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Abstract 

We combined a real time PCR assay with melting curve analysis to rapidly genotyping 

quinolone resistance-determining regions (QRDRs) of gyrase A and topoisomerase IV 

genes in Haemophilus influenzae. This assay is a useful tool for the detection of 

fluoroquinolone resistance and the early detection of preexisting QRDR mutations.  

H. influenzae is a major causative pathogen isolated from infections including acute 

and chronic respiratory infections, acute otitis media, sinusitis, and meningitis in 

pediatric patients. Recent reports have noted the prevalence of fluoroquinolone 

(FQ)-resistant H. influenzae (1, 3, 4, 9, 11, 14, 20, 22, 26). FQ-resistant H. influenzae 

often carries mutations in the quinolone resistance–determining regions (QRDRs) of the 

gyrA and the parC, which encode subunits of DNA gyrase and topoisomerase IV, 

respectively (9, 11, 16, 18, 23). Real-time PCR methods combined with melting curve 

analysis (PCR-MCA) are a useful tool for the rapid detection of key gene mutations 

associated with drug resistance in various microorganisms (13, 24, 25), but there are no 

reports about H. influenzae. The aim of this study was to develop a PCR-MCA method 

for H. influenzae strains, targeting a total of four QRDR positions in the gyrA (codons 

84 and 88) and the parC (codons 84 and 88) that are frequently associated with FQ 
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resistance (9, 11, 16, 23). This current method could identify simultaneously both the 

gyrA and the parC mutations by only one PCR performance. 

Seventeen H. influenzae clinical isolates were used. Ten of the strains were susceptible 

to FQ, and seven of the strains had low susceptibility or were resistant to FQ. The seven 

FQ resistant/low susceptibility strains were: 1 strain (NUH-1) from Nagasaki University 

Hospital, 1 strain (BY-1) from Bayer (Osaka, Japan), 2 strains (DR-1, DS-2) from 

Daiichi-Sankyo (Tokyo, Japan), and 3 strains (MSC24060, MSC27995, MSC11438) 

kindly provided by Meiji-Seika Kaisha (Tokyo, Japan) (21). The 10 FQ-susceptible 

strains were isolated at Nagasaki University Hospital. Identification of H. influenzae 

was confirmed by colony morphology, Gram staining, growth on chocolate agar, and 

the X and V factor requirement. The minimum inhibitory concentrations (MICs) of 

ciprofloxacin (CPFX), sparfloxacin (SPFX), levofloxacin (LVFX), gatifloxacin (GTFX), 

moxifloxacin (MXFX), garenoxacin (GRNX), and sitafloxacin (STFX) were 

determined by a broth dilution method using Haemophilus test medium according to the 

recommendations of the Clinical and Laboratory Standards Institute (CLSI) (5). H. 

influenzae ATCC51907 was used for quality control. 
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DNA was extracted from each strain by using a QIAamp DNA mini kit (QIAGEN, 

Hilden, Germany). Sequences of the oligonucleotides and probes are shown in Tables 

1A and 1B. The sequences are from the known sequences of the parC and gyrA genes, 

which were derived from GenBank accession no. NP439678 and NP439419, 

respectively. To identify mutations in the QRDRs of gyrA and parC in these strains, we 

performed PCR and direct DNA sequencing according to the method of Vila et al. (26). 

Real-time PCR methods combined with melting curve analysis (MCA-PCR) was 

performed in a total volume of 10 μl containing 2 μl of DNA template, 5 μl of 

LightCycler 480 Probe Master mixture (Roche Diagnostics, Basel, Switzerland), a 0.2 

μM concentration of each probe, and a 0.5 μM concentration of each primer. Thermal 

cycling was performed with an initial hold for 5 min at 95°C, followed by 30 cycles of 

10 s at 95°C, 10 s at 58°C, and 12 s at 72°C. A melting curve was generated by cooling 

the reaction mixture to 35°C for 10 s, followed by heating to 90°C at a rate of 0.2°C/s. 

The PCR-MCA assay was performed using LightCycler 480 Basic software (Roche 

Diagnostics, Basel, Switzerland). The total assay time was approximately 1 h. The 

QRDR DNA sequencing results were compared with the sequence of strain Rd 

(GenBank accession no. NC000907), which was used as the wild-type standard strain. 
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Using specific probes for the wild-type strain, all of the mutant strains showed 

characteristic melting peaks with a distinct Tm value, as shown in Figure 1. The 

minimum Tm shifts for mutant strains compared to the wild-type strain were 6.13°C for 

parC codons 84 and 88, 11.58°C for gyrA codon 84, and 7.9°C for gyrA codon 88. The 

PCR-MCA assay correctly detected seven LVFX low susceptibility/resistant strains, as 

determined by a comparison with sequencing results (Table 2). From sequencing results, 

all seven FQ low susceptibility/resistant strains had at least two single amino acid 

substitutions at four QRDR positions (Table 3). All LVFX-susceptible H. influenzae 

strains had the same Tm value as the wild-type strain, and sequencing results confirmed 

that these were in fact wild-type strains (data not shown).  

We compared the ability of the present PCR-MCA assay to detect FQ susceptibility in 

seventeen H. influenzae strains with that of the conventional phenotypic method. All 

LVFX-susceptible strains which had no mutation in condons 84 and 88 of gyrA and 

parC classified susceptible according to CLSI criteria (6) (data not shown). As shown in 

Table 3, the mutation profiles for the QRDRs in the gyrA and parC revealed a close 

relationship between the MIC level and the number of QRDR mutations. Previous 

studied have found that the conventional phenotypic method failed to detect strains that 

have a single QRDR mutation; these strains have the potential to develop into a highly 



6 
 

resistant pathogen (7). Several reports have noted that a significant number of 

Streptococcus pneumoniae isolates already have a single step mutation, and prone to 

acquiring second step mutation (19). Unfortunately, our study lacks a collection of 

single-mutant strains. It was reported that the selection window for ciprofloxacin with 

wild-type cells was below serum drug concentrations in human volunteers administered 

twice-daily of 500mg (10). But Odoul et al. reported the median area under the 

inhibitory curve was decreased about half the proposed target value for ciprofloxacin in 

the cystic fibrosis patient receiving 15 mg/kg twice a day regimen of oral ciprofloxacin 

(15). Furthermore Pérez-Vázquez et al. reported that hypermutability is a risk condition 

for the development of fluoroquinolone-resistant H. influenzae (17) and Li et al. also 

reported the stepwise selection of ciprofloxacin-resistant H. influenzae mutants and 

could be the high level resistant strain (12). Increasing the time that drug concentration 

fall into the mutant selection window causes the mutation (8). Actually, the previously 

reported strains that failed treatment had a double mutant in the gyrA and the parC (2). 

We emphasize the clinical importance of the detection of first-step QRDR mutations in 

either gyrA or parC for attempting to predict evolution into FQ resistance. In addition, 

we should consider the FQ dosage carefully to avoid the low FQ concentration when we 

treat the patients who have chronic lung disease. 
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In conclusion, the PCR-MCA assay was easily and quickly performed and had an 

accuracy that was at least as satisfactory as that of the conventional phenotypic method. 

FQ-resistant H. influenzae is expected to become a more important pathogen in the 

future, because FQ is the most effective antibiotic against H. influenzae, and the number 

of FQ-resistant strain may arise further along with the recent increase of FQ prescription. 

Although additional studies are need, we anticipate that this PCR-MCA assay may be a 

useful tool for surveillance studies in the screening of FQ resistance as an alternative to 

DNA nucleotide sequencing because this PCR-MCA assay can recognize the gyrA and 

the parC mutants more clearly, easily and rapidly than sequencing. 
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Figure legend 

Figure 1. Melting peak patterns for QRDR mutants with substitutions in parC and gyrA. Melting 

curve analysis was performed with the 175-bp amplicon of the parC gene and the 197-bp amplicon 

of the gyrA gene. Panels A, B and C show melting peak patterns for codons 84 and 88 of the parC 

gene, codon 84 of the gyrA gene and codon 88 of the gyrA gene, respectively. Each value on the y 

axis reveals the ratio of the first negative derivative of the change in fluorescence (dF) to the 

variation in temperature. 
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