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Abstract

In this paper we prove the prime number theorem using the properties of the zeta
function. The purpose of the present paper is to complete the proof given by Greene
and Krantz [GRK] in which they omitted the proofs of some lemmas.

1 Introduction

Let 1r(n) denote the number of primes not exceeding n. Then the prime number theorem
asserts that

. 1r(n)
hm ( ) = 1.n-+oo n

logn

Gauss conjectured this formula when he was fourteen years old. It was J. Hadamard and
C. de la Vallee Poussin who in 1896 independently proved the prime number theorem.
They used complex analysis-in particular an analysis of the Riemann zeta function. The
purpose of the present paper is to complete the proof due to Greene and Krantz [GRK].

2 Preliminaries

For Re z > 1, define
00 1

((z) = ~-.
~nz
n=l

((z) is called Riemann's zeta function. ((z) is holomorphic in {z I Rez > I}. It is known
that ((z) has the following properties. We omit the proof.

(R.1) ((z) continues holomorphically to C\{I}.

(R.2) ((z) has a simple pole at z = 1 with residue 1.

(R.3) The only zeros of ((z) not in the set {z I 0::; Rez ::; I} are at -2n (n EN).

Lemma 1 ((z) has no zero on {z I Rez = I}.
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Proof Suppose ((1 + ito) = 0 for some to E IR, to =Ie O. Define

Then there exist holomorphic functions hI and h2 in a neighborhood of 1 such that

in a neighborhood of z = 1. Hence <I> is expressed by

in a neighborhood of z = 1. Then

<I>'(z)
<I>(z)

alk +... k
--------~ = -- + hs(z)
(z-1){al+a2(z-1)+· .. } z-l

where hs is holomorphic in a neighborhood of z = 1. Then there exists EO > 0 such that

<P' (x)
Re <I>(x) > 0

for 1 < x < 1 + EO.

On the other hand, we obtain

<I>'(x) 3('(x) 4('(x + ito) ('(x + 2ito)
<I> (x) ((x) + ((x + ito) + ((x + 2ito)

00L A(n){ _3e-xlogn - 4e-(x+ito) logn _ e-(x+2ito) logn}.

n=2

Consequently,

(1)

R
<I>'(x)

e <I> (x)

This contradicts (1).

00

L A(n)e-xlogn{ -3 - 4 cos(to logn) - cos(2to logn)}
n=2

00

= -2 LA(n)e-xlogn(cos(tologn) + 1)2 ::; O.
n=2

3 Proof of the prime number theorem

Definition Define

G(z) = _ (('(Z) + _z_) ~.
((z) z-l z

Theorem 1 G (z) is holomorphic on {z I Re z ;::: I}.
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Proof From the properties of the zeta function (R.l), (R.2) and Lemma 1, it is sufficient
to show that G(z) is holomorphic at z = 1. It follows from the property (R.2) and the
Laurent expansion that

1
((z) = z-1 +h(z),

where h is an entire function. For z near 1,

('(z) -~ + (z - l)h'(z)

((z) 1 + (z - l)h(z)

{- z ~ 1 + (z -l)h'(Z)} ~(-(Z -l)h(z))"

1
- z - 1 +g(z),

where 9 is holomorphic in a neighborhood of 1. Then

(
('(Z) z) 1 1- -+- -=-(I+g(z))-
((z) z - 1 z z

is holomorphic at z = 1.

Theorem 2 For Re z > 1,

(tz) = II (1 - ;z),
pEP

where P = {2, 3, 5,"'} = {Pl,P2,P3,'" } is the set of positive primes.

Proof Since L~=l n-z converges for Re z > 1, LpEP p- z converges, and hence

converges. For c > 0, there exists a natural number N such that

00 11 IL - <c.
n=N+l n

Z

Since ((z) = L~=l ;Z1 we have

o
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Let An be the set of all positive integers which are divisible by at least one of PI, ... ,Pn'
Then we obtain

where the summation l:q qIz is taken over all elements q of N - A3 . Continuing in this
manner, we obtain

where the summation l:r rIz is taken over all elements r of N - AN. Thus we have

Therefore we have proved that

o
Definition Define A : {n E Z In> a} --+ R by

A(m) = {lOogp (if m = pk,p E P,k E N)
(otherwise)

Then we have the following:

Theorem 3 For Re z > 1 we have



Note on the Prime Number Theorem

Proof By Theorem 1, we have

-log((z) = L log(l- p-Z) = L log(l- e-zIOgp).
pEP pEP

Consequently,

13

('(z)
---

((z)
(1 ) -zlogp 00

"" og p e = "" (log p) ""(e-z log p)k
~ 1-e-zlogp ~ ~
pEP pEP k=l

00 00

L L(logp)e-ZIOgpk = L A(n)e-zlogn
k=lpEP n=2

o

1l"(x) :;

1l"(x)

Definition For x > 0, x E lR., define

(1) 'ljJ(x) = Ln~x A(n),

(2) for PEP, m x (p) denotes the greatest integer k such that pk :; x.

Lemma 2 For x 2:: 3,

1jJ(x) < 1l"(x) < _1_ + 1jJ(x) ( log x ) .
x - lo~ x - log x x log x - 2 log log x

Proof Since pmx (p) ::;; x, we obtain m x(p) ::;; log x/log p. Then

1jJ(x) = L A(n) = L logp = L mx(p) logp
n~x pk~x p~x

< L log x = 1l"(x) log x.
p~x

This proves the left side inequality. Let 1 < y < x. Then

"" "" log p1l"(Y) + ~ 1:; 1l"(Y) + ~ -1-
y<p~x y<p~x og y

< 1l"(Y) +~ L logp :; 1l"(Y) + i(x) .
ogy p~x ogy

Put Y = r=::r:x < x. Thenog x

< 1l" (_x ) + 'ljJ(x)
log2 X log x - 2 log log x

< x 1jJ(x) ( logx )
log2 X + log x log x - 3 log log x .

This proves the right side inequality.

Definition For u > 0, u E lR., define K(u) = 1jJ(e1L )e-u .

The following lemma follows easily from Lemma 2.

o
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Lemma 3 The prime number theorem holds if and only if lim K(u) = 1.
1L~00

Lemma 4 For Rez > I,

Proof Since 'ljJ(n) = 'ljJ(n - 1) + A(n), we have by Theorem 2

(
'() 00 00 00

__z = L A(n)e-zlogn = L 'ljJ(n)e-zlogn - L 'ljJ(n - l)e-zlogn
((z) n=2 n=2 n=3

00 00 t Og(n+l)
= L 'ljJ(n)(e-zlogn - e- z1og(n+l) = L 'ljJ(n) lIe ze-ZUdu.

n=2 n=2 logn

Since 'ljJ(eU) = 'ljJ(n) for n < eU< n + 1, we have

('(z)
---

((z)

o

Theorem 4 For Re z > 1,

G(z) = 1""(K(u) - l)e-(z- ljudu.

Proof By Lemma 4 we have

Lemma 5

Proof

J
OO (Sin t) 2 JOO ( 1)' Joo sin 2t- dt = -- sin2 tdt = --dx = 'Jr.

-DO t -00 t -00 t

o

o
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Lemma 6 For A> 0, s E lR.\{0},

12 ~ (1 _l!l) iAstd = Asin
2

AS
_ 2 2 2 e t (AS) 2 .

Proof

[ A(1-DCOS Astdt

A[ (1- D(Si:~st)' dt

2
1
s l' sin(Ast)dt

Asin
2 AS

(AS)2 .

Theorem 5 For A > 1, y > 0, 0 < c < 1, we have

where C(A) is a constant which depends only on A.

Proof With the change of variable u = y + *,

Since K(u) = 'l/J(eU)e-U :::; u and

1= IK(u) - 1Ie-'Udu:S 1= (1 + u)e-'Udu < 00,

by Fubuni's theorem we obtain

I = [', (1= (K(u) - l)e-((1+'+;At j -l jUdU) ~ (1 - I~I) e;AY'dt

t,{G(l+ c+ iAt) ~ (1 - I~I) }e;Aytdt

15

o

(2)
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Let

Define

and

For 0 ~ t ~ 2, define

Then

Kenzo ADACHI and Shigeto KAWAMOTO

M1(A) = sup IG(z)1 + sup IG'(z)1
zEE>, zEE>,

f(t) = G(l+ c+ iAt)~ (] - D.
1'(t) = G'(] + f + iAt)i~2 (] - D~ G(] + f + iAt)~.

Hence

Then

11' f(t)eiAYtdtl = 1'f(t) C~/>yt)'dt

= [~eiAYt!(t)]2 _ f2 f'(t)e~AYt dt
'lAy a ia 'lAy

< 4M2 (A)
Ay .

Similarly, we obtain

I

fa !(t)eiAYtdtl ~ 4M2(A) .
i-2 Ay

Define C(A) = 8M2(A)/A. Then I ~ C(A)/y. This completes the proof of Theorem 5. 0

Corollary 1 FOT all A > 1 and y > 0,

Proof It follows from Theorem 5 that

C(A)
<-- Y (3)



Note on the Prime Number Theorem

By the monotone convergence theorem, we obtain

lim 100

K (y+ '!!-) (sinv)2 e-c(y+r1V)dv
€--+o+ -YA A v

= 100

lim K(Y + '!!-) (Sin v) 2e-c(Y+A-lv)dv
-YA €--+O+ A v

= 100

K(Y + '!!-) (sin v ) 2dv.
-YA A v

Hence

100 K ( V) (SinV)2 d C(A)y+- -- V<7r+--.
-YA A v - Y

Therefore,

is integrable on [-YA, 00). Define

fe(v) = (K (Y + *) -1) (Si:v)2e-,(y+A-'v).

Then

II, (v) I S (K (Y + D+ 1) (Si:v ) 2

17

for v E [-Ay,OO). Lebesgue's dominated convergence theorem tells us that letting c ---+ 0
in (2) gives

o
Lemma 7 For y > 0, A > 1, -V).. ::; v ::; V).., we have

(1) K(Y- Jx) SK(y+*)eJx

(
1 ) ( V)_--.L(2) K Y + V).. ? K y + -:\ e vx.

Proof Since 'ljJ (u) is increasing, we have

K(y - Jx) r Jx = ,p(eY
- Jx) S 1/)(eY+*) = K(y + *) eY+*

Therefore we have

K(Y- Jx) SK(y+*)ek
This proves (1). (2) is proved in the same way. o
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Lemma 8 For Y > 1, A > 1,

(1:(Si:vrdv)K(Y- ~)~e~(C~A)h).

Proof We denote the left side of the above inequality by h. Then by Lemma 7(1) and
Corollary 1 we obtain

D

Lemma 9 K (x) is a bounded function.

Proof Suppose K is unbounded. Then there exists a sequence {xj} such that xj -7 00

and K(xj) -700. Put Xj + ]x = Yj' Then by Lemma 8 we obtain

Letting j -7 00 gives

(
v>. 2)-1A sin v 2

00 ~ l,;x (-v-) dv eftC
".

This is a contradiction.

Lemma 10 For any sequence Xj -7 00 such that {K(xj)} has a limit,

.lim K (xj) ::; 1.
)-->00

Proof Put Xj + ]x = Yj' By Lemma 8, we have

K(Xj) = K (yj - ~)

< e~ { C;;) +"} (l: (Si: vrdV) -1

D



Note on the Prime Number Theorem

Then

( /\ )-12 v>' sin v 2

,lim K(Xj) ::; e v0.1r 1 (-) dv
J-'>OO -.1.\ v

Letting), ----+ 00 yields ,lim K (xj) ::; 1.
J-'>OO

Lemma 11 For any sequence Xj ----+ 00 such that {K(xj)} has a limit,

.lim K(xj) ~ 1.
J-'>OO

19

o

Proof Put Xj - ~ = Yj' We may assume that Yj > 1, ), > 1. Then it follows from

Lemma 7(2) that

2 1.1.\ (sin v) 2
K(xj)e v0. -.1.\ -v- dv (

1) 2 1.1.\ (sin v ) 2K Yj + - e v0. -- dv
VX -.1.\ v

1
.1.\ (sinv)2 ( V)

> -.1.\ -v- K Yj + X dv

1
.1.\ (sin v) 2(( V) )

-.1.\ -v- K Yj + X-I dv

1
.1.\ (sin v) 2+ - dv.

-.1.\ v

By Lemma 9, there exists M > 0 such that K(x) < M. Put

A = [VA, (0) U [-),Yj, -VA].

Then

2 1.1.\ (sin v) 2
K(xj)e v0. -.1.\ -v- dv >
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Letting j --t 00 yields
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jVI (. )2 1 (.) 2smv smv
~ - dv - (M + 1) - dv

-VI v Ivl~VI v

C(A)

_-.L (jVI (sin v) 2 )-1.lim K(xj) > e v'X -- dv
)-+00 -VI V

x {jVI (sinv)2 dv _ (M + 1) r (sinv)2 dV}'
-VI v Jlvl~VI v

Letting A --t 00 gives
lim K(xj) ~ 1.

)-+00

D

Theorem 6 (Prime Number Theorem) Let 7r(n) denote the number of primes not
exceeding n. Then

1· 7r(n) 1
1m -

n-+oo Co~n) - .
Proof By Lemma 3, it is sufficient to show that

lim K(x) = 1.
x-+oo

Suppose that lim K (x) either does not exist or does not equal 1. Then there exists a
x-+oo

sequence {Xj} such that {K(xj)} does not converge to 1 and Xj --t 00. Then there exists
c > 0 such that

(4)

for infinitely many j. We may assume that {x j} satisfies (4). Since {K (x j)} is bounded
by Lemma 9, there exists a convergent subsequence {K(xjJ}. Let lim K(xjJ = a. By

n-+oo

Lemma 10 and Lemma 11, £1=1. But it follows from (4) that /£1-11 ~ c, which is a contra-
diction. D
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