10

6 22
p＜0.001

 

     Table 1  Correlation of cortactin overexpression and clinicopathologic features 
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Table 2  Multivariate analysis (Cox regression) of different prognostic parameters 

         95% CI, 95% confidence interval. 

 

Parameter Hazard ratio 95% CI  P value 

 

T classification (T1＋T2 versus T3＋T4) 

N classification (N0 versus N1+N2) 

Differentiation (Well versus Moderate/Poor 

Pattern of invasion (Grades 1/2 versus Grades 3/4) 

Cortactin overexpression (- versus +）  

3.71 0.420-2.20 0.004 

2.65 0.055-1.89 0.038 

2.80 0.091-1.97 0.032 

0.987 -0.932-0.906 0.987 

-2.371-0.249 0.346 0.346 
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