CVD • PVD Hybrid DLC Coating to Extra Fine Wire by Quadrupole Magnetron Plasmas

○S. Yoshitsune ¹, S. Nishiyama ², N. Iwamoto ², Y. Tokunaga ², M. Shinohara ³ and H. Fujiyama ¹

¹Graduate School of Science and Technology, Nagasaki University. ²Japan Fine Steel Co., Ltd., ³Faculty of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan E-mail: d707049j@cc.nagasaki-u.ac.jp

Abstract

It was investigated that characteristics of DLC thin films deposited to extra fine wire by CH₄ gas, Ar gas and CH₄/Ar gas mixtures. It was found that the characteristics of films are change depending on mixture rate of the gases.

Key Words

DLC, Quadrupole magnetron plasmas, CVD \cdot PVD Hybrid Process, Extra Fine Wire

Introduction

We forward this experiment for following two purposes. First target is biocompatibility addition to surface of guide wire in medical field. Second target is making target wire for coating to inner wall of fine canal.

So, this experimental purpose is to deposit DLC thin film that has high hardness, smooth surface and biocompatible to extra fine wire of several hundred micro meters in diameter. We aim at improvement of adhesion and uniformity of film by using quadrupole magnetron plasmas and CVD \cdot PVD hybrid coating method. quadrupole magnetron plasmas was developed by Professor H.Fujiyama and more for optical fiber coating. [1] CVD \cdot PVD hybrid coating method is using by both CVD and PVD method. In this paper, we tried DLC coating to extra fine wire by changing gas mixing ratio of Ar and CH₄.

Experimental

Figure 1 shows electrode holder and electrode structure of the quadrupole magnetron plasmas. Four carbon electrodes (outer diameter ; 4mm) were arranged in the square, and the hole to pass the wire through the center of

P 31

square was opened. The four electrodes was applied 60Hz AC power supply. It is same voltage that the electrodes were

arranged in the diagonal position. The wire (outer diameter ; $300 \,\mu$ m ,

deposited with this

length ; 200mm) was treated mirror finish and caught be apply negative DC voltage. The chamber was twisted by solenoidal coil and the quadrupole magnetron plasmas were generated by 630 Gauss magnetic field.

Fig.1 Coating Method for Extra Fine Wire Coating

E-manine antal Can dition

Tabla 1

Table.1 Experimental Condition	
Pressure	300[mTorr]
Gas	<u>CH</u> ₄ 100[sccm] Ar
Discharge Voltage	280[V]
Bias Voltage	-100[V]
Magnetic Field	630[Gauss]
Deposition Time	30[min.]

changing gas mixing ratio as needed. In this paper, we report results of films by using PVD method by Ar, CVD method by CH_4 and Hybrid coating method by Ar/CH_4 gas mixture. The experimental condition is shown in Table.1.

while

setup

Results and Discussions

We

Figure 2 shows raman spectra of films with hybrid coating system. It was found that DLC was deposited by CH₄: 50sccm, Ar: 50sccm and CH₄: 75, Ar: 25sccm. But it was found that Graphite was deposited by CH₄: 25, Ar: 75sccm.

Figure 3 shows SEM image of film with hybrid coating system (CH₄: 50sccm, Ar: 50sccm). It was found that the uniformity of the films with hybrid coating system is higher than the films with CVD and PVD.

Conclusions

It was found that the characteristics of films are change depending on mixture rate of the gases. In this experiment, I think the high uniformity and high adhesion DLC coating method to extra fine wire is an advantage for hybrid coating system over CVD and PVD.

Fig.3 SEM Image of Film with Hybrid Coating System (CH₄: 50sccm, Ar: 50sccm)

Reference

[1] T. Kashima, Y. Matsuda and H. Fujiyama: *Materials Science & Engineering*, Vol.A139 pp.79-84 (1991).