Convenient synthesis of enantiomerically pure bicyclic proline and its N -oxyl derivatives

Yosuke Demizu, Hirofumi Shiigi, Hiroyuki Mori, Kazuya Matsumoto and Osamu Onomura*
Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki
852-8521, Japan

Abstract

Enantiomerically pure bicyclic proline derivative was prepared by cis-selective allylation and diastereospecific intramolecular alkylation starting from D-pipecolinic acid. In addition, enantiomerically pure azabicyclo N -oxyls derived from the bicyclic proline worked well as catalyst for enantioselective electrooxidation of racemic sec-alcohols to afford optically active sec-alcohols in moderate optical purity.

Keywords: Bicyclic proline; Quaternary α-amino acid; Enantioselective oxidation; Electrooxidation; Optically active alcohol

1. Introduction

In the recent past, importance of quaternary α-amino acids and their peptides have continued to increase in the fields of medicinal chemistry, and protein engineering. ${ }^{1}$ Since quaternary α-amino acids are non-proteinogenic, their synthesis has attracted considerable attention. ${ }^{2}$ Among them, bicyclic proline analogues \mathbf{A} bridged at the $2^{\text {nd }}$ and $5^{\text {th }}$ carbons of the pyrrolidine ring have unique biological ${ }^{3}$ and conformational ${ }^{4}$ properties. Therefore, several synthetic methods for their preparation have been developed (Figure 1). ${ }^{5}$ However, to the best of our knowledge, synthesis of enantiomerically enriched bicyclic proline A1 with an 8-azabicyclo[3.2.1]octane skeleton has not been accomplished to date. ${ }^{6}$ We wish herein to report a convenient method for synthesis of $\mathbf{A 1}^{7}$ starting from D-pipecolinic acid. In addition, chiral N-oxyls derived from A1 were prepared and used for enantioselective electrooxidation of DL-1-phenylethanol. ${ }^{8}$

Figure 1. Structure of bicyclic proline analogue A

2. Results and discussion

2.1. Synthesis of bicyclic proline derivative $\mathbf{6}$

Our strategy for synthesis of bicyclic proline derivative $\mathbf{6}$ is shown in scheme 1 , which consists of cis-selective allylation and diastereospecific intramolecular alkylation. To start with, electrochemical methoxylation ${ }^{9}$ of D-pipecolinic acid derivative $\mathbf{1}$ afforded 6-methoxypipecolinate 2 , which was allylated with allyltrimethylsilane catalyzed by $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ to give diastereomerically enriched 6-allylated pipecolinate cis-3. ${ }^{10}$ After isolation of cis-3 by chromatography, transformation of the 6-allyl group to tosyloxyethyl group was carried out by ozonolysis, then NaBH_{4} reduction followed by tosylation to obtain 5 in sufficient high yield. Finally, compound 5 underwent a base catalyzed intramolecular alkylation ${ }^{5 d, 11}$ to afford enantiomerically pure 6 with an 8 -azabicyclo[3.2.1]octane skeleton in high yield. Further alkaline hydrolysis of $\mathbf{6}$ gave N-protected bicyclic proline 7 in quantitative yield.

Scheme 1.

The stereoconfiguration of $\mathbf{6}$ was determined by X-ray crystallographic analysis after derivatization of 7 to heterotripeptide 8. ${ }^{12}$ The transformation was carried out in solution-phase method, employing 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and 1-hydroxybenzotriazole (HOBt) as coupling reagents (Eq. 1). As shown in Figure 2, bicyclic proline analogue has the conformational property similar
to that of proline, which is β-turn inducer. ${ }^{13}$

Figure 2. Ortep drawing of tripeptide 8.

2.2. Synthesis of enantiomerically pure N-oxyls 10, 13, and 16a-d

Enantiomerically pure azabicyclo- N-oxyl 10 possessing methoxycarbonyl group at the bridgehead position was synthesized from 6 by deprotection of N-methoxycarbonyl group utilizing $\mathrm{Me}_{3} \mathrm{SiI}$ followed by m-CPBA oxidation (Eq. 2). N-Oxyl 13 was synthesized as follows: reduction of methyl ester group followed by benzoylation of hydroxyl group gave compound 11 in moderate yield. After deprotection of 11, successive oxidation with m CPBA afforded N-oxyl 13 (Eq. 3).

(3)
13, 48\%

Compounds 14a-d substituted with several amide groups were prepared by using solution-phase method (Eq. 4). N-Oxyls 16a-d were prepared in a similar method similar to that described for the preparation of N-oxyl 10. The results are summarized in Table 1.

16a-d

Table 1. Preparation of enantiomerically pure N-oxyls 16a-d

Entry	RNH_{2}	Yield of 14a-d (\%)		15a-d (\%)		16a-d (\%)	
1	Ph- NH_{2}	14a	70	15a	51	16a	85
2	$\mathrm{Bn}-\mathrm{NH}_{2}$	14b	78	15b	74	16b	82
3	Methyl L-Phg ${ }^{\text {a }}$	14c	78	15c	86	16c	86
4	Methyl D-Phg ${ }^{\text {b }}$	14d	83	15d	83	16d	68

a)

b)

Cyclic voltammogram for $\mathbf{1 0}$ showed reversible wave pattern similar to that of TEMPO. ${ }^{14}$ This fact strongly suggests that enantiomerically pure azabicyclo- N -oxyls could also play the role of an oxidation mediator just like TEMPO (Figure 3).

Figure 3. Cyclic voltammogram for N-oxyl 10.
2.3. Enantioselective electrooxidation of DL-1-phenylethanol mediated by chiral azabicyclo-N-oxyls 10, 13, and 16a-d
The enantioselective electrooxidation of DL-1-phenylethanol (17) ${ }^{8,15}$ mediated by chiral azabicyclo- N-oxyls 10, 13, and 16a-d was carried out in an undivided beaker-type cell having platinum electrodes as follows (Eq. 5). That is, oxidation was conducted, containing a catalytic amount of N-oxyl, excess amount of sodium bromide, and a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and saturated aqueous NaHCO_{3} as solvent. After passing through 1.5 F / mol of electricity at constant current (20 mA , terminal voltage: ca 3 V) at $0^{\circ} \mathrm{C}$, acetophenone $\mathbf{1 8}$ and (S)-17 were obtained. The results are shown in Table 2. The use of N-oxyls $\mathbf{1 0}$ and 16a-d afforded (S)-17 with moderate s value ${ }^{16}$ (Entries 1, 3, 4—6), while (S)-17 was recovered with low enantioselectivity when N-oxyl $\mathbf{1 3}$ was used (Entry 2).

10, 13, 16a-d (0.1 equiv)

(S)-17

Table 2. Enantioselective oxidation of DL-phenylethanol (17) mediated by 10, 13, 16a-d

Entry	N-oxyl	Yield of $\mathbf{1 8}(\%)$	Yield of recovered (S)-17 (\%)	\% ee of (S)-17	s
1	$\mathbf{1 0}$	59	41	49	3
2	$\mathbf{1 3}$	50	41	7	1
3	$\mathbf{1 6 a}$	64	36	59	3
4	$\mathbf{1 6 b}$	50	50	42	4
5	$\mathbf{1 6 c}$	45	51	69	6
6	16d	53	36		

Enantioselective oxidation of other sec-alcohols $19-24$ mediated by $\mathbf{1 6 b}$ were examined (Eq. 6). Table 3 summarizes the results. In all cases, (S)-alcohols $\mathbf{1 9}-\mathbf{2 4}$ were recovered with low to moderate s value.

Table 3. Enantioselective oxidation of various sec-alcohols 19-24 mediated by 16b
Entry

Scheme 2 shows our proposed mechanism for kinetic resolution of DL-17 mediated by chiral N-oxyl 16b. Compound DL- $\mathbf{1 7}$ has prospects to approach 16b' generated by the oxidation of $\mathbf{1 6 b}$ with bromonium ion from path a or path b. In the case of path a, since $(R) \mathbf{- 1 7}$ can smoothly approach $\mathbf{1 6 b}$ ' to form the active intermediate, (R) - $\mathbf{1 7}$ can easily be oxidized to afford acetophenone (18). On the other hand, the formation of intermediate composed of (S)-17 and 16b seems to be somewhat difficult. Also, in the case of path b, the intermediate seems to be somewhat unstable because the distance $\mathrm{O}-\mathrm{H}^{\mathrm{a}} \cdots \mathrm{O}^{\mathrm{a}}=\mathrm{C}$ is slightly longer for a hydrogen bond.

path a
16b' \downarrow
(S)-17
16b

\downarrow

$R, R^{\prime}=M e, P h$
Scheme 2. Plausible stereochemical course for kinetic resolution of DL-17.

3. Conclusion

We have accomplished a convenient method for synthesis of enantiomerically pure bicyclic proline analogues starting from D-pipecolinic acid. It has similar conformational property to that of proline, which is β-turn inducer. Chiral azabicyclo N-oxyls derived from bicyclic amino acid worked well as catalysts in enantioselective electrooxidation of racemic sec-alcohols to afford optically active sec-alcohols in moderate s value.

4. Experimental Section

4.1. General

Electrochemical reactions were carried out using DC Power Supply (GP 050-2) of Takasago Seisakusho, Inc. ${ }^{1}$ H NMR spectra were measured on a Varian Gemini 300 and 400 spectrometer with TMS as an internal standard. ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Varian Gemini 300 and 400 spectrometer with TMS as an internal standard. IR spectra were obtained on a Shimadzu FTIR-8100A. Mass spectra were obtained on a JEOL JMS-DX 303 instrument.

All reagents and solvents were used as supplied without further purification.
Although we could not determine optical purity for compounds 7, 9, 10, 11, 12, 13, $\mathbf{1 4 a}-\mathbf{d}, \mathbf{1 5 a}-\mathbf{d}$ and $\mathbf{1 6 a}-\mathbf{d}$, it was assumed that there was no racemization during their derivation from enantiomerically pure 6 .

4.2. Procedure for synthesis of enantiomerically pure proline analogue

Methyl N-methoxycarbonyl-L-pipecolinate $(e n t-1)^{10}$ and methyl N-methoxycarbonyl-6-methoxy-L-pipecolinate (ent-2) ${ }^{10}$ are known compounds.

4.2.1. Methyl N-methoxycarbonyl-(6S)-allyl-D-pipecolinate (cis-3)

Under nitrogen atmosphere, $\mathrm{BF}_{3}-\mathrm{OEt}_{2}(4.2 \mathrm{~mL}, 34.2 \mathrm{mmol})$ was added dropwise to $2(7.5 \mathrm{~g}, 32.6 \mathrm{mmol})$ and allyltrimethylsilane $(9.8 \mathrm{~mL}, 61.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ then the mixture was stirred for 3 h and allowed to stand until it warmed to $-40^{\circ} \mathrm{C}$. The resulting mixture was poured into ice water and extracted with CHCl_{3} (300 $\mathrm{mL} x 3$). The combined organic layer was dried over anhydrous MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane : $\mathrm{AcOEt}=5: 1 ; c i s-3$ was less polar than trans-3) to afford cis-3 as a colorless oil ($5.7 \mathrm{~g}, 72 \%$). $[\alpha]_{\mathrm{D}}{ }^{20}=+106.6$ (c 1.0, CHCl_{3}); IR (neat) $v=$ 2951, 1752, 1713, $1642 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=5.80-5.63(\mathrm{~m}, 1 \mathrm{H})$,
5.07-5.01 (m, 2H), $4.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$, $2.42-2.10(\mathrm{~m}, 3 \mathrm{H}), 1.78-1.47(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=156.8,136.0$, $116.8,52.8,52.3,52.1,50.8,36.3,26.0,25.8,15.3$; $[\mathrm{HR}-\mathrm{FAB}(+)]: \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$242.1393: found 242.1404.

4.2.2. Methyl N-methoxycarbonyl-(6S)-(2-hydroxyethyl)-D-pipecolinate (4)

Ozone gas was bubbled into a solution of $3(241 \mathrm{mg}, 1.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, and the reaction was monitored by TLC. After disappearance of $3, \mathrm{NaBH}_{4}$ ($304 \mathrm{mg}, 8.0 \mathrm{mmol}$) dissolved in $\mathrm{MeOH}(1.0 \mathrm{~mL})$ was added dropwise to the mixture and stirred at $50^{\circ} \mathrm{C}$ for 6 h . The mixture was poured into 3% aqueous HCl and extracted with $\mathrm{CHCl}_{3}\left(20 \mathrm{~mL} x\right.$ 3). The combined organic layer was dried over anhydrous MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane : $\mathrm{AcOEt}=1: 1$) to afford 4 as a colorless oil $(198 \mathrm{mg}, 81 \%) .[\alpha]_{\mathrm{D}}{ }^{20}=+50.2$ (c 1.0, CHCl_{3}); IR (neat) $v=3500$ (br), 2953, 1736, $1700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=4.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.75(\mathrm{~s}$, $3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.63(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.43(\mathrm{~m}, 8 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=172.8,157.9,58.7,53.3,52.4,52.1,46.8,35.6,29.4$, 26.0, 16.0; [HR-FAB(+)]: m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 246.1342$: found 246.1345.
4.2.3. Methyl N-methoxycarbonyl-(6S)-[2-(p-tolunesulfonyloxy)ethyl]-D-pipecolinate (5)
$p-\mathrm{TsCl}(120 \mathrm{mg}, 0.63 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(88 \mu \mathrm{~L}, 0.63 \mathrm{mmol})$, and 4-DMAP (13.4 mg , $0.11 \mathrm{mmol})$ were added into $4(130 \mathrm{mg}, 0.53 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ and the mixture was stirred for 24 h at room temperature. Upon completion of reaction the mixture was poured into 3% aqueous HCl and extracted with CHCl_{3} ($10 \mathrm{~mL} \times 3$). The combined organic layer was dried over anhydrous MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane : $\mathrm{AcOEt}=4: 1$) to afford 5 as a colorless oil ($205 \mathrm{mg}, 97 \%$). $[\alpha]_{\mathrm{D}}{ }^{20}=+61.5$ (c 1.0, CHCl_{3}); IR (neat) $v=2953,1742,1701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.36-4.33(\mathrm{~m}, 1 \mathrm{H})$, 4.14-4.12 (m, 2H), 3.69 (s, 3H), 3.68 (s, 3H), 2.45 (s, 3H), 2.29 (d, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.08-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.40(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=173.0,156.8$, $144.6,133.0,129.8,128.0,68.4,53.0,52.3,47.6,32.0,28.5,25.9,21.6,15.7$; [HR-FAB(+)]: m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$400.1430: found 400.1449.

Under nitrogen atmosphere, $1.9 \mathrm{M} \mathrm{NaHMDS}(2.5 \mathrm{~mL}, 4.7 \mathrm{mmol})$ in n-hexane was added dropwise to $5(1.56 \mathrm{~g}, 3.9 \mathrm{mmol})$ in THF $(40 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, then the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 12 h and allowed to stand until it warmed to room temperature. The mixture was then poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with AcOEt ($40 \mathrm{~mL} \times 3$). The combined organic layer was dried over anhydrous MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane : $\mathrm{AcOEt}=5: 1$) to afford 6 as a colorless oil (761 mg, 86\%). $[\alpha]_{\mathrm{D}}{ }^{23}=+25.0\left(c 1.0, \mathrm{CHCl}_{3},>99 \%\right.$ ee); IR (neat) $v=2953,1750,1709$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=4.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, $2.25-1.39(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=172.8,154.9,65.2,56.9,52.4$, 52.2, 34.1, 29.8, 29.6, 27.3, 17.0; [HR-FAB(+)]: m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ 228.1236: found 228.1237. HPLC: Daicel Chiralcel OJ-H column, n-hexane : ethanol = 20: 1, wavelength: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: 8.2 min for $(S)-\mathbf{6}$, 11.1 min for $(R)-6$.

4.2.5. (1R)-N-Methoxycarbonyl-8-azabicyclo[3.2.1]octane-1-carboxylic acid (7)

1 M aqueous $\mathrm{NaOH}(5.0 \mathrm{~mL})$ was added to the stirred solution of $6(318 \mathrm{mg}, 1.4$ $\mathrm{mmol})$ in $\mathrm{MeOH}(5.0 \mathrm{~mL})$, and the solution continued to be stirred at $60^{\circ} \mathrm{C}$ for 48 h . The solution was then neutralized with 3% aqueous HCl , and then MeOH was evaporated. The residue was diluted with brine, extracted with AcOEt ($20 \mathrm{~mL} \times 3$), and dried over anhydrous MgSO_{4}. Removal of the solvent afforded compound 7 (298 mg , quant.) as a colorless oil, which was used for next reaction without further purification. $[\alpha]_{D}{ }^{29}=$ +21.6 (c 1.0, $\mathrm{CHCl}_{3},>99 \%$ ee); IR (neat) $v=3280$ (br), 2955, 1750, $1700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.91$ (br s, 1 H), 4.33 (br s, 1 H), 3.72 (s, 3 H), 2.34-1.40 (m, 10H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=177.3,155.3,65.4,57.2,52.6,34.6,29.8$, 27.3, 20.8, 17.0; [HR-FAB(+)]: m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$214.1079: found 214.1080.
4.2.6.

Methyl
N-[(1R)-N-methoxycarbonyl-8-azabicyclo[3.2.1]octane-1-carbonyl]dimethylglycyl-dim etylglycinate (8)

A solution of $7 \quad(213 \quad \mathrm{mg}, \quad 1.0 \mathrm{mmol})$, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC, $230 \mathrm{mg}, 1.2$ mmol), and 1-hydroxybenzotriazole ($\mathrm{HOBt}, 162 \mathrm{mg}, 1.2 \mathrm{mmol}$) in $\mathrm{MeCN}(5 \mathrm{~mL})$ was stirred at room temperature for 30 min . Then, a solution of $\mathrm{H}_{2} \mathrm{~N}$-(Aib) $)_{2}-\mathrm{OMe}(202 \mathrm{mg}$, $1.0 \mathrm{mmol})$ in $\mathrm{MeCN}(5 \mathrm{~mL})$ was added to the stirred solution and stirring continued at
$60^{\circ} \mathrm{C}$ for 48 h . The solution was evaporated, diluted with $\mathrm{AcOEt}(50 \mathrm{~mL})$, washed with 3% aqueous $\mathrm{HCl}, 5 \% \mathrm{NaHCO}_{3}$, brine, and dried over anhydrous MgSO_{4}. Evaporation of the solvent gave white solid, which was purified by column chromatography on silica gel (n-hexane : $\mathrm{AcOEt}=1: 5$) to afford 8 ($310 \mathrm{mg}, 78 \%$) as colorless crystals. Mp 165 $-167^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+25.6\left(c 0.5, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}(\mathrm{KBr}) v=3324,3013,1746,1736,1690$, $1655 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.79(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J$ $=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.21-1.42(\mathrm{~m}, 22 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=175.3,173.6,159.8,156.5,66.8,58.0,56.6,55.9,52.8,52.1,35.3,29.5$, 28.4, 27.1, 25.4, 24.0, 23.6, 16.9, 14.7; [HR-FAB(+)]: m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{6}$ $[\mathrm{M}+\mathrm{H}]^{+} 398.2291$: found 398.2314 .
Crystallographic data: orthorhombic; space group $P 2_{1} 2_{1} 2_{1} ; a=8.7962(5) \AA, b=$ $10.6579(5) \AA, c=22.8155(11) \AA ; \alpha, \beta, \gamma=90^{\circ} ; V=2138.93(19) \AA^{3} ; Z=4, \mathrm{~d}_{\text {calcd }}=$ $1.234 \mathrm{~g} / \mathrm{cm}^{3} ; 15,490$ reflections collected 2763 unique ($R_{\text {int }}=0.019$); $R=0.0595, w R_{2}=$ 0.1330 .

4.3. Preparation of chiral azabicyclo N -oxyls

4.3.1. Methyl (1R)-8-azabicyclo[3.2.1]octane-1-carboxylate (9)

$\mathrm{Me}_{3} \mathrm{SiI}(213 \mu \mathrm{~L}, 1.5 \mathrm{mmol})$ was added to stirred solution of $6(114 \mathrm{mg}, 0.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$, and the solution was stirred at rt for 12 h . The solution was then poured into saturated aqueous NaHCO_{3} and extracted with CHCl_{3} (20 mL x 3). The combined organic layer was dried over anhydrous MgSO_{4} and solvent was removed under reduced pressure to afford $\mathbf{9}$ as a colorless oil, which was used for next reaction without further purification. $[\alpha]_{\mathrm{D}}{ }^{28}=+14.3\left(c 0.7, \mathrm{CHCl}_{3},>99 \%\right.$ ee); IR (neat) $v=3277$ (br), 2953, $1717 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=3.74(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, 2.08-1.46 (m, 10H); [HR-EI(+)]: m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{2}[\mathrm{M}]^{+}$169.1103: found 169.1108 .

4.3.2 Methyl (1R)-8-azabicyclo[3.2.1]octane-1-carboxylate-N-oxyl (10)

A solution of amine 9 ($34 \mathrm{mg}, 0.2 \mathrm{mmol}$) and m-CPBA ($52 \mathrm{mg}, 0.3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was stirred for 3 h at rt . The solution was then poured into saturated aqueous NaHCO_{3} and extracted with $\mathrm{CHCl}_{3}(10 \mathrm{~mL} \times 3)$. The combined organic layer was dried over anhydrous MgSO_{4} and solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane : $\mathrm{AcOEt}=3$: 1) to afford N-oxyl $10(29 \mathrm{mg}, 79 \%)$ as a red foam. $[\alpha]_{\mathrm{D}}{ }^{29}=-13.9$ (c $0.6, \mathrm{CHCl}_{3}$, $>99 \%$ ee); IR (neat) $v=2955,1748,1437 \mathrm{~cm}^{-1} ;[\mathrm{HR}-\mathrm{FAB}(+)]: \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NO}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}$184.0974: found 184.0990 .

4.3.3. (1R)-N-Methoxycarbonyl-1-benzoyloxymethyl-8-azabicyclo[3.2.1]octane (11)

Under an argon atmosphere, 1 M DIBAL-H ($3.0 \mathrm{~mL}, 3.0 \mathrm{mmol}$) in n-hexane was added dropwise to a solution of $\mathbf{6}(227 \mathrm{mg}, 1.0 \mathrm{mmol})$ in toluene $(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 12 h and allowed to stand until it warmed to room temperature. The solution was then poured into 3% aqueous HCl and extracted with $\mathrm{AcOEt}\left(20 \mathrm{~mL} \times 3\right.$). The combined organic layer was dried over anhydrous MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane : AcOEt $=3: 1$) to afford (1R)-N-methoxycarbonyl-1-hydroxymethyl-8-azabicyclo[3.2.1]octane ($\mathbf{6}^{\prime}$) as a colorless oil ($183 \mathrm{mg}, 86 \%$). $[\alpha]_{\mathrm{D}}{ }^{26}=-21.3$ (c 0.9, $\mathrm{CHCl}_{3},>99 \%$ ee); IR (neat) $v=3401$ (br), 2946, $1673 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=5.06(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $3.77-3.59(\mathrm{~m}, 5 \mathrm{H}), 2.15-1.25(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=155.2,66.6$, $66.3,57.6,52.2,32.5,31.9,30.6,26.0,17.4 ;[\mathrm{HR}-\mathrm{EI}(+)]: m / z$ calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{3}[\mathrm{M}]^{+}$ 199.1208: found 199.1187.
$\mathrm{BzCl}(98 \mu \mathrm{~L}, 0.84 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{6}$ ' ($149 \mathrm{mg}, 0.7 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(147 \mu \mathrm{~L}, 1.05 \mathrm{mmol})$ and DMAP ($43 \mathrm{mg}, 0.35 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$, and the mixture was stirred at rt for 12 h . The solution was then poured into 3% aqueous HCl and extracted with $\mathrm{CHCl}_{3}(20 \mathrm{~mL} \times 3)$. The combined organic layer was dried over anhydrous MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane : AcOEt $=5: 1$) to afford 11 as a colorless oil ($151 \mathrm{mg}, 65 \%$). $[\alpha]_{D}^{25}=+51.3$ (c 1.2, $\mathrm{CHCl}_{3},>99 \%$ ee); IR (neat) v $=2948,1721,1701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.55(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 4.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.69(\mathrm{~s}$, 3H), 2.15-1.45 (m, 10H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=166.3,154.9,132.9,130.3$, 129.6, 128.3, 68.9, 64.1, 57.5, 52.1, 33.0, 32.3, 30.1, 25.7, 17.6; [HR-EI(+)]: m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4}[\mathrm{M}]^{+}$303.1471: found 303.1470.

4.3.4. (1R)-Benzoyloxymethyl-8-azabicyclo[3.2.1]octane (12)

Compound 12 was prepared in a similar method to that described for the preparation of 9 (0.5 mmol scale). $122 \mathrm{mg}, 99 \%$ yield; Colorless oil; $[\alpha]_{\mathrm{D}}{ }^{25}=+1.4\left(c 0.6, \mathrm{CHCl}_{3}\right.$, $>99 \%$ ee); IR (neat) $v=3226,2938,1721 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.05$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.57(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{dd}, J=11.1$, $7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.55-3.78 (m, 1H), 2.40 (br s, 1H), 1.96-1.33 (m, 10H); [HR-EI(+)]: m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{M}]^{+}$245.1416: found 245.1410.

4.3.5. (1R)-Benzoyloxymethyl-8-azabicyclo[3.2.1]octane- N-oxyl (13)

Compound 13 was prepared in a similar method to that described for the preparation of $\mathbf{1 0}\left(0.4 \mathrm{mmol}\right.$ scale). $50 \mathrm{mg}, 48 \%$ yield; Red foam; $[\alpha]_{\mathrm{D}}{ }^{24}=+48.8\left(c 1.0, \mathrm{CHCl}_{3}\right.$, $>99 \%$ ee); IR (neat) $v=2955,1725 \mathrm{~cm}^{-1}$; [HR-EI(+)]: m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{3}[\mathrm{M}]^{+}$ 260.1287: found 260.1272 .

4.3.6. (1R)-N-Methoxycarbonyl-1-N-phenylcarbamoyl-8-azabicyclo[3.2.1]octane (14a)

A solution of aniline ($109 \mu \mathrm{~L}, 1.2 \mathrm{mmol}), 7(213 \mathrm{mg}, 1.0 \mathrm{mmol})$, EDC ($230 \mathrm{mg}, 1.2$ $\mathrm{mmol})$, and $\mathrm{HOBt}(162 \mathrm{mg}, 1.2 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{~mL})$ was stirred at $60^{\circ} \mathrm{C}$ for 24 h , and then volatiles evaporated. The residue was diluted with AcOEt, washed with cold 3% aqueous $\mathrm{HCl}, 5 \%$ aqueous NaHCO_{3}, and dried over anhydrous MgSO_{4}. After removal of solvent, the residue was purified by column chromatography on silica gel (n-hexane : $\mathrm{AcOEt}=3: 1$) to give $\mathbf{1 4 a}(202 \mathrm{mg}, 70 \%)$ as colorless crystals. Mp $150 — 152^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{18}=+71.6$ (c 1.0, $\mathrm{CHCl}_{3},>99 \%$ ee); IR (KBr) $v=3280,2951,1700$, $1680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.31(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, $2.24-1.41(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=171.1,156.1,138.0,128.9$, $123.9,119.8,67.0,58.3,52.8,35.9,28.7,26.9,16.9$; $[H R-F A B(+)]: ~ m / z ~ c a l c d ~ f o r ~$ $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$289.1552: found 289.1559.

4.3.7. (1R)-N-Methoxycarbonyl-1-N-benzylcarbamoyl-8-azabicyclo[3.2.1]octane (14b)

Compound 14b was prepared in a similar method to that described for the preparation of 14a (1.0 mmol scale). $235 \mathrm{mg}, 78 \%$ yield; Colorless crystals; Mp $126-128^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+70.8\left(c 1.0, \mathrm{CHCl}_{3},>99 \%\right.$ ee $) ;$ IR (KBr) $v=3280,2950,1701$, $1660 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.31-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.45$ (br s, 2H), $4.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.12-1.36(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=173.0,155.9,138.5,129.4,128.5,128.0,127.3,100.5,66.4,58.2,52.4,43.5$, 36.3, 28.9, 26.8, 17.0; [HR-FAB(+)]: m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 303.1708$: found 303.1712.

> 4.3.8.

Methyl
N-[(1R)-N-methoxycarbonyl-8-azabicyclo[3.2.1]octane-1-carbonyl]-L-phenylglycinate (14c)

Compound 14c was prepared in a similar method to that described for the preparation of $\mathbf{1 4 a}$ (1.6 mmol scale). $449 \mathrm{mg}, 78 \%$ yield; Colorless oil; $[\alpha]_{\mathrm{D}}{ }^{25}=+53.0$ (c $0.9, \mathrm{CHCl}_{3},>99 \%$ ee); IR (neat) $v=2953,1744,1702,1682 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.38-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.94(\mathrm{br} \mathrm{s}, 0.6 \mathrm{H}), 6.65(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 0.4 \mathrm{H})$, $5.59(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.74-3.36(\mathrm{~m}, 6 \mathrm{H}), 2.34-1.58(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=172.5,171.3,155.9,128.9,128.8,128.3,127.5,127.1,66.3$, 58.3, 58.2, 56.1, 52.7, 52.3, 36.1, 28.8, 26.8, 17.0; [HR-EI(+)]: m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}]^{+} 360.1685$: found 360.1693.

4.3.9.

Methyl
N-[(1R)-N-methoxycarbonyl-8-azabicyclo[3.2.1]octane-1-carbonyl]-D-phenylglycinate (14d)

Compound 14d was prepared in a similar method to that described for the preparation of 14a (1.6 mmol scale). $478 \mathrm{mg}, 83 \%$ yield; Colorless oil; $[\alpha]_{D}{ }^{25}=+74.7$ (c $0.9, \mathrm{CHCl}_{3},>99 \%$ ee); IR (neat) $v=3300,2954,1717,1699,1684 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.39-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.94(\mathrm{br} \mathrm{s}, 0.4 \mathrm{H}), 6.65(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 0.6 \mathrm{H})$, $5.59(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.73-3.35(\mathrm{~m}, 6 \mathrm{H}), 2.35-1.59(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=172.5,171.5,155.9,128.9,128.8,128.5,127.5,127.1,66.2$, $58.4,58.1,56.1,52.6,52.3,36.3,28.8,26.8,16.9$; [HR-EI(+)]: m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}]^{+} 360.1685$: found 360.1677 .

4.3.10. (1R)-N-Phenylcarbamoyl-8-azabicyclo[3.2.1]octane (15a)

Compound 15a was prepared in a similar method to that described for the preparation of 9 (0.5 mmol scale). $59 \mathrm{mg}, 51 \%$ yield; Colorless oil; $[\alpha]_{\mathrm{D}}{ }^{27}=+74.6$ (c $0.6, \mathrm{CHCl}_{3},>99 \%$ ee); IR (neat) $v=3314,3278,2928,1665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=9.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.65(\mathrm{~m}, 1 \mathrm{H}), 2.31-1.40(\mathrm{~m}, 11 \mathrm{H}) ;[\mathrm{HR}-\mathrm{FAB}(+)]: \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$231.1498: found 231.1497.

4.3.11. (1R)-N-Benzylcarbamoyl-8-azabicyclo[3.2.1]octane (15b)

Compound 15b was prepared in a similar method to that described for the preparation of $9\left(0.8 \mathrm{mmol}\right.$ scale). $144 \mathrm{mg}, 74 \%$ yield; Colorless oil; $[\alpha]_{\mathrm{D}}{ }^{28}=+28.2$ (c $0.6, \mathrm{CHCl}_{3},>99 \%$ ee); IR (neat) $v=3320,3252,2928,1715,1659 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.33-7.20(\mathrm{~m}, 6 \mathrm{H}), 4.43(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.57-3.55(\mathrm{~m}, 1 \mathrm{H})$, 2.27-1.40 (m, 11H); [HR-FAB(+)]: m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$245.1654: found 245.1647.
4.3.12. Methyl N-[(1R)-8-azabicyclo[3.2.1]octane-1-carbonyl]-L-phenylglycinate (15c)

Compound 15c was prepared in a similar method to that described for the
preparation of 9 (1.2 mmol scale). $340 \mathrm{mg}, 86 \%$ yield; Colorless oil; $[\alpha]_{\mathrm{D}}{ }^{24}=+0.8$ (c $0.6, \mathrm{CHCl}_{3},>99 \%$ ee); IR (neat) $v=3366,3277,2930,1748,1676 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.93(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.83(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.37-7.25(\mathrm{~m}$, $5 \mathrm{H}), 5.53(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.57(\mathrm{~m}, 1 \mathrm{H}), 2.25-1.32(\mathrm{~m}, 11 \mathrm{H})$; [HR-EI(+)]: m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}]^{+}$302.1630: found 302.1614.

4.3.13. Methyl N-[(1R)-8-azabicyclo[3.2.1]octane-1-carbonyl]-D-phenylglycinate (15d)

Compound 15d was prepared in a similar method to that described for the preparation of 9 (1.3 mmol scale). $328 \mathrm{mg}, 83 \%$ yield; Colorless oil; $[\alpha]_{\mathrm{D}}{ }^{25}=+1.4$ (c $0.6, \mathrm{CHCl}_{3},>99 \%$ ee); IR (neat) $v=3226$ (br), $2938,1721 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.4 \mathrm{H}), 7.77(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 5 \mathrm{H})$, $5.46(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.55-3.41(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.26(\mathrm{~m}, 11 \mathrm{H})$; [$\mathrm{HR}-\mathrm{EI}(+)$]: m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}]^{+}$302.1630: found 302.1628.

4.3.14. (1R)-N-Phenylcarbamoyl-8-azabicyclo[3.2.1]octane-N-oxyl (16a)

Compound 16a was prepared in a similar method to that described for the preparation of $\mathbf{1 0}$ (0.2 mmol scale). $42 \mathrm{mg}, 85 \%$ yield; Red foam; $[\alpha]_{\mathrm{D}}{ }^{29}=+72.1$ (c 0.9 , $\mathrm{CHCl}_{3},>99 \%$ ee); IR (neat) $v=3256,2953,1686,1447 \mathrm{~cm}^{-1} ;[\mathrm{HR}-\mathrm{FAB}(+)]: m / z$ calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$246.1369: found 246.1366.

4.3.15. (1R)-N-Benzylcarbamoyl-8-azabicyclo[3.2.1]octane-N-oxyl (16b)

Compound 16b was prepared in a similar method to that described for the preparation of 10 (0.6 mmol scale). $127 \mathrm{mg}, 82 \%$ yield;. Red foam; $[\alpha]_{D}{ }^{29}=+18.7$ (c $0.6, \mathrm{CHCl}_{3},>99 \%$ ee); IR (neat) $v=3270,2951,1721,1650,1478 \mathrm{~cm}^{-1}$; [HR-FAB(+)]: m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$260.1525: found 260.1500.

4.3.16.

Methyl
N-[(1R)-8-azabicyclo[3.2.1]octane-1-carbonyl]-L-phenylglycinate-N-oxyl (16c)
Compound 16c was prepared in a similar method to that described for the preparation of $\mathbf{1 0}\left(1.1 \mathrm{mmol}\right.$ scale). $300 \mathrm{mg}, 86 \%$ yield; Red oil; $[\alpha]_{\mathrm{D}}{ }^{25}=+86.1$ (c 0.8 , $\mathrm{CHCl}_{3},>99 \%$ ee); IR (neat) $v=3283,2953,1745,1674 \mathrm{~cm}^{-1}$; [HR-EI(+)]: m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}]^{+}$317.1501: found 317.1511.

> 4.3.17.

Methyl
N-[(1R)-8-azabicyclo[3.2.1]octane-1-carbonyl]-D-phenylglycinate-N-oxyl (16d)
Compound 16d was prepared in a similar method to that described for the
preparation of $\mathbf{1 0}$ (1.0 mmol scale). $216 \mathrm{mg}, 68 \%$ yield; Red oil; $[\alpha]_{\mathrm{D}}{ }^{25}=+119.7$ (c 1.3, $\mathrm{CHCl}_{3},>99 \%$ ee); IR (neat) $v=3277,2955,1746,1676 \mathrm{~cm}^{-1} ;[\mathrm{HR}-\mathrm{EI}(+)]: \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}]^{+} 317.1501$: found 317.1488.
4.4. General procedure for enantioselective electrooxidation of DL-sec-alcohols 17, 19-24 with N-oxyls 10, 13, and 16a-d

Anodic oxidation of DL-1-phenylethanol (DL-17) was carried out using platinum electrodes ($1 \mathrm{~cm} \times 2 \mathrm{~cm}$) in an undivided beaker-type cell. DL-17 ($61 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathbf{1 0}$ $(9.2 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{NaBr}(206 \mathrm{mg}, 2.0 \mathrm{mmol})$ were added into a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(2.5 \mathrm{~mL})$. After passing through 1.5 F / mol of electricity at constant current $(20 \mathrm{~mA})$ at $0^{\circ} \mathrm{C}$, the mixture was poured into water and extracted with AcOEt (20 mL x 3). The combined organic layer was dried over anhydrous MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane : $\mathrm{AcOEt}=10: 1$) to afford acetophenone 18 ($35.4 \mathrm{mg}, 59 \%$ yield) and (S)-17 ($24.6 \mathrm{mg}, 41 \%$ yield) as a colorless oil.

The optical purity of $(S)-\mathbf{1 7}$ was determined by chiral HPLC: Daicel Chiralcel OB column ($4.6 \mathrm{~mm} \phi, 250 \mathrm{~mm}$), n-hexane : 2-propanol = $15: 1$, wavelength: 254 nm , flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$, retention time: 13.5 min for $(S)-\mathbf{1 7}, 17.5 \mathrm{~min}$ for $(R)-17$.

The optical purity of $(S)-\mathbf{1 9}$ was determined by chiral HPLC: Daicel Chiralcel OB column ($4.6 \mathrm{~mm} \phi, 250 \mathrm{~mm}$), n-hexane : 2-propanol = $15: 1$, wavelength: 254 nm , flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$, retention time: 11.9 min for $(S) \mathbf{- 1 9}, 16.9 \mathrm{~min}$ for $(R) \mathbf{- 1 9}$.

The optical purity of (S)-20 was determined by chiral HPLC: Daicel Chiralcel AD column ($4.6 \mathrm{~mm} \mathrm{\phi}, 250 \mathrm{~mm}$), n-hexane : 2-propanol $=100: 1$, wavelength: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: 14.0 min for $(R)-\mathbf{2 0}, 16.5 \mathrm{~min}$ for $(S)-\mathbf{2 0}$.

The optical purity of (S)-21 was determined by chiral HPLC: Daicel Chiralcel OJ column ($4.6 \mathrm{~mm} \phi, 250 \mathrm{~mm}$), n-hexane : 2-propanol $=9: 1$, wavelength: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: 13.8 min for $(S)-\mathbf{2 1}, 16.8 \mathrm{~min}$ for $(R)-\mathbf{2 1}$.

The optical purity of (S)-22 was determined by chiral HPLC: Daicel Chiralcel OJ column ($4.6 \mathrm{~mm} \phi, 250 \mathrm{~mm}$), n-hexane : 2-propanol $=9: 1$, wavelength: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: 12.7 min for $(S)-\mathbf{2 2}, 16.0 \mathrm{~min}$ for $(R)-\mathbf{2 2}$.

The optical purity of $(S)-23$ was determined by chiral HPLC: Daicel Chiralcel OB column ($4.6 \mathrm{~mm} \mathrm{\phi}, 250 \mathrm{~mm}$), n-hexane : 2-propanol $=15: 1$, wavelength: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: 15.0 min for $(R)-\mathbf{2 3}, 27.0 \mathrm{~min}$ for $(S)-\mathbf{2 3}$.

The optical purity of (S)-24 was determined by chiral HPLC: Daicel Chiralcel OD-H column ($4.6 \mathrm{~mm} \mathrm{\phi}, 250 \mathrm{~mm}$), n-hexane : 2-propanol = $50: 1$, wavelength: 254 nm , flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$, retention time: 21.0 min for $(S)-\mathbf{2 4}, 22.5 \mathrm{~min}$ for $(R)-\mathbf{2 4}$.

Acknowledgements

This work was supported in part by a Grant-in-Aid for Young Scientists (B) (19790017) from the Ministry of Education, Science, Sports and Culture, Japan, a Grant-in-Aid for Scientific Research (C) (19550109) from Japan Society for the Promotion of Science, and a Taisho Award in Synthetic Organic Chemistry, Japan.

References and notes

1. (a) Maity, P.; König, B. Biopolymers (Pept. Sci.) 2008, 90, 8-27. (b) Tanaka, M. Chem. Pham. Bull. 2007, 55, 349-358.
2. (a) Cabrera, S.; Reyes, E.; Alemán, J.; Milelli, A.; Kobbelgaard, S.; Jørgensen, K. A. J. Am. Chem. Soc. 2008, 130, 12031-12037. (b) Tayama, E.; Kimura, H. Angew. Chem., Int. Ed. 2007, 46, 8869-8871. (c) Cativiela, C.; Díaz-de-Villegas, M. D. Tetrahedron: Asymmetry 2007, 18, 569-623. (d) Kawabata, T.; Matsuda, S.; Kawakami, S.; Monguchi, D.; Moriyama, K. J. Am. Chem. Soc. 2006, 128, 15394 —15395. (e) Ooi, T.; Takeuchi, M.; Kato, D.; Uematsu, Y.; Tayama, E.; Sakai, D.; Maruoka, K. J. Am. Chem. Soc. 2005, 127, 5073-5083.
3. (a) Alonso de Diego, S. A.; Gutierrez-Rodríguez, M.; Pérez de Vega, M. J.; Casabona, D.; Cativiela, C.; González-Muñiz, R.; Herranz, R.; Cenarruzabeitia, E.; Frechilla, D.; Del Río, J.; Jimeno, M. L.; García-López, M. T. Bioorg. Med. Chem. Lett. 2006, 16, 1392-1396. (b) Han, W.; Pelletier, J. C.; Mersinger, L. J.; Kettner, C. A.; Hodge, C. N. Org. Lett. 1999, 1, $1875-1877$.
4. (a) Alemán, C.; Jiménez, A. I.; Cativiela, C.; Pérez, J. J.; Casanovas, J. J. Phys. Chem. B 2005, 109, 11836-11841. (b) Gil, A. M.; Buñuel, E.; Jiménez, A. I.; Cativiela, C.; Tetrahedron Lett. 2003, 44, 5999-6002. (c) Avenoza, A.; Busto, J. H.; Peregrina, J. M.; Rodríguez, F. J. Org. Chem. 2002, 67, 4241-4249.
5. (a) Gil, A. M.; Orús, E.; López-Carrillo, V.; Buñuel, E.; Cativiela, C. Tetrahedron: Asymmetry 2005, 16, 3115-3123. (b) Gil, A. M.; Buñuel, E.; López, P.; Cativiela,
C. Tetrahedron: Asymmetry 2004, 15, 811-819. (c) Gil, A. M.; Buñuel, E.; Díaz-de-Villegas, M. D.; Cativiela, C. Tetrahedron: Asymmetry 2003, 14, 14791488. (d) Campbell, J. A.; Rapoport, H. J. Org. Chem. 1996, 61, 6313-6325.
6. For β-amino acids: Otani, Y.; Futaki, S.; Kiwada, T.; Sugiura, Y.; Muranaka, A.; Kobayashi, N.; Uchiyama, M.; Yamaguchi, K.; Ohwada, T. Tetrahedron 2006, 62, 11635-11644.
7. Synthesis of racemic proline analogue A1 has been recently reported: Casabona, D.; Jiménez. A. I.; Cativiela, C. Tetrahedron 2007, 63, 5056-5061.
8. (a) Shiigi, H.; Mori, H.; Tanaka, T.; Demizu, Y.; Onomura, O. Tetrahedron Lett. 2008, 49, 5247-5251. (b) Demizu, Y.; Shiigi, H.; Oda, T.; Matsumura, Y.; Onomura, O. Tetrahedron Lett. 2008, 49, 48-52.
9. (a) Libendi, S. S.; Demizu, Y.; Matsumura, Y.; Onomura, O. Tetrahedron 2008, 64, 3935-3942. (b) Shono, T.; Hamaguchi, H.; Matsumura, Y. J. Am. Chem. Soc. 1975, 97, 4264-4268.
10. Shono, T.; Matsumura, Y.; Tsubata, K.; Uchida, K. J. Org. Chem. 1986, 51, 25902592.
11. Intermolecular alkylations: (a) Matsumura, Y.; Inoue, M.; Nakamura, Y.; Talib, I. L.; Maki, T.; Onomura, O. Tetrahedron Lett. 2000, 41, 4619-4622. (b) Matsumura, Y.; Kinoshita, T.; Yanagihara, Y.; Kanemoto, N.; Watanabe M. Tetrahedron Lett. 1996, 37, 8395-8398.
12. Crystallographic data for structure of tripeptide $\mathbf{8}$ have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 699629. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK; fax: $+44(0) 1223336033$ or e-mail: deposit@ccdc.cam.ac.uk.
13. Ravi, A.; Balaram, P. Tetrahedron, 1984, 40, 2577-2583.
14. Cyclic voltammogram for $\mathbf{1 0}$ was measured in $0.1 \mathrm{M} \mathrm{Et}_{4} \mathrm{NBF}_{4} / \mathrm{MeCN}$ solution using glassy-carbon as a working electrode, platinum as a counter electrode, and $\mathrm{Ag} / 0.01 \mathrm{M} \mathrm{AgNO}_{3}$ as a reference electrode. Concentration of $\mathbf{1 0}: 1.0 \mathrm{mM}$. Scan rate: $30 \mathrm{mV} / \mathrm{s}$. Cyclic voltammogram for other N-oxyls showed reversible wave pattern similar to that for $\mathbf{1 0}$. Oxidation potential: 0.83 V for $\mathbf{1 0}, 0.82 \mathrm{~V}$ for $\mathbf{1 3}$, 0.58 V for $\mathbf{1 6 a}, 0.79 \mathrm{~V}$ for $\mathbf{1 6 b}, 0.78 \mathrm{~V}$ for $\mathbf{1 6 c}, 0.80 \mathrm{~V}$ for $\mathbf{1 6 d}$.
15. (a) Ma, Z.; Huang, Q.; Bobbit, J. M. J. Org. Chem. 1993, 58, 4837-4843. (b) Rychnovsky, S. D.; McLernon, T. L.; Rajapakse, H. J. Org. Chem. 1996, 61, 1194 —1195. (c) Kashiwagi, Y.; Kurashima, F.; Kikuchi, C.; Anzai, J.; Osa, T.; Bobbit, J. M. Tetrahedron Lett. 1999, 40, 6469-6472. (d) Kuroboshi, M.; Yoshihisa, H.;

Cortona, M. N.; Kawakami, Y.; Gao, Z.; Tanaka, H. Tetrahedron Lett. 2000, 41, 8131-8135.
16. Kagan, H. B.; Fiaud, J. C. Topics in Stereochemistry; Eliel, E. L., Ed.; Wiley \& Sons: New York, 1988, Vol. 18, 249-330.

