
A Study on Real-time Image Processing using Field

Programmable Gate Arrays with Random Sampling Techniques

December, 2017

Nagasaki University, Graduate School of Engineering

Theint Theint Thu

Abstract

With the rapid development of image processing technology and the popularity

of computer applications, real-time image processing systems become widely applied

in the field of electronic technology. According to Moore’s law, the energy efficiency

plays a key role in embedded computing systems. Field Programmable Gate Arrays

(FPGAs) are getting popular in the name of high energy efficiency, that is to say,

a good energy performance ratio. The main theme of this dissertation is to find

the best architecture on FPGAs using random sampling techniques based on stream

architecture with many tradeoff analyses. At the level of abstraction where hardware

logic is coded in a Hardware Description Language (HDL), design constraints and

optimization become critical issues for meeting the design requirements. While

random sampling is a critical issue in numerous applications such as cryptography,

robotics, computer vision, machine learning, etc., the implementation of FPGA-

based random sampling techniques has not been addressed very much so far, since

it is not so straightforward to be pipelined. Hence, this dissertation concentrates

on high-performance and compact architecture for real-time image processing on

FPGAs with random sampling techniques. This dissertation also focuses stream-

oriented processing which brings benefits to fast and low power FPGA-based parallel

processing for real-time applications without using any external memory.

Chapter 1 introduces the conceptual basis for reconfigurable systems and parallel

processing. Chapter 2 provides background of the study. In Chapter 3, overview of

the research methodologies are presented. Chapter 4 discusses the real-time FPGA

implementation of equation solvers for RANdom SAmple Consensus (RANSAC). In

FPGA implementation of figural model estimations and fitting from video images, a

well-known and effective algorithm called RANSAC employs various computational

approaches to solve simultaneous equations for each model. In order to successfully

estimate the reasonable parameters for model fittings, the hypothesis generation

process with the least square method and compared four types of solver architectures

were implemented. In contrast to large matrix solvers, few attention has been paid

so far to small matrix manipulation on FPGA, and it is a question what kind of

approach is appropriate for FPGA.

The several kinds of FPGA implementation of equation solvers are compared to

reveal the tradeoff relationship among different methods when it comes to the matrix

manipulation on an FPGA. The four solver modules are Cramer’s rule (CRAMER)

with long-integer arithmetic, CRAMER with double precision floating point (FP)

arithmetic, Gauss-Jordan elimination (GAUSS) with single precision FP arithmetic

and GAUSS with double precision FP arithmetic. While the Gauss-Jordan method

is one of the most popular algorithms for this purpose, the Cramer’s rule is generally

never considered due to a large number of multiplication operations to be made in

the process of calculation of the determinant. However, especially for a small matrix

size, execution performance of an algorithm becomes more sensitive to architectures

and does not necessarily reflect computational complexity.

The advantage of the Cramer’s method in FPGA implementation is that it has

a simple and regular control flow. In addition, most calculations can be performed

with integer arithmetic rather than floating-point arithmetic. On the other hand, a

wide dynamic range is required to calculate the determinants of a given matrix. For

the sake of revealing how the arithmetic type impacts the performance and hard-

ware costs, two arithmetic implementation for the Cramer’s rule: double precision

floating-point and long integer are compared by changing the size of matrices.

In the evaluation experiments, each type of hardware solved the simultaneous

equations repeatedly for synthetic benchmark models for circles, aligned ellipses,

and ellipses with angles. The four solvers were compared the comparison criteria in

terms of estimation accuracy, performance and resource usage. Depending on the

maximum bit width for each multiplication step, the number of bits is changed to

optimize the resource usages of long integer arithmetics. Experimental evaluation

showed a Cramer’s rule approach coupled with long integer arithmetic can reduce

most hardware resources without unacceptable degradation of estimation accuracy

compared to other versions.

Chapter 5 deals with the real-time FPGA implementation of the posterior sys-

tem state estimation in dynamic state-space models using a particle filter. Although

various researchers have attempted to apply the particle filter for real-time FPGA

implementation, fully parallelizable particle filter implementation for high perfor-

mance real-time object tracking is still an open problem in many settings, including

security camera, endoscopic instruments, sports, and so on. Parallel resampling is

of critical importance in stream image processing. Difficulty of parallel resampling

comes from it needs information of all particles and thus computational dependency

arises.

To cope with this problem, the dissertation proposes an architecture which com-

bines FPGA optimized resampling (FO-resampling) method and an object tracking

pipeline for FPGAs. The resampling step is performed in a synchronized area of

an input image frame to achieve the performance of more than 60 FPS for VGA

images without using any external memory. The results revealed that a full cycle of

particle filtering including prediction, likelihood calculation and resampling can be

fully parallelizable on FPGA. Therefore, the particle filter design can be fitted in a

smaller FPGA chip, by reusing hardware resources in a time-sharing manner with

a higher clock frequency. With changing the number of particles in multinomial

resampling and FPGA optimized resampling, the resource utilization, performance

and accuracy of real-time object tracking system were evaluated. The number of

2

real particles (M=100) and virtual particles (B=50) is promised a better solution

for the tradeoff analysis of hardware resources and required criteria. According to

the performance comparison between two resampling methods, the evaluation re-

sult shows that FO-resampling is far superior to multinomial resampling in terms of

accuracy and performance. Moreover, the estimated power consumption on FPGA

was compared for the design alternatives with an accelerated clock frequency (135

MHz) and the original designs with a slow clock frequency (27 MHz).

Chapter 6 is dedicated to conclusions and to the possible future development

directions. Through the evaluation with several applications, FPGA-based imple-

mentation proves that it can overcome the limitation of normal computer architec-

tures when it comes to the computational performance and energy consumption.

When the hardware random sampling is applied to the particle filter, the through-

put of higher than 60 FPS was achieved with 0.898 W power consumption, which

is 3.42 times (135 MHz) and 17 times (27 MHz) faster than the corresponding

software version of the algorithm. As regards the tradeoff analysis of circuit sizes,

speed performance and estimation accuracy, real-time robust estimation with ran-

dom sampling performs the object fitting on an FPGA platform with 281.6 MHz.

Accordingly, making best use of a deep-pipelined stream processing approach can

outperform data processing tasks.

3

Acknowledgements

I would like to express my heartfelt thanks first of all for JICA who kindly let me win

the scholarship to Nagasaki University for a doctorate in computer and information

system engineering. Besides, I am deeply grateful to the Faculty Council of Nagasaki

University for enabling me to do this illustrious course. My supervisor Associate

Professor Yuichiro Shibata really merits a special mention for his unfailing and

painstaking supervision throughout my academic research. Without his precious

support, it would not be possible to conduct this research.

My thanks are also due to Professor Kiyoshi Oguri, my co-supervisor, who has

never failed to give me a number of clear and valuable instructions whenever the

situations call for. My sincere thanks are expressed to Professor Senya Kiyasu, Asso-

ciate Professor Makoto Fujimura, Associate Professor Masao Moriyama, Associate

Professor Tomoya Sakai and Professor Yasuhiro Shimizu for sparking my interest

in programming languages. Furthermore, I would like to give special thanks to my

dissertation committee. Personally, I would like to thank my family and friends for

supporting me throughout the years, practically and with moral support, especially

my parents. To my husband, you should know that your continued support and

encouragement was worth more than I can express on paper.

Particular thanks goes to Keisuke Dohi, Jimpei Hamamura, Yoshiki Hayashida,

Masahito Oishi and Fumihiko Iwasaki who responded to my questions and queries

so promptly. Completing this work would have been all the more difficult were it

not for the support and friendship provided by the other members of slab. They in-

clude the following individuals: Akane Tahara, Rie Soejima, Yudai Shirakura, Ryo

Fujita, Aiko Iwasaki, Kota Aoki, Kota Fukumoto, Shun Kashiwagi, Koji Okina,

Kaoru Hamasaki, Taisei Segawa, Alperen Mustafa Colak, Taito Manabe, Hiroki Na-

gayama, Kazuya Uetsuhara, Ryo Kamasaka, Shohei Yano, Yuka Mizoguchi, Hiroki

Egawa, Kouya Iwamura, Ryouhei Tsugami, Yuichi Kawamata, Takanori Itagawa

and Tomohiro Kida. My time at Nagasaki was made enjoyable in large part due to

many friends.

Last but not least, I owe my gratitude a great deal to each and every one of the

teachers who have helped me move several rungs up my career ladder until I have

reached my current status.

Contents

1 Introduction 1

1.1 Aims of This Study . 3

1.2 Configuration of the Dissertation . 4

2 Background 6

2.1 Field Programmable Gate Arrays . 6

2.2 FPGA CAD Flow . 12

2.2.1 Schematic capture . 13

2.2.2 Hardware Description Language 15

2.3 FPGA-based Object Fitting using RANSAC 15

2.4 FPGA-based Object Tracking using Random Sampling 16

3 Research Methodology 18

3.1 Real-time Image Processing . 18

3.2 Stream-oriented Process . 20

3.3 Random Sampling in Image Processing 23

4 FPGA-based Real-Time Robust Model Fitting 26

4.1 Overview . 26

4.2 RANSAC Algorithm . 27

4.3 Implementation . 28

4.3.1 Design Overview . 28

4.3.2 Hypothesis Generation . 29

4.3.2.1 Cramer’s rule . 29

4.3.2.2 Gauss-Jordan elimination 33

4.4 Evaluation Environment and Method 38

4.4.1 Resource Usage . 41

4.4.2 Performance . 41

4.4.3 Accuracy . 42

4.4.4 Memory Optimization . 44

4.4.5 Comparative Discussion . 45

i

4.5 Summary . 48

5 FPGA-based Real-time Object Tracking 49

5.1 Overview . 49

5.2 Particle Filter Algorithm . 50

5.2.1 Particle Filter . 50

5.2.1.1 Prediction . 50

5.2.1.2 Likelihood calculation 51

5.2.1.3 Resampling . 52

5.2.2 FPGA Optimized Resampling (FO-resampling) 53

5.3 Implementation . 54

5.3.1 Overview . 54

5.3.2 Weight Calculation . 56

5.3.3 Weight Comparison or Resampling 59

5.3.4 Virtual Particle Arrangement 61

5.3.5 Center of Gravity Calculation 61

5.3.6 Random Number Generation 63

5.4 Evaluation and Discussion . 63

5.4.1 Preliminary Evaluation . 63

5.4.2 FPGA Mapping . 66

5.5 Improvement of Resource and Time Management 69

5.5.1 Design Alternatives . 69

5.5.1.1 X1 NORMAL SEP 69

5.5.1.2 X1 SYNC V . 70

5.5.1.3 X5 LUT RAM . 71

5.5.1.4 X5 BRAM . 71

5.5.2 Mapping Results . 71

5.5.3 Power Consumption . 74

5.6 Summary . 75

6 Conclusions 78

ii

List of Figures

2.1 The basic architecture of an FPGA 7

2.2 Example of two-input LUT implementation 8

2.3 Example of seven-segment display on Pynq-Z1 FPGA 9

2.4 Single-port distributed RAM . 10

2.5 Sample timing diagram for SDR and DDR 12

2.6 Design flow of FPGA . 14

2.7 An example of Gaussian distribution in Kalman filter 16

2.8 An example of non-Gaussian distribution in particle filter 17

3.1 A typical system organization for real-time image processing with CPU 18

3.2 A typical system organization for real-time image processing with

FPGA . 19

3.3 Example of non-pipelining . 20

3.4 Example of pipelining . 20

3.5 Streamed architecture . 21

3.6 Input example of stream processing 21

3.7 Example of image stream processing 22

3.8 IEEE 754-standard floating-point format 23

3.9 Example of circle model and feature points with observation errors . . 24

3.10 Example of random sample points for circle model 24

3.11 Example of random sample points for ellipse model 24

3.12 Example of random sample points for ellipse model with angle 24

4.1 Overview of the proposed system in object fitting 29

4.2 Flowchart of the approach based on RANSAC algorithm 30

4.3 Data fetch mechanism for the Cramer module 32

4.4 Overview of Cramer module for long integer (circle) 34

4.5 Overview of Cramer module for double precision FP (circle) 34

4.6 Overview of Cramer module for long integer (ellipse 4 points) 35

4.7 Overview of Cramer module for double precision FP (ellipse 4 points) 35

4.8 Overview of Cramer module for long integer (ellipse 5 points) 36

4.9 Overview of Cramer module for double precision FP (ellipse 5 points) 36

iii

4.10 Gauss-Jordan Algorithm for circle estimation 37

4.11 Gauss-Jordan Algorithm for ellipse estimation 37

4.12 Gauss-Jordan Algorithm for ellipse with angle estimation 37

4.13 Circle estimation example . 43

4.14 Ellipse estimation example . 43

4.15 Overview of optimized Cramer module for long integer (circle) 46

4.16 Overview of optimized Cramer module for long integer (ellipse 4 points) 46

4.17 Overview of optimized Cramer module for long integer (ellipse 5 points) 47

5.1 Overview of a particle filter . 51

5.2 Schematic diagram of prediction step 52

5.3 Schematic diagram of likelihood calculation step 53

5.4 Schematic diagram of resampling step 54

5.5 Overview of the proposed system in object tracking 56

5.6 State transition diagram of weight comparison step 57

5.7 Overview of a particle filter module 58

5.8 Resampling module . 60

5.9 A captured image from video . 61

5.10 Corresponding image of weight representation 62

5.11 Example frame of benchmark video 62

5.12 Circuit diagram of LFSR . 63

5.13 RMSE comparison of FO-resampling and multinomial resampling . . 66

5.14 Tracker Detection Rate for real and virtual particles 67

5.15 Average Tracking Error for real and virtual particles 67

5.16 Maximum Tracking Error for real and virtual particles 67

5.17 A feedback path in virtual particle module 70

5.18 Weight comparison module of X1 SYNC V 72

5.19 Overview of a particle filter module for X1 SYNC V 73

5.20 Overview of a particle filter module for X5 LUT RAM and X5 BRAM 74

5.21 Design comparison . 76

iv

List of Tables

4.1 Resource usage of each implementation 39

4.2 Performance of each implementation 40

4.3 Errors of each implementation . 42

4.4 Statistics of errors in 100 estimation trials for circle estimation 42

4.5 FPGA mapping results for Optimized CRAMER (long integer) designs 45

5.1 Tracker Detection Rate of each implementation 64

5.2 Average Tracking Error of each implementation 65

5.3 Maximum Tracking Error of each implementation 65

5.4 FPGA mapping result for the first design (X1 NORMAL) 65

5.5 Accuracy comparison of FO-resampling and Multinomial Resampling 68

5.6 FPGA mapping results for improved designs 75

5.7 Power consumption comparison . 75

v

Chapter 1

Introduction

When it comes to the performance and computing speed, parallel processing through

multi-core processors has been deeply involved in many computer-intensive devices

including mobile devices for decades. Historically, the strategy of scaling down the

gate size of Integrated Circuits (ICs), reducing the supply voltage and increasing

the clock rate, was successful and resulted in faster single-core processors during

the 1990s and into the 21st century [1]. However, single-core processor frequency

scaling happened to hit the power wall in 2004. In terms of increasing the operating

frequency, the gap between processor performance and main memory latency is large

and growing. This trend is referred to as the processor-memory gap or memory

wall. Multiple instructions are executed simultaneously using multiple instructions

in a single clock (Superscalar design) or pipelined manner to reduce the latency

of accessing memory. The available instruction-level parallelism has reached the

limit, known as Instruction-Level Parallelism (ILP) wall. The interface between

hardware (physical parts of a computer system) and software (a set of instructions on

a microprocessor) becomes a promising solution to overcome the above constraints.

Hence, with the help of software tools like Electronic Design Automation (EDA),

the design of Very Large Scale Integration (VLSI) circuits can improve the design

quality and save the design time.

VLSI circuit can be divided into Application Specific Integrated Circuits (ASICs)

and Programmable Logic Devices (PLDs). ASIC is designed for specific applications.

Although ASIC has many advantages including high-performance and low-power

consumption, it needs speeding up time-to-market, reducing development cost and

more design flexibility. On the other hand, PLDs can be reprogrammed multiple

times. The first Programmable Logic Devices (PLDs) were introduced in the 1970s

and which is a general-purpose chip for implementing logic circuits [2]. It looks

like a black box that contains logic gates and programmable switches. The types

of PLD can be classified into Simple Programmable Logic Devices (SPLDs), Com-

plex Programmable Logic Devices (CPLDs) and Field Programmable Gate Arrays

1

(FPGAs). They are configurable through the software.

SPLD is comprised of many macrocells. A macrocell consists of sum-of-products

(SOP) combinational logic expressions and an optional flip-flops [3]. Various SPLD

devices are Programmable Logic Array (PLA), Programmable Array Logic (PAL)

and Generic Array Logic (GAL). Although both AND and OR planes are pro-

grammable in PLA, it is difficult for correctly fabrication, high speed and high

performance, that led to the development of a similar device, known as PAL. A

PAL consists of a programmable array of AND gates that connects to a fixed array

of OR gates and is implemented with fuse process technology. PAL is one-time

programmable (OTP) and a GAL is a type of PAL which is reprogrammable, such

as EEPROM (E2CMOS), instead of fuses.

A more sophisticated type of chip, called a complex programmable logic device

(CPLD), is widely used for larger circuit design with multiple I/O blocks due to the

limitations of SPLD with a small number of I/O pins. CPLD is a programmable

device which has macrocell, a set of interconnection wires, functional blocks and its

own chip memory. The interconnection wiring contains programmable switches that

are used to connect the PAL-like blocks. Once a CPLD is programmed, it retains

the programmed state permanently, even when the power supply for the chip is

turned off. This property is called non-volatile programming technology such as

EPROM, EEPROM, flash, etc. With the advancement of technology, it has become

possible to produce devices with more flexible architecture than CPLD has. FPGA

is a RAM-based digital logic chip whereas CPLD is ROM-based design and it has

less resources than FPGA. Since FPGA is the SRAM-based device, it can infinitely

reprogrammable. Consequently, development costs are greatly reduced compared to

ASIC.

Flexibility of FPGAs has enabled a new computing paradigm called reconfig-

urable computing, where each application algorithm is directly mapped on FPGAs to

be executed as custom hardware. Especially, it has been known that deep pipelined

structures configured on FPGAs are advantageous in real-time image processing with

regular arithmetic flows. It is also known that for more advanced image processing

applications such as object fitting and object tracking, random sampling techniques

are effective. However, the random sampling approaches require large amount of

computation. so that they are difficult for real-time applications. Although FPGA

implementation is promising approach, stream-based pipeline architectures are not

straightforward, since random sampling algorithms generally have irregular struc-

ture of computation.

With the random sampling techniques for FPGA implementation, object fitting

with RANSAC algorithm and object tracking with particle filter algorithm are pro-

posed for this dissertation in terms of power, speed, area and cost. RANSAC is

2

an iterative algorithm to estimate parameters of a model from a data set of points

including outliers. Particle filter is a recursive filter that can apply for the object

movement estimation with the help of particle movements and it can approximate

to the non-linear and non-Gaussian posterior.

Nowadays, Computer Aided Design (CAD) tools are widely used in the rapid

development of FPGA technology. With the aim of performance improvement and

reducing the hardware resources, architectural redesign becomes a critical issue.

However, it is difficult to design the larger and complex circuits targeting FPGA

devices for this purpose. To cope with this problem, HDL plays a critical role

in FPGA design entry phase with several advantages. Two leading HDLs under

Institute of Electrical and Electronics Engineers (IEEE) standards are VHDL and

Verilog to describe, simulate and create the hardware design. VHDL stands for

Very High speed integrated circuit Description Languages. VHDL was launched in

1981 by the U.S. Department of Defense [4] and became an IEEE standard (1076)

in 1987. Since that time, it has been revised many times until the current standard

IEEE 1076-2008 called VHDL-2008.

The second type of HDLs is Verilog HDL and Verilog means Verifying Logic.

The original version of Verilog was introduced in 1985 by Gateway Design Automa-

tion, which was later acquired by Cadence Design Systems. Verilog was adopted as

an official IEEE standard, called 1364-1995, in 1995. With a number of features,

two subsequent versions of Verilog are Verilog-2001 with major enhancements and

Verilog-2005 with minor changes. Verilog is easier to learn than VHDL because of

its syntax based on C programming language whereas VHDL syntax is based on

Ada programming language.

Describing the hardware design by HDL requires simulation and synthesis. Hard-

ware simulation helps the design verification. Synthesis tool is generally similar to

a compiler and is used to translate the hardware design written in HDL into an

efficient netlist. Synthesis provides to translate HDL design into gate-level netlist

and optimize the design constraints to improve speed and area. Hence, Register-

Transfer Level (RTL) design is proposed for this study to ensure the design logical

correctness. Xilinx ISE and Vivado are applied for synthesis and analysis of HDL

designs, and performing timing analysis in this study.

1.1 Aims of This Study

This study is aimed at:

• To reveal how the arithmetic processes and matrix sizes impact

the performance and hardware costs on FPGA for real-time robust

model fitting with RANSAC algorithm.

3

Three arithmetic types: long integer, single precision FP and double precision

FP with two methods are proposed. Three matrix sizes come from the circle,

ellipse, and ellipse with angles. Two types of algorithms are implemented

on FPGA with the comparison criteria in terms of the estimation accuracy,

performance and resource utilization.

• To overcome the constraint of parallel resampling on FPGAs for

real-time object tracking with non-linear and non-Gaussian system.

To cope with this problem, the dissertation proposes an architecture which

combines FPGA optimized resampling (FO-resampling) method and an object

tracking pipeline for FPGAs.

• To provide the comparative discussion on implementation alterna-

tives with improved area efficiency in terms of the hardware amount

and power consumption.

Four alternative designs are introduced, aiming at reducing the hardware

amount. With an accelerated clock frequency and a slow clock frequency,

three types of power consumption are compared for each design using Xilinx

Vivado tool.

• To select a reasonable number of particles for FO-resampling method.

The preliminary evaluation is performed to evaluate the required number of

real and virtual particles for resampling step in software before implement-

ing on FPGA. The tradeoff between the accuracy and resource utilization is

proposed to achieve the high performance. When it comes to the estimation

accuracy, three metrics: Tracker Detection Rate (TDR), Average Tracking

Error (ATE) and Maximum Tracking Error (MTE) are evaluated.

• To find the better accuracy between the multinomial resampling and

FO-resampling method for object tracking approach.

Tracking quality of a real-time object tracking system based on the proposed

architecture is evaluated and compared with a conventional multinomial re-

sampling approach using an object tracking benchmark video.

1.2 Configuration of the Dissertation

This dissertation is structured as follows. Chapter 2 discusses the background of the

study including the reconfigurable computing systems in which FPGAs. Chapter

3 gives an overview of the research methodologies. Moreover, the challenges and

purposes of this study are also presented. The implementation of solving equations

4

in detail with random sampling techniques using an FPGA platform is described in

Chapter 4. Chapter 5 shows how to implement the posterior system state estimation

in dynamic state-space model using random sampling. Finally, some conclusions,

discussions about major achievements and the scope of the future work are described

in Chapter 6.

5

Chapter 2

Background

This chapter covers the fundamental concepts of FPGAs and different aspects related

to FPGAs. The overview of FPGA architecture is described in Section 2.1. The

FPGA design flow is presented in Section 2.2. The FPGA CAD tools makes the

design quality improved in terms of area-efficiency, power consumption and speed.

Section 2.3 discusses the relation to previous works on FPGA-based real-time robust

model estimations with RANSAC algorithm. Section 2.4 surveys related work on

the efficient implementation of particle filter using random sampling techniques on

FPGAs.

2.1 Field Programmable Gate Arrays

A brief timeline of the steps leading to FPGA development is Metal Oxide Semi-

conductor Field Effect Transistors (MOSFETs) in 1960, Integrated Circuit (IC)

in 1961, Transistor-Transistor Logic (TTL) in 1962, Complementary Metal Oxide

Semiconductor (CMOS) in 1963, Moore’s law in 1965, Programmable Read-Only

Memory (PROM) in 1970, Erasable Programmable Read-Only Memory (EPROM)

in 1971, Depleted Substrate Transistor (DST) in 1972, Programmable Logic Array

(PLA) in 1975, Programmable Array Logic (PAL) in 1978, Electrically Erasable

Programmable Read-Only Memory (EEPROM) in 1983, Generic Array Logic in

1983 and flash memory in 1984 [5]. Finally, the first commercial FPGA with 2000

gates, named XC2064, was debuted by Xilinx in 1985.

The main architectural components of FPGA are the number of configurable

logic blocks, embedded block RAM, programmable interconnections and other hard

macros inside the core area as shown in Fig. 2.1. A configurable logic block is made

up of slices which contain a group of logic cells. A logic cell consists of look-up-tables

(LUTs), flip-flops (FFs), a network of carry logic and multiplexers. A LUT can

implement any Boolean function as a truth table, consisting of a number of memory

cells equal to 2n SRAM bits inputs for n-number of outputs. Fig. 2.2 shows one of

6

IOB

SerDes

IOB

SerDes

IOB

IOB

LUTs FFs MUXs

CLB

LUTs FFs MUXs

CLB

LUTs FFs MUXs

CLB

LUTs FFs MUXs

CLB

LUTs FFs MUXs

CLB

LUTs FFs MUXs

CLB

Embedded
Memory

IOB

IOB LUTs FFs MUXs

CLB

LUTs FFs MUXs

CLB

DSP

DSP

DSP

DSP

DSP

DSP

DSP

DSP

Embedded
Memory

Embedded
Memory

Embedded
Memory

Embedded
Memory

Embedded
Memory

Embedded
Memory

Embedded
Memory

LUTs FFs MUXs

CLB

LUTs FFs MUXs

CLB

LUTs FFs MUXs

CLB

LUTs FFs MUXs

CLB

LUTs FFs MUXs

CLB

LUTs FFs MUXs

CLB

LUTs FFs MUXs

CLB

LUTs FFs MUXs

CLB

IOB

SerDes

IOB

SerDes

IOB

IOB

IOB

IOB

Figure 2.1: The basic architecture of an FPGA

the basic example of LUT function as a combinational circuit. After performing

the logic operations, the result of LUT is stored in the register elements called

Flip-Flop (FF) which is a very fast memory for sequential logic operations. LUTs

provide FPGA architecture with great flexibility and utility [6]. The programmable

wire plays a role to connect the elements in FPGA depending on the arbitrary

circuit. The input and output block (IOB) supports a programmable unidirectional

or bidirectional interface between the core of the FPGA and external devices.

Clocking resources provide clock deskewing, frequency synthesis and phase shift.

The main types of FPGA clocking resources are clock buffers, dedicated clock routing

and clock management tile (CMT) [7]. Xilinx provides several clock buffers including

global clock buffer, Input/Output (I/O) clock buffer, regional clock buffer, single-

ended input buffer and differential input buffer. One of the single-ended input clock

buffer, IBUFG, provides dedicated connections from a top level port to MMCM,

7

in1

in2
out1

in1
LUT

in2
out1

Example of combinational logic

1

0

1

0

1

0

in1

in2

out1

Figure 2.2: Example of two-input LUT implementation

PLL, BUFG, etc [8]. Global buffers, BUFGs, can minimize the clock skew and

give precise phase. Some of differential signaling dedicated clocking resources are

IBUFDS, OBUFDS and IBUFGDS. Differential clocks give better noise immunity

and they are suitable for high frequencies which are above 100 MHz. Moreover,

dedicated clock routing can reduce the delay time compared with the general clock

routing.

CMT consists of Digital Clock Manager (DCM), Phase-Locked Loop (PLL) and

Mixed-Mode Clock Manager (MMCM). DCM primitive includes a Delay-Locked

Loop (DLL) to create a customized clock. Only DCM is mainly used in Spartan-3

and earlier Xilinx FPGA families. The basic idea of PLL is to reduce the clock

jitter and to generate multiple different output clock frequencies simultaneously us-

ing a Voltage Controlled Oscillator (VCO). PLL is an analog clock manager. PLL

together with DCM was introduced in Virtex-5 and Spartan-6. MMCM leverages

features from PLL with phase control. MMCM and PLL primitivies in 7 series

8

Figure 2.3: Example of seven-segment display on Pynq-Z1 FPGA

FPGAs are MMCME2 BASE, MMCME2 ADV, PLLE2 BASE and PLLE2 ADV.

FPGA provides Clocking Wizard and manual instantiation of clock manager to

create output clock frequencies [9]. The desired output frequency varies with in-

put frequency (FCLKIN) as shown in Eq. (2.1) and Eq. (2.2). M , D and O repre-

sent CLKFBOUT MULT F setting which is fraction counter, DIVCLK DIVIDE and

CLKOUT DIVIDE. The number of “O”counters can be independently programmed

ranging from 1 to 128 with six for PLL (O0 to O5) or seven for MMCM (O0 to O6).

FV CO = FCLKIN × M

D
(2.1)

FOUT = FCLKIN × M

D × O
(2.2)

For example, arduino MAX7219 seven-segment digital LED tube display is con-

nected to Pynq-Z1 board which owns Artix-7 family programmable logic [10]. In

that case, serial clock input in MAX7219 limits 10 MHz maximum rate [11] and

Pynq-Z1 system clock is 125 MHz. Hence, generating serial clock from 125 MHz

becomes a necessary step. When it comes to the avoiding dependency on CAD tools,

MMCME2 BASE manual instantiation with global clock network and no hold time

violation was chosen to implement the seven-segment display as shown in Fig. 2.3.

9

Distributed RAM

we

dout

din

addr_w

addr_r

clk

Figure 2.4: Single-port distributed RAM

The serial clock output from FPGA is given by Eq. (2.3).

FMAX7219 OUT = 125 × 8

1 × 100

= 10MHz
(2.3)

Xilinx also provides four options for using the design element [12]. The four

options are (1) instantiation, (2) inference, (3) CORE Generator or other Wizards

and (4) macro support. Memory is one of the dominant factors in high performance

data computing platforms. The main function of memory in FPGA is to store

and retrieve the data with embedded memories: a dedicated Block RAM (BRAM)

or LUT-based distributed RAM [13]. Depending on the circuit designs, data can

access via single-port RAM, dual-port RAM, single-port ROM, dual-port ROM, etc.,

using a special memory coefficient file (.coe) or manual instantiation. BRAM can

implement for large sized memories whereas cascaded several distributed RAM are

required for deeper and wider memory implementation. Hence, distributed RAM is

more suitable for small sized memories to avoid extra wiring delays.

In single-port distributed RAM given by Fig. 2.4, if write enable control signal

(we) is asserted at the rising edge of clock (clk), a write operation is performed with

write address (addr w) and input data (din) is stored into memory simultaneously.

The read address (addr r) can retrieve the output data (dout) using asynchronous

or synchronous method. Aspect ratio of memory varies with data width and address

depth. Moreover, shift registers can apply for time delay using data storage and data

movement. First-In First-Out (FIFO) is also popular for data queue and interfacing

10

two systems of differing data rates.

FPGA can interface with external devices via I/O modules such as Universal

Serial Bus (USB) port, Video Graphic Array (VGA) port, High-Definition Multime-

dia Interface (HDMI), RS-232 port, Universal Asynchronous Receiver/Transmitter

(UART), connectors, etc. Moreover, Xilinx has adopted the Advanced eXtensi-

ble Interface (AXI) protocol from ARM Advanced Microcontroller Bus Architec-

ture (AMBA) for Intellectual Property (IP) cores [14]. AXI design begins with the

Spartan-6 and Virtex-6 devices and continues with 7 series and Zynq-7000 devices.

Xilinx introduced three types of AXI4 interfaces: AXI4, AXI4-Lite and AXI4-Stream

in ISE and Vivado design suites. AXI4 is for high-performance memory-mapped re-

quirements and AXI4-Stream is for high-speed streaming data. AXI4-Lite can apply

for simple, low-throughput memory-mapped communication. On the other hand,

Altera provides Avalon bus protocols with two variants: Avalon Memory Mapper

(Avalon-MM) and Avalon Streaming (Avalon-ST) in the classic tool SOPC Builder

and the new tool Qsys [15]. Alternative on-chip internal buses are CoreConnect

from IBM which is used by Xilinx Embedded Development Kit (EDK), Open Core

Protocol (OCP) from OCP International Partnership (OCP-IP) and Wishbone from

OpenCores.

Basically, general-purpose I/O interfaces can be divided into two types, namely:

single-ended interfaces and differential interfaces [16]. A signal’s assertion (whether

it is High or Low) of single-ended interface is based on its voltage level relative to

a fixed voltage threshold that is referenced to GND. Depending on the voltage of

the signal and its threshold voltage, the state is considered High or Low. With

the higher-performance interfaces and power saving, differential interfaces assert a

signal based on the relative voltage levels of the two complementary signals. The

state is considered High or Low according to the voltage difference between Positive

signal and Negative signal. Common example of a single-ended I/O standard is

Transistor-Transistor Logic (TTL) and Low-Voltage Differential Signaling (LVDS)

for a differential I/O standard. Supported I/O standards in 7 series are LVTTL,

LVCMOS, TMDS, LVDS, etc.

Single Data Rate (SDR) and Double Data Rate (DDR) are available for both

single-ended and differential interfaces. In essence, SDR can transfer one data per

one clock cycle whereas DDR allows two data per one clock cycle as shown in Fig. 2.5.

Hence, data bandwidth in DDR becomes two times of clock frequency. Xilinx FP-

GAs, such as Spartan-6 and 7 series, contain Input SerDes (ISERDES) and Output

SerDes (OSERDES) blocks. These primitives make the design of serializer and dese-

rializer circuits very straightforward with higher operational speeds [17]. To serialize

and deserialize the data in the correct bit order, a Bitslip submodule is an essential

for reordering the parallel data in ISERDESE2 block and the serial data in OS-

11

D0 D2 D3 D5

D0 D2 D11D3 D5 D7 D9

Clock

SDR_Data

DDR_Data

Figure 2.5: Sample timing diagram for SDR and DDR

ERDESE2 block [18]. The Bitslip operation can shift the data left by one bit in

SDR mode. Moreover, it can shift the output pattern right by one and left by three

alternatively in DDR mode.

Xilinx provides example verilog programs for HDMI and Digital Visual Inter-

face (DVI) to implement Transition Minimized Differential Signaling (TMDS) au-

dio/video interface using the master and slave ISERDES2 and OSERDES2 mod-

ules [19]. The DVI/HDMI transmitter design includes TMDS encoding and 10-bit

parallel-to-serial conversion. Similarly, the receiver design involves TMDS decoding

and 1:10 deserialization. The reference of TMDS decoding and encoding designs is

given by [20]. To perform the required 10:1 serialization or 1:10 deserialization for

both DVI and HDMI, ISERDES2 cascading and OSERDES2 cascading are imple-

mented on FPGA for DVI/HDMI pass-through design. In particular, visible area,

the whole frame area, pixel frequency and screen refresh rate can be different de-

pending on modes such as VGA mode 640 × 480 @ 60 Hz for industry standard

timing or HDMI mode 1920× 1080 @ 60 Hz. Video camera interfacing with FPGA

is also widely used in real-time image processing. For example, CMOS OV7670

camera provides 640 × 480 VGA resolution with a 25−MHz pixel rate and Serial

Camera Control Bus (SCCB) interface compatible with I2C interface [21]. Real-time

video data coming from camera to FPGA is compatible with SubMiniature version

A (SMA) connectors or Pmods. The interpolation from bayer pattern to true color

(red, green and blue) or some image quality control is done by Digital Signal Proces-

sor (DSP). It is efficient for handling pixel values on FPGA due to dedicated DSP

slice resources and fully hardware parallelism. To sum up, FPGA becomes one of

the solution for real world applications which offer low power and high performace.

2.2 FPGA CAD Flow

The design flow of FPGA consists of many steps from design specification to im-

plementing a digital logic design on FPGA chip as shown in Fig. 2.6. The first step

12

of the design process is the design specification. Software simulation is an example

of design specification. Then, the circuit design must be entered into the design

application software called design entry. FPGA design entry can be divided into

two methods: (1) a schematic editor and (2) an HDL. The next step is functional

simulation to simulate the entered and compiled design by software for logical cor-

rectness without timing information. Waveform editor and HDL testbench are main

tools for this purpose. Some simulators for FPGA design simulation are ISIM and

Vivado by Xilinx, ModelSim by Mentor Graphics, VCS by Synopsys, NCSim by

Cadence, Qsim by Altera, Icarus Verilog and Verilator, etc.

Moreover, hardware simulation can be divided into three stages: analysis, elab-

oration and simulation. Analysis is the first step of simulation and checks for the

syntax and semantics errors of HDL. Elaboration is the process of expanding the

HDL description to instantiate all modules in Verilog or entities in VHDL into a

hierarchically described circuit for simulation. Finally, event-driven simulation is

carried out to generate the timing information or a cycle-based simulation is used

to reduce the number of calculation for functional verification.

Synthesis is an essential step for synthesizing the design. It generates a netlist

file which connects a list of nets such as logic gates, flip-flops, wire, etc. Design

implementation is an important step with three procedural steps: (1) translation,

(2) mapping and (3) place and routing step. All netlists from synthesis step are

translated into one large flat netlist with no hierarchy. Then, logic blocks from

design netlist file are mapped into FPGA resources depending on the target FPGA

device. Finally, predefined FPGA resources are placed onto the locations of physical

device and are routed the interconnect according to the predefined path in netlist.

Place and route design offers the area and speed factor of FPGA device. After

implementing process, configuration file is generated called a bistream, which is a

device dependent and it can be directly downloaded onto FPGA chip via JTAG with

iMPACT software or other configuration ports.

2.2.1 Schematic capture

A schematic capture tool is a CAD tool to draw a logic circuit using logic gates and

interconnection wires [2]. A library, the collection of graphical symbols, facilitates

many logic gates with different numbers of input pins to draw a schematic diagram.

Moreover, hierarchical design provides to create a large circuit with other subcir-

cuits. Although the schematic-capture method is simple for small circuits, it is not

suitable for the larger and more complex circuit and can be cumbersome. Hence,

a better method for dealing with larger circuits becomes HDL because it is easy to

write source code.

13

Design Specification

Design Entry

(1) Schematic editor (2) HDL

Functional Simulation

(1) Waveform editor (2) HDL testbench

Synthesis

(1) Translate (2) Map (3) Place & Route

Configuration File Generation

Configuration File Download
to FPGA chip

Design Implementation

Figure 2.6: Design flow of FPGA

14

2.2.2 Hardware Description Language

A Hardware Description Language (HDL) describes hardware to express an elec-

tronic circuit. More specifically, it is a form of computer language rather than a

program to be executed on a computer. The main difference between hardware

description and software is that HDL offers concurrent processing whereas software

for microprocessor performs the sequential processing. Although many commer-

cial HDLs including proprietary are available from many vendors, standard HDLs

supported by IEEE are VHDL, Verilog HDL, SystemC and SystemVerilog.

2.3 FPGA-based Object Fitting using RANSAC

Effective parameter estimation has been deeply involved in computer vision for a

long time. One of the most popular robust estimator for fitting a model to experi-

mental data is RANSAC [22]. Moreover, FPGAs have recently become the focus of

considerable interest in embedded imaging application in terms of the inherent par-

allelism results in better performance [23–25]. Many RANSAC-based systems can

employ various computational approaches using FPGA. For example, Dellaert and

Tariq [26] introduced a multi-camera pose tracker using a RANSAC-based method

to estimate the true pose of the rig by finding 2D to 3D point correspondences

between the images captured from the rig and survey features in the environment.

They developed an FPGA-based miniature camera rig to detect affine invariant fea-

tures in real time for up to 4 cameras in parallel. Many feature extraction methods

required by RANSAC systems [27] such as Harris [28], SURF [29–31], SIFT [32–34]

and BRIEF [35] have also shown to be effective on FPGAs.

As regards real-time robust estimation, RANSAC performs the road model fit-

ting of a Lane Departure Warning (LDW) system on an FPGA platform [36]. In

that case, the lane marking candidates from the input images are extracted using

Gaussian noise reduction, histogram stretching, intensity gradients, edge thinning

and extraction method. More specifically, the three main modules of the system: (1)

extracting, (2) fitting and (3) tracking runs in real-time at 30 FPS with a resolution

of 752 × 480. [36] reported that the FPGA-based system was about 30 times faster

than the corresponding software version of the algorithm. Moreover, FPGA imple-

mention of the robust essential matrix estimation with RANSAC can accelerate the

processing speed in [37].

Fijany and Hosseini [38] have studied model estimation of a homography trans-

formation using RANSAC on FPGA for Harris Corner Detector [39] and Sum

of Squared Difference computations. Experimental results given in [40] describes

a high-efficiency FPGA-based pipeline and a fast outlier rejection scheme using

15

RANSAC for an inertial-assisted visual odometry system. The cost-time-accuracy

trade-offs analysis of five distinct HW/SW pipelines on a Virtex-6 FPGA and a

150 MIPS CPU are implemented for visual odometry [41]. In ellipse estimation for

eye tracking [42], Starburst algorithm was performed to get the optimal hypothesis

result based on RANSAC.

Chapter 4 presents the comparative evaluation of implementation alternatives

for a real-time FPGA-based model estimation system based on RANSAC. Although

the proposed system can apply for various geometric shapes, three different models

are selected to easily evaluate the matrix size and performance. They are circle,

ellipse and ellipse with angle. The robust estimation systems using various matrix

sizes with different arithmetic approaches are implemented on an FPGA to compare

the estimation accuracy, performance and resource usage.

2.4 FPGA-based Object Tracking using Random

Sampling

Since the object tracking plays a part in image processing and computer vision

systems, fast and robust real-time image processing of non-rigid objects becomes a

performance bottleneck. On the other hand, Kalman filter is a popular and power-

ful tool in order to estimate the state of a system for numerous applications such

as object tracking, autonomous navigation and many computer vision applications.

However, it can only work for linear state transitions. Kalman filter uses the Gaus-

sian (normal) assumptions given by Fig. 2.7 to keep track of means and variances.

In the real world, many tracking problems deal with non-linear and non-Gaussian

systems. The main advantage of particle filter is that can apply for non-Gaussian

models as shown in Fig. 2.8. For this reason, image-based features for particle filters

using color histogram were introduced by [43]. Particle filtering [44] approximates

the density directly as a finite number of samples whereas the extended Kalman

filter cannot approximate the probability density without a Gaussian.

Figure 2.7: An example of Gaussian distribution in Kalman filter

16

Figure 2.8: An example of non-Gaussian distribution in particle filter

The color-based particle filter enables an embedded implementation in [45]. How-

ever, the parallel implementation does not offer in their tracking system. Many

parallel resampling methods have been applied to FPGA-based particle filter imple-

mentation. For example, the particles are resampled using Independent Metropolis-

Hastings (IMH) resampling method and the root mean square error is used to mea-

sure the accuracy [46]. Although they could apply the parallel particle filter imple-

mentation successfully with the high speed and accurate estimation performance,

they did not fully parallelize the particles due to lack of hardware resources.

Difficulty of parallel resampling comes from it needs information of all particles.

Hence, FO-resampling method overcomes this constraint on the particle filter [47].

In their implementation, they compared FO-resampling with the multinominal re-

sampling using root mean square error. The FO-resampling scheme is similar to

Gibbs sampling but it can execute the resampling step without the complete parti-

cle set. In Chapter 5, a deep-pipelined fast and robust object tracking system with

stream-based image processing on an FPGA are proposed. Image data obtained by

the camera device is streamed in the system pixel by pixel [48]. The streamed pro-

cessing approach achieves real-time object detection for input video frames without

any external memory modules [49–51].

17

Chapter 3

Research Methodology

3.1 Real-time Image Processing

With the commercialization of camera devices gaining momentum, many real-world

image processing applications rely on the real-time image and video processing sys-

tems. A pixel, a picture element, is the basic part of a digital image. Normally,

a frame is composed of many pixels arranged in a 2-dimensional arrays. Real-time

image processing system requires high resolution, low latency and high throughput.

The important criteria for high resolution image is the number of pixels in an image.

On the other hand, each pixel generally represents the eight bits of memory and color

pixel requires 24-bit memory for true color. Therefore, memory management of real-

time image processing becomes a performance bottleneck. When it comes to the

performance and speed of image processing, two types of real-time image processing

with different platforms are presented in Fig. 3.1 and Fig. 3.2, respectively.

Memory Display
DMA

frame by frame
operation

DMA

CPU

Figure 3.1: A typical system organization for real-time image processing with CPU

Since CPU performs the sequential operations and CPU cannot connect directly

from camera, transferring data from camera to CPU via memory leads to high la-

tency and low throughput. Latency is the time between the start and the completion

of an event also referred to as execution time [52]. In particular, latency is mea-

sured in units of times: hours, minutes, seconds, nanoseconds or clock periods [53].

18

Memory

Display
pixel by pixel

operation Deep-pipelined stream architecture

FPGA chip

Figure 3.2: A typical system organization for real-time image processing with FPGA

Throughput is the total amount of work done in a given time. This is measured in

units of whatever is being produced (car, motorcycles, I/O samples, memory words,

iterations) per unit of times.

Direct Memory Access (DMA) can transfer the data faster than the Programmed

I/O (PIO) does because it can directly read from and write to main memory without

CPU whereas PIO requires CPU. However, CPU cannot execute without memory in-

terfacing with peripheral devices, i.e., high latency and low throughput. In contrast,

FPGA can directly connect with camera without external memory, i.e., low latency

and high throughput with low power consumption. Hence, FPGA with pixel-by-

pixel operation can outperform CPU with frame-by-frame operation on real-time

image processing using deep-pipelined stream architecture.

Necessity of high performance in data processing, pipelining technique becomes a

critical issue for this purpose. Nowadays, almost every processor utilizes pipelining

process because it can make the throughput increased as shown in Fig. 3.3 and

Fig. 3.4. Example latency uses 2ns to compare the rate at which example models

arrived at their intended destination. A deep pipelining not only can enhance the

19

throughput but also can save the energy. Therefore, this study aims to reveal

the methodology which allows for real-time image processing using deep-pipelined

stream processing on FPGA.

2 ns2 ns

2 ns
Total time taken = 6 ns

Figure 3.3: Example of non-pipelining

2 ns

Total time taken = 2 ns

Figure 3.4: Example of pipelining

3.2 Stream-oriented Process

Since the effective memory utilization makes the data processing speeded up, it is

suitable for many applications required the high speed computation. The stream-

oriented process can be implemented with the streamed architecture as shown in

Fig. 3.5. It can effectively apply to FPGA architecture [42,48,54–60]. The streamed

architecture mainly consists of three parts: registers, First In, First Out (FIFO) and

arithmetic pipelining. The input data are stored in registers as a part of pipeline

stages. With the shift registers, FIFO is used to queue the data for specific applica-

tions although it is not a part of pipeline. The number of shift registers and FIFO

width depend on the input data and applications. Only the pipeline part is used

for computation of data processing. With this architecture, a large amount of data

stream can process without any huge memory.

Fig. 3.6 shows the input example of stream processing with a grayscale image

and its pixel values between 0 to 255. The intensity values of image represent a two-

dimensional array matrix. For the image processing, good memory management is

a key for the energy efficiency. To understand clearly about the stream processing,

20

Registers

ALU

ALU

Figure 3.5: Streamed architecture

169 103 129 127 126 160 98139

146 103 57147151210147121

151 99 106 160 159176 194 40

143 99 122 54 175 42 53 160

137 111 124 17579 139 55 154

207147761097521139150

96107 48 116 69 150 134 132

90 125 137 48 7920657 89

Figure 3.6: Input example of stream processing

let us consider a grayscale image and a Laplacian edge detection image as input and

output examples of streamed architecture. The Laplacian kernel is selected as an

example of pixelwise image arithmetic given byFig. 3.7. The image size corresponds

to the y number of rows and x number of columns, 8 by 8 elements for this example.

Any image filtering process can perform with m-connected neighborhoods instead

of convolution operation and (x0, y0), (x0, y1), (x0, y2), (x1, y0), (x1, y1), (x1, y2),

(x2, y0), (x2, y1) and (x2, y2). Six shift registers store the pixel values of 3 × 3

matrix from image and 5-bit two FIFO for holding the pixel values. The data

are fed from registers to ALU for doing the arithmetic operations using pipeline

architectures. The main purpose of this architecture is for fast and low power FPGA

implementation for real-time image processing without using any external memory.

21

R
eg

is
te

rs

A
LU

A
LU

F
ig

u
re

3.
7:

E
xa

m
p
le

of
im

ag
e

st
re

am
p
ro

ce
ss

in
g

22

3.3 Random Sampling in Image Processing

Since image processing plays a role in various fields such as computer vision, ma-

chine vision, artificial intelligence, machine learning, computer graphics, embedded

systems, etc., various sampling algorithms are applied for object detection and track-

ing of moving objects. According to parameter estimation, least square parameter

estimation is generally used for point correspondences. However, it is sensitive to

outliers, so that a few outliers can greatly skew the model fitting [61]. Hence, es-

timation methods which are robust to outliers become essential. Generally, robust

estimation executes two processes. The first process is to classify data points as

outliers or inliers, i.e., points do fit the model or not. After that, the second process

will begin to fit the model to inliers while discarding outliers.

Since the robust estimators can reduce the adversely effect of outliers, RANSAC

algorithm becomes a powerful tool to cope with the model estimations which con-

tains outliers. Selecting the number of samples and the number of feature points

in a sample are initial stage to apply RANSAC algorithm to image processing. Ini-

tial estimation with least squares method over all inliers makes the fitting quality

improved.

This dissertation addresses the efficient model estimation from input video image

using RANSAC algorithm with three different arithmetic types: long integer (64-bit),

single floating point (32-bit) and double floating point (64-bit). The basic format

of IEEE Standard floating-point representation for binary floating-point numbers is

shown in Fig. 3.8. The sign bit represents 1 bit: ‘0’ for positive and ‘1’ for negative.

Although the sign bit is same for both floating-point representations, exponent and

mantissa are different, i.e., 8 bits and 23 bits for single precision FP format, and 11

bits and 52 bits for double precision FP format, respectively.

Sign Exponent Mantissa

Figure 3.8: IEEE 754-standard floating-point format

According to object fitting, randomly selecting the center points (x, y) and radius

(r) are required to estimate the circle model from random generated feature points

as shown in Fig. 3.9 and Fig. 3.10. Depending on the minimum sample points of

estimated models, the sizes of matrices are also different to solve the simultaneous

equations. Fig. 3.11 and Fig. 3.12 illustrate the two types of ellipse models. Chapter

4 presents the detailed explanation of model estimations from feature points with

two different algorithms to get a reasonable outcome.

23

Figure 3.9: Example of circle model and feature points with observation errors

(x, y)

r

Figure 3.10: Example of random sample points for circle model

(x, y) a

b

Figure 3.11: Example of random sample points for ellipse model

ab

x

y

angle

Figure 3.12: Example of random sample points for ellipse model with angle

24

In the state estimation of non-linear dynamic systems, random number genera-

tion and resampling are critical to meet the timing constraints and and its perfor-

mance target. Parallel resampling becomes a challenging problem in object tracking

when it comes to high speed and performance. This dissertation aims to perform

the high performance object tracking with parallel resampling compared to multi-

nomial resampling method. Moreover, alternative designs implemented on FPGA

are compared with respect to performance and power consumption.

25

Chapter 4

FPGA-based Real-Time Robust

Model Fitting

4.1 Overview

With the rapid development of FPGA technology, FPGA implementation of real-

time circle and ellipse estimations from images is a promising solution in many

applications such as robotics, computer vision, and so on. More specifically, FP-

GAs are getting popular in the name of the high energy efficiency, that is, a good

energy-performance ratio. To fulfill the demands for robust estimations of objects

such as circles and ellipses, a well-known and effective algorithm called RANdom

SAmple Consensus (RANSAC) [22] has been widely used. Typical implementation

of RANSAC essentially consists of three process steps: (1) randomly selecting a set

of points for model parameters from feature points, (2) generating hypothesis from

the selected points and (3) verifying the generated hypothesis. These three steps

are repeated in order to get the best hypothesis as a result.

The real-time implementation of the RANSAC algorithm needs to generate as

many hypotheses as possible for different point selection during a single camera

frame, and Step (2) easily becomes a performance bottleneck [42]. The most time

consuming task is the least square method to generate hypothesis from the selected

feature points where a simultaneous linear equation is solved. The number of un-

known variables of the simultaneous equations is different according to each model:

3 to 5 for circles and ellipses. In contrast to large matrix solvers, few attention has

been paid so far to small matrix manipulation on FPGA, and it is a question what

kind of approach is appropriate for FPGA.

In this chapter, several kinds of FPGA implementation of equation solvers are

compared to reveal tradeoff relationship among different methods when it comes

to the matrix manipulation on an FPGA. The evaluated solver algorithms are the

26

Gauss-Jordan method and Cramer’s rule method. While the Gauss-Jordan method

is one of the most popular algorithms for this purpose, the Cramer’s rule is generally

never considered due to a large number of multiplication operations to be made in the

process of calculation of the determinant [62]. However, especially for a small data

set, execution performance of an algorithm becomes more sensitive to architectures

and does not necessarily reflect computational complexity.

The advantage of the Cramer’s method in FPGA implementation is that it has

a simple and regular control flow. In addition, most calculations can be performed

with integer arithmetic rather than floating-point arithmetic. On the other hand,

a wide dynamic range is required to calculate the determinants of a given matrix.

For the sake of revealing how the arithmetic type impacts the performance and

hardware costs, two arithmetic implementation for the Cramer’s rule, double preci-

sion floating-point and long integer, are compared by changing the size of matrices.

While several FPGA implementation of circle and ellipses estimations have been

reported including in [42] [23], one of the major contributions of this chapter is

comprehensive discussion on implementation alternatives including effects of matrix

size and the use of long-integer arithmetic in a simultaneous equation solver.

The rest of this chapter is structured as follows. Section 4.2 gives a brief overview

of the RANSAC algorithm. The implementation of the system in detail with both

floating-point and long integer arithmetic processes are described in Section 4.3.

Section 4.4 shows the evaluation results and discussion. Finally, summary of this

chapter is described in Section 4.5.

4.2 RANSAC Algorithm

RANSAC is an iterative algorithm which fits the parameterized model from a data

set of points including outliers. Initially, RANSAC randomly picks 3 points for a

circle, 4 points for an ellipse and 5 points for an ellipse with angle, respectively from

feature points. Subsequently, a hypothesis is generated from the selected points

according to the parameters. Due to the circle and ellipses equations as shown in

Eq. (4.1), Eq. (4.2) and Eq. (4.3), the number of estimated parameters is different.

In addition, the least square method is used to estimate the circle and ellipses as

shown in Eq. (4.4), Eq. (4.5) and Eq. (4.6). These equations are used to generate the

hypotheses that are verified by substituting all the feature points and the obtained

parameters are substituted in Eq. (4.1), Eq. (4.2) and Eq. (4.3) as follows:

x2 + y2 + Ax + By + C = 0 (4.1)

x2 + Ax + By2 + Cy + D = 0 (4.2)

27

x2 + Axy + By2 + Cx + Dy + E = 0 (4.3)

where A, B, C, D and E are estimated parameters for a circle and ellipses.

⎛

⎝

∑
x2

i

∑
xiyi

∑
xi∑

xiyi

∑
y2

i

∑
yi∑

xi

∑
yi

∑
1

⎞

⎠

⎛

⎝
A
B
C

⎞

⎠ =

⎛

⎝
−

∑
xi (x2

i + y2
i)

−
∑

yi (x2
i + y2

i)
−

∑
x2

i + y2
i

⎞

⎠ (4.4)

⎛

⎜⎜⎝

∑
x2

i

∑
xiy2

i

∑
xiyi

∑
xi∑

xiy2
i

∑
y4

i

∑
y3

i

∑
y2

i∑
xiyi

∑
y3

i

∑
y2

i

∑
yi∑

xi

∑
y2

i

∑
yi

∑
1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

A
B
C
D

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

−
∑

x3
i

−
∑

x2
i y

2
i

−
∑

x2
i yi

−
∑

x2
i

⎞

⎟⎟⎠ (4.5)

⎛

⎜⎜⎜⎜⎝

∑
x2

i y
2
i

∑
xiy3

i

∑
x2

i yi

∑
xiy2

i

∑
xiyi∑

xiy3
i

∑
y4

i

∑
xiy2

i

∑
y3

i

∑
y2

i∑
x2

i yi

∑
xiy2

i

∑
x2

i

∑
xiyi

∑
xi∑

xiy2
i

∑
y3

i

∑
xiyi

∑
y2

i

∑
yi∑

xiyi

∑
y2

i

∑
xi

∑
yi

∑
1

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

A
B
C
D
E

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

−
∑

x3
i yi

−
∑

x2
i y

2
i

−
∑

x3
i

−
∑

x2
i yi

−
∑

x2
i

⎞

⎟⎟⎟⎟⎠
(4.6)

The left-hand side of Eq. (4.1), Eq. (4.2) and Eq. (4.3) are considered as an error.

The proportion of inliers among the data set is counted with an error threshold value.

Such being the case, the three steps: random sampling, hypothesis generating and

verifying are iterated until the termination criteria is met. The standard termination

criteria for RANSAC means that a new data set of the next frame image arrives.

Finally, the best hypothesis, which has the maximum number of inliers, is output

as the estimated parameters.

4.3 Implementation

4.3.1 Design Overview

Fig. 4.1 shows an overview of the proposed system, which consists of the three clock

domains. Feature points extracted from a given image are firstly stored into the

feature point table. Then, the random selector module randomly selects the mini-

mum sample points from the feature point table and stores them into FIFO1 with

a 19-bit width and 16 depth. In hypothesis generation, four kinds of solvers are

implemented for simultaneous equations. More specifically, two of them are a single

precision FP solver and a double precision FP solver for Gauss-Jordan elimination

and the rest are long integer and double precision FP solvers based on Cramer’s rule.

Cramer’s rule with single FP cannot be used for solving the simultaneous equations

due to numeric overflow in multiplication steps. Generated hypothesis parameters

28

Figure 4.1: Overview of the proposed system in object fitting

are passed to the model verification module via FIFO2 with a 32-bit width and 16

depth. With the use of double buffering via dual-port RAMs, the Hypothesis gener-

ation and Model verification modules work concurrently. To the best hypothesis, the

Model verification module produces a model with the maximum number of inliers.

RANSAC algorithm for fitting a model to data is as shown in Fig. 4.2. First,

RANSAC selects a random subset from the extracted feature points. The minimum

number of parameters needs changing according to the models, such as circles and

ellipses. Then, the selected points estimate the model parameters using the least

square method. S represents the absolute value of solving the left-hand side of

Eq. (4.1), Eq. (4.2) and Eq. (4.3), respectively. S is compared with a predefined

threshold value to split the inliers and outliers. If the value is less than threshold,

data points are classified as inliers. Mismatched points are defined as outliers. The

Model verification module counts the number of inliers and updates the temporal

best parameters when the number of counted inliers are larger than the current

maximum number of inliers. Finally, the hypothesis with the largest inlier set during

a given period is selected as the best model.

4.3.2 Hypothesis Generation

4.3.2.1 Cramer’s rule

In the case of n × n matrix, Cramer’s rule can be generalized a system of n linear

equations in n unknowns as follows:

Ax = b (4.7)

where n× n matrix, A, has a nonzero determinant, x and b denote column vectors.

In that case, the unknown values are given by Cramer’s formulas:

xi =
|Ai|
|A| (4.8)

29

Calculate parameters by solving the equation

Initialize: best parameters
inlier_cnt_max = 0

Randomly select minimum sample points
from given feature points

Generate a simultaneous equation for
least square method

Initialize: inlier_ cnt = 0

inlier_cnt++

Calculate S by substituting the feature point into
the model equation

Update best parameters
inlier_cnt_max = inlier_cnt

inlier_cnt > inlier_cnt_max

Run out the frame time?

S < threshold

Output the best parameters

Input feature points

End

Y es

No

Yes

No

No

Yes

Start

For each: given feature points

Figure 4.2: Flowchart of the approach based on RANSAC algorithm

30

where xi represents the unknowns of the system and Ai refers a matrix obtained

from A by replacing the i-th column by the column vector b. The determinants are

used to solve the systems according to Cramer’s rule. The Leibniz formula for the

determinant |A| of order n is as follow:

|A| =
∑

σ∈Sn

sgn(σ)
n∏

i=1

ai,σi (4.9)

where Sn denotes the set of all permutations of the integers {1, 2, ..., n}, σi denotes

the value in the i-th number after the reordering σ. For each permutation σ, sgn(σ)

denotes the signature of σ which represents +1 for even σ and −1 for odd σ. In

general, Cramer’s rule is much less efficient for large systems of equations with

regard to its higher computational complexity compared with other methods such

as Gauss-Jordan algorithm. Nevertheless, it could be efficient for small matrix

operations because of its systematic and regular approach. Generally, the number

of terms in the determinant of an n × n matrix is n!. Hence, the determinant of a

3× 3 matrix contains six terms. For a 4-th order determinant, the sum of the terms

is 24 as shown in Eq. (4.10). Similarly, an explicit formula for the determinant of a

5 × 5 matrix is a sum of 120 products.

A memory table is used as a sign and address table. In this table, the elements

Ai,σi are the elements Ai,σji of the matrix A where the index j is defined as the j-th

element of permutation σj for column vectors of the matrices (3 × 3 bits) of 3 × 3

matrix, (3 × 4 bits) of 4 × 4 matrix and (3 × 5 bits) of 5 × 5 matrix, respectively

and the value of sgn(σj) (1 bit). For example, the first term of Eq. (4.10) describes

{1′b0, 3′d0, 3′d1, 3′d2, 3′d3} in the table.

det(A) = a11a22a33a44 + a11a24a32a43 + a11a23a34a42

+a12a21a34a43 + a13a21a32a44 + a14a21a33a42

+a12a23a31a44 + a14a22a31a43 + a13a24a31a42

+a12a24a33a41 + a13a22a34a41 + a14a23a32a41

−a11a22a34a43 − a11a23a32a44 − a11a24a33a42

−a12a21a33a44 − a14a21a32a43 − a13a21a34a42

−a12a24a31a43 − a13a22a31a44 − a14a23a31a42

−a12a23a34a41 − a14a22a33a41 − a13a24a32a41

(4.10)

A data fetch mechanism consisting of column tables and a sign-and-address table

is used to calculate the determinants with a simple architecture. Fig. 4.3 shows the

structure of this mechanism in the case of n = 4. Initially, each column vector of the

matrix A is stored in the column tables, which consists of n banks. The addresses to

31

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

b1 b2 b3 b4

b1 b2 b3 b4

b1 b2 b3 b4

b1 b2 b3 b4

1, 4, 2, 3, +
1, 2, 3, 4, +

1, 3, 4, 2, +

3, 4, 2, 1, -

Term number
'2'

Sign-and-address table

Column tables

a11

a24

a32

a43

+

'1'

'4'

'2'

'3'

Bank1

Bank2

Bank3

Bank4

Figure 4.3: Data fetch mechanism for the Cramer module

the column tables are given by the sign-and-address table, whose i-th entry contains

i-th permutation σi and the value of sgn(σi). For example, the second entry of the

sign-and-address table contains ‘1’, ‘4’, ‘2’, ‘3’, and ‘+’, corresponding to the second

term Eq. (4.10). To support calculation of |Ai|, each bank of the column table can

also be switched to output the column vector b.

Fig. 4.9 illustrates the entire structure of the proposed Cramer module in the

case of n = 5. A simple counter generates an address to the sign-and-address

table every clock cycle. Next step is to fetch the corresponding elements of the

matrix from the five banks of the column tables. After multiplying the five elements

and the sign, the result is accumulated. This process repeats 120 times to get

the determinant of the matrix. While multiplication steps can be fully pipelined,

pipeline stalls occur in the final accumulation step due to the latency of the adder.

For the sake of eliminating pipeline stalls, the calculation of determinants involves

interleaving the elements of six matrices (A,A1, . . . , A5) using an adder with 6-cycle

latency. Hence, six determinants are obtained every clock cycle after computing 720

sets of multiplication. Finally, the last five determinants are divided by the first

determinant to get the ellipse parameters.

According to Cramer’s rule, the determinants of matrices can be mostly calcu-

lated by integer arithmetic. However, calculation of the determinants needs a wide

dynamic range. For this reason, double precision FP arithmetic or long integer

arithmetic is required. Cramer modules with double precision FP arithmetics are

illustrated in Fig. 4.5, Fig. 4.7 and Fig. 4.9. Fig. 4.4, Fig. 4.6 and Fig. 4.8 show the

overview of the Cramer module with long integer arithmetics on an FPGA. Each

32

label on the arrows shows the bit width required to process 640× 480-pixel images.

After multiplying the five elements and the sign as shown in Fig. 4.8, the bit size

extends 205 bits. Then, the addition of corresponding values repeats 120 times to

get the determinant of the matrix. After the addition process had executed, the

long integer values are reduced to 64 bits without changing the values to avoid the

numeric overflow for integers to single precision FP conversion. In that case, the

conversion process entails large barrel shifters. According to the column vector b,

|Ai| is calculated by using bσji instead of ai,σji from the i-th column table at the

j-iteration, where σji means i-th number of the permutation σj.

In accordance with the arithmetic processes, the hypothesis generator for ellipse

estimation consists of two 41-bit integer multipliers, one 82-bit integer multiplier,

one (164× 41 bits) integer multiplier, one 205-bit integer adder and one single (FP)

divider for integer version. With respect to this estimation, double FP version

includes four double precision FP multipliers, one double precision FP adder and

one double precision FP divider as shown in Fig. 4.9. In contrast to long integer

method, the input matrices are double precision FP format and the values of six

determinants are converted into single precision FP representation after the final

accumulation step.

In 4× 4 matrix, the hypothesis generation comprises two 40-bit integer multipli-

ers, one 80-bit integer multiplier, one 160-bit integer adder and one single precision

FP divider for integer version. In that case, the hypothesis generator for double FP

contains three double precision FP multipliers, one double precision FP adder and

one double precision FP divider. For circle estimation, one 32-bit integer multiplier,

one (64×32 bits) integer multiplier, one 96-bit integer adder and one single precision

FP divider require for integer version. The double FP version includes two double

precision FP multipliers, one double precision FP adder and one double precision

FP divider. For the long integer arithmetic, the integer size needs to reduce 1 bit

or 9 bits in accordance with the size of the matrix. All estimated parameters are

outputs as single precision FP values. Hence, some format converters involve in

both arithmetic processes.

4.3.2.2 Gauss-Jordan elimination

Gauss-Jordan elimination works with the augmented matrix in order to solve a

system of simultaneous equations. This method is a systematic way for solving very

large systems of equations. Moreover, Gauss-Jordan algorithm does not need the

backward substitution which is highly sequential process compared with Gaussian

elimination. In contrast, RANSAC needs solving simultaneous equations many times

because of changing the feature points selection. The best estimated parameters are

adopted from this process. The accuracy for the best estimated parameters is the

33

C
ou

nt
er

Si
gn

-a
nd

-a
dd

re
ss

 ta
bl

e

In
pu

ts
3x

3
m

at
ric

es
(3

2
bi

ts
 x

 3
)

C
o
lu

m
n

 T
ab

le

B
an

k0

B
an

k1

B
an

k2

d
iv

3
2

ad
d

m
u

l
R

eg
4

 D
et

er
m

in
an

ts
|A

|,
 |

A
1

|,
 |

A
2

|,
 |

A
3
|

O
ut

pu
ts

m
u

l

In
te

ge
r (

64
 b

its
) t

o
Si

ng
le

 p
re

ci
si

on

flo
at

in
g

po
in

t (
32

 b
its

)

In
te

ge
rs

 (9
6

bi
ts

) t
o

In
te

ge
r (

64
 b

its
)

32 32

64

96

32

96

96

F
ig

u
re

4.
4:

O
ve

rv
ie

w
of

C
ra

m
er

m
od

u
le

fo
r

lo
n
g

in
te

ge
r

(c
ir

cl
e)

C
ou

nt
er

Si
gn

-a
nd

-a
dd

re
ss

 ta
bl

e

In
pu

ts
3x

3
m

at
ric

es
(6

4
bi

ts
 x

 3
)

C
o
lu

m
n

 T
ab

le

B
an

k0

B
an

k1

B
an

k2

d
iv

ad
d

m
u

l
R

eg
4

 D
et

er
m

in
an

ts
|A

|,
 |

A
1

|,
 |

A
2

|,
 |

A
3
|

O
ut

pu
ts

m
u

l
64

64 64

64

64
64

64

D
ou

bl
e

pr
ec

is
io

n
flo

at
in

g
po

in
t

(6
4

bi
ts

) t
o

Si
ng

le
 p

re
ci

si
on

flo

at
in

g
po

in
t (

32
 b

its
)

64

6464

F
ig

u
re

4.
5:

O
ve

rv
ie

w
of

C
ra

m
er

m
od

u
le

fo
r

d
ou

b
le

p
re

ci
si

on
F
P

(c
ir

cl
e)

34

C
ou

nt
er

Si
gn

-a
nd

-a
dd

re
ss

 ta
bl

e

In
pu

ts
4x

4
m

at
ric

es
(4

0
bi

ts
 x

 4
)

C
o
lu

m
n

 T
ab

le

B
an

k0

B
an

k1

B
an

k2

B
an

k3

d
iv

3
2

ad
d

m
u

l

m
u

l
R

eg
|A

|,
 |

A
1

|,
 |

A
2

|,
 |

A
3
|,

 |
A

4
|

5
 D

et
er

m
in

an
ts

O
ut

pu
ts

D
ou

bl
e

pr
ec

is
io

n
flo

at
in

g
po

in
t

(6
4

bi
ts

) t
o

Si
ng

le
 p

re
ci

si
on

flo

at
in

g
po

in
t (

32
 b

its
)

In

te
ge

rs
 (1

60
 b

its
) t

o
D

ou
bl

e
pr

ec
is

io
n

flo
at

in
g

po
in

t (
64

 b
its

)

40 40

80 80

16
0 16

0

16
0

m
u

l

40 40

F
ig

u
re

4.
6:

O
ve

rv
ie

w
of

C
ra

m
er

m
od

u
le

fo
r

lo
n
g

in
te

ge
r

(e
ll
ip

se
4

p
oi

nt
s)

C
ou

nt
er

Si
gn

-a
nd

-a
dd

re
ss

 ta
bl

e

In
pu

ts
4x

4
m

at
ric

es
(6

4
bi

ts
 x

 4
)

C
o
lu

m
n

 T
ab

le

B
an

k0

B
an

k1

B
an

k2

B
an

k3

d
iv

ad
d

m
u

l

m
u

l
R

eg
|A

|,
 |

A
1

|,
 |

A
2

|,
 |

A
3

|,
 |

A
4

|

5
 D

et
er

m
in

an
ts

O
ut

pu
ts

m
u

l

6
4

6
4

6
4

6
4

6
4

6
4

6
4

6
4

6
4 6
4

D
ou

bl
e

pr
ec

is
io

n
flo

at
in

g
po

in
t

(6
4

bi
ts

) t
o

Si
ng

le
 p

re
ci

si
on

flo

at
in

g
po

in
t (

32
 b

its
)

6
4 6
4

F
ig

u
re

4.
7:

O
ve

rv
ie

w
of

C
ra

m
er

m
od

u
le

fo
r

d
ou

b
le

p
re

ci
si

on
F
P

(e
ll
ip

se
4

p
oi

nt
s)

35

C
ou

nt
er

Si
gn

-a
nd

-a
dd

re
ss

 ta
bl

e

In
pu

ts
5x

5
m

at
ric

es
(4

1
bi

ts
 x

 5
)

C
o
lu

m
n

 T
ab

le

B
an

k0

B
an

k1

B
an

k2

B
an

k3

B
an

k4

d
iv

3
2

ad
d

m
u

l

m
u

l

m
u

l
R

eg
6

 D
et

er
m

in
an

ts
|A

|,
 |

A
1

|,
 |

A
2

|,
 |

A
3
|,

 |
A

4
|,

 |
A

5
|

O
ut

pu
ts

m
u

l
D

ou
bl

e
pr

ec
is

io
n

flo
at

in
g

po
in

t
(6

4
bi

ts
) t

o
Si

ng
le

 p
re

ci
si

on

flo
at

in
g

po
in

t (
32

 b
its

)

In

te
ge

rs
 (2

05
 b

its
) t

o
D

ou
bl

e
pr

ec
is

io
n

flo
at

in
g

po
in

t (
64

 b
its

)

41 41 41 41

41

82 82

16
4

20
5 20

5

20
5

F
ig

u
re

4.
8:

O
ve

rv
ie

w
of

C
ra

m
er

m
od

u
le

fo
r

lo
n
g

in
te

ge
r

(e
ll
ip

se
5

p
oi

nt
s)

C
o
u

n
te

r
S

ig
n

-a
n

d
-a

d
d

re
ss

 t
ab

le

In
pu

ts
5x

5
m

at
ric

es
(6

4
bi

ts
 x

 5
)

C
ol

um
n

Ta
bl

e

B
an

k
0

B
an

k
1

B
an

k
2

B
an

k
3

B
an

k
4

di
v

6
4 6
4

6
4

ad
d

m
ul

m
ul

m
ul

R
eg

6
D

et
er

m
in

an
ts

|A
|,

|A
1|

, |
A

2|
, |

A
3|

, |
A

4|
, |

A
5|

O
ut

pu
ts

m
ul

6
4

6
4 6
4

6
4

6
4

6
4

6
4

6
4 6

4

6
4

D
ou

bl
e

pr
ec

is
io

n
flo

at
in

g
po

in
t

(6
4

bi
ts

) t
o

Si
ng

le
 p

re
ci

si
on

flo

at
in

g
po

in
t (

32
 b

its
)

F
ig

u
re

4.
9:

O
ve

rv
ie

w
of

C
ra

m
er

m
od

u
le

fo
r

d
ou

b
le

p
re

ci
si

on
F
P

(e
ll
ip

se
5

p
oi

nt
s)

36

only thing that matters. Hence, pivot exchanging was not considered in this design.

Inputs
(3x3 matrices)

Step 1

mul

sub

div

Step 2

mul

sub

div

Step 3

mul

sub

div

Outputs

Figure 4.10: Gauss-Jordan Algorithm for circle estimation

Inputs
(4x4 matrices)

Step 1

mul

sub

div

Step 2

mul

sub

div

Step 3

mul

sub

div

Step 4

mul

sub

div

Outputs

Figure 4.11: Gauss-Jordan Algorithm for ellipse estimation

Inputs
(5x5 matrices)

Step 1

mul

sub

div

Step 2

mul

sub

div

Step 3

mul

sub

div

Step 4

mul

sub

div

Step 5

mul

sub

div

Outputs

Figure 4.12: Gauss-Jordan Algorithm for ellipse with angle estimation

Fig. 4.10 and Fig. 4.11 illustrate the circle and ellipse estimation with Gauss-

Jordan method. Moreover, Fig. 4.12 shows the structure of a hypothesis generation

module for ellipse with angle estimation based on the Gauss-Jordan method. It

consists of cascaded five sub-modules and the computation is pipelined. Each sub-

module consists of division, multiplication and subtraction. The row operations are

preformed using the above arithmetic operations until the matrices are in reduced

row echelon form. These sub-modules work in a macro pipelined manner, that is,

a new hypothesis generation can be started after the first sub-module finishes its

calculation.

Integer method cannot apply to Gauss-Jordan elimination compared to Cramer’s

rule because division process involves in every step of modules. Since a dynamic

range required for Gauss-Jordan elimination is moderate, all the arithmetic modules

were implemented in the single-precision FP format. On the other hand, Gauss-

Jordan elimination for double FP also requires for fair comparison of Cramer module

with double FP. Although the computation is the same as single FP of Gauss-Jordan

37

elimination, double-precision Gauss-Jordan algorithm needs to change the output

size of each step using double to single FP converter.

4.4 Evaluation Environment and Method

The proposed systems are implemented on a Xilinx Kintex-7 xc7k325t FPGA using

ISE design tools 14.7. To evaluate the estimation accuracy of each solver, synthetic

benchmark models are prepared for circles, aligned ellipses, and ellipses with angles.

First, an original model is randomly generated on a 640× 480-pixel frame. A center

coordinate (xi, yi), a major radius ra, a minor radius rb, and slope φ of the ellipse

are given by uniform random numbers so that 160 < xi ≤ 480, 80 < yi ≤ 240,

20 < ra ≤ 80, 20 < rb ≤ 80, and 0 < φ ≤ 2π, respectively. Then, a total of 128

points are randomly selected from the circumference of the ellipse as feature points.

Finally, to mimic the uncertainties of feature point extraction, noise with the normal

distribution (µ = 0, σ = rb/50) is added to each coordinate of the feature points.

The Random selector module selects the minimum sample points from the fea-

ture point table accordance to the random addresses generated by a 32-stage linear

feedback shift register. Since 640 × 480 pixel display, 19-bit registers are required

to generate the matrix. After generating the matrix for the least square method,

each element of the matrix is converted to the corresponding data type such as dou-

ble precision floating-point (FP), single precision FP, or integer, depending on an

evaluated solver module. Then, the RANSAC system estimates parameters of the

original model from the coordinates of feature points with the noise. For given 128

feature points, the systems iteratively performs the process of the feature point selec-

tion, hypothesis generation by solving simultaneous equations, and evaluation of the

generated hypothesis. Four solver modules, CRAMER with long-integer arithmetic,

CRAMER with double precision FP arithmetic, GAUSS-JORDAN with single pre-

cision FP arithmetic, GAUSS with double precision FP arithmetic, are compared.

As aforementioned, CRAMER with single precision FP arithmetic cannot be imple-

mented due to the dynamic range required for calculating determinants.

For real-time execution, the system repeats these processes for 400,000 clock

cycles, which corresponds to 5 ms at 80MHz. A total of 100 benchmark models

were generated and evaluated for each solver. The estimation accuracy was evalu-

ated using three metrics: root mean square error (RMSE) for the estimated center

coordinates, RMSE for the estimated lengths of the radius, and relative root mean

square error (RRMSE) for the estimated areas of circles and ellipses. For example,

RMSE for the estimated center coordinates is given by Eq. (4.11) and Eq. (4.12).

δi =
√

∆x2
i + ∆y2

i (4.11)

38

T
ab

le
4.

1:
R

es
ou

rc
e

u
sa

ge
of

ea
ch

im
p
le

m
en

ta
ti

on

C
R

A
M

E
R

G
A

U
S
S
-J

O
R

D
A

N

L
on

g
In

te
ge

r
D

ou
b
le

F
lo

at
S
in

gl
e

F
lo

at
D

ou
b
le

F
lo

at

3x
3

4x
4

5x
5

3x
3

4x
4

5x
5

3x
3

4x
4

5x
5

3x
3

4x
4

5x
5

F
F

49
98

(1
%

)
52

34
(1

%
)

80
89

(1
%

)
76

06
(1

%
)

73
32

(1
%

)
86

17
(2

%
)

10
09

5(
2%

)
11

89
7(

2%
)

14
66

6(
3%

)
15

30
1(

3%
)

18
10

9(
4%

)
21

91
4(

5%
)

L
U

T
57

96
(2

%
)

69
96

(3
%

)
98

53
(4

%
)

93
45

(4
%

)
97

51
(4

%
)

11
18

9(
5%

)
88

54
(4

%
)

10
33

9(
5%

)
12

75
3(

6%
)

18
15

1(
8%

)
23

05
2(

11
%

)
29

37
3(

14
%

)

B
R

A
M

36
E

1
-

4(
1%

)
5(

1%
)

3(
1%

)
4(

1%
)

5(
1%

)
-

-
-

5(
1%

)
7(

1%
)

10
(2

%
)

B
R

A
M

18
E

1
6(

1%
)

6(
1%

)
6(

1%
)

6(
1%

)
6(

1%
)

6(
1%

)
8(

1%
)

10
(1

%
)

13
(1

%
)

5(
1%

)
5(

1%
)

5(
1%

)

D
S
P

48
E

1s
26

(3
%

)
43

(5
%

)
91

(1
0%

)
36

(4
%

)
46

(5
%

)
64

(7
%

)
30

(3
%

)
39

(4
%

)
50

(5
%

)
57

(6
%

)
71

(8
%

)
95

(1
1%

)

39

T
ab

le
4.

2:
P
er

fo
rm

an
ce

of
ea

ch
im

p
le

m
en

ta
ti

on

C
R

A
M

E
R

G
A

U
S
S
-J

O
R

D
A

N

L
on

g
In

te
ge

r
D

ou
b
le

F
lo

at
S
in

gl
e

F
lo

at
D

ou
b
le

F
lo

at

3x
3

4x
4

5x
5

3x
3

4x
4

5x
5

3x
3

4x
4

5x
5

3x
3

4x
4

5x
5

L
at

en
cy

of
fi
tt

in
g

84
19

0
82

1
10

9
21

1
83

1
18

3
24

5
31

1
19

2
24

5
34

6
(c

lo
ck

cy
cl

es
)

T
h
ro

u
gh

p
u
t

of
fi
tt

in
g

1.
07

x1
06

0.
53

x1
06

0.
12

x1
06

1.
34

x1
06

0.
55

x1
06

0.
14

x1
06

1.
50

x1
06

1.
15

x1
06

0.
75

x1
06

0.
78

x1
06

0.
62

x1
06

0.
44

x1
06

(e
st

im
at

io
n
s/

s)

M
ax

fr
eq

u
en

cy
(M

H
z)

89
.7

98
.4

97
.4

14
6.

5
11

6.
6

11
9.

4
27

3.
8

28
1.

6
23

3.
6

15
0.

3
15

1.
0

15
0.

8

40

RMSE =

√√√√ 1

N

N∑

i=1

δ2
i (4.12)

where ∆xi and ∆yi show the difference in the center point coordinates between

the original and estimated ellipses (or circles) for the i-th trial, while N shows the

number of fitting trials and is 100 for this experiment. The RMSE for the ellipse

estimated lengths is δi divided by 2 due to the two different radii. The RRMSE for

area estimation is given by Eq. (4.13) and Eq. (4.14).

γi =

√
(AEi − AOi)2

AOi
2 (4.13)

RRMSE =

√√√√ 1

N

N∑

i=1

γ2
i (4.14)

where the estimated area and original area of the ellipse (or circle) in the i-th trial

are denoted as AEi and AOi, respectively.

4.4.1 Resource Usage

Table 4.1 illustrates the five different types of FPGA resources for the four types of

solvers. For circle estimation, CRAMER solver with long integer method utilizes the

less usage in overall resources. In 4×4 matrix, it is evident that CRAMER for both

versions have lower resource usages in FFs and LUTs than GAUSS. When it comes

to 5× 5 matrix, CRAMER remains the lowest resource usage except DSP48E1s. In

accordance with DSP48E1s usage, multipliers play an important role in CRAMER

and DSP48E1s hard macro modules are essential to implement the arithmetic op-

erations efficiently. In this system, BRAMs were mainly utilized for implementing

FIFO modules.

4.4.2 Performance

Table 4.2 gives information on the performance of latency, throughput and maximum

clock frequency for circle and ellipses estimations. Throughput was defined as the

number of hypothesis generation per second in this work. Although the latency

of both CRAMER solvers was lower than GAUSS solver except 5 × 5 matrix, the

maximum clock frequency was taken into account for the calculation of throughput.

For this reason, GAUSS achieved the maximum throughput value. With the best

41

Table 4.3: Errors of each implementation

Errors

CRAMER GAUSS-JORDAN

Long Integer Double Float Single Float Double Float

3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5

RMSE for coordinate (pixels) 0.674 1.167 0.612 0.559 1.055 0.987 0.354 1.103 0.696 0.320 1.197 0.619

RMSE for radius (pixels) 0.317 0.805 0.595 0.283 0.933 1.319 0.184 0.919 0.831 0.142 0.721 0.504

RRMSE for area 0.004 0.014 0.007 0.000 0.015 0.029 0.000 0.016 0.004 0.000 0.018 0.004

performance, the improved throughput may make the accuracy of the fitting better

in RANSAC algorithm. Long integer versions showed the degradation of the clock

frequency. One of the reasons for this frequency degradation is large barrel shifters,

which are required to convert long integer values to FP values prior to the final FP

divider. Even though CRAMER solver using long integer achieved the minimum

throughput value, it can successfully estimate the reasonable parameters for ellipses

and circle fittings. The estimation accuracy will be discussed in the next section.

Table 4.4: Statistics of errors in 100 estimation trials for circle estimation

CRAMER GAUSS-JORDAN

Long Integer Double Float Single Float Double Float

Maximum absolute error of coordinate (pixels) 1.336 1.314 0.838 0.986

Minimum absolute error of coordinate (pixels) 0.055 0.032 0.032 0.000

Standard deviation of coordinates (pixels) 0.301 0.249 0.180 0.185

Maximum absolute error of radius (pixels) 0.896 0.571 0.620 0.365

Minimum absolute error of radius (pixels) 0.000 0.000 0.000 0.000

Standard deviation of radius (pixels) 0.201 0.155 0.118 0.080

Maximum absolute relative error of area 0.032 0.000 0.000 0.000

Minimum absolute relative error of area 0.000 0.000 0.000 0.000

Standard deviation of area 0.005 0.000 0.000 0.000

4.4.3 Accuracy

Table 4.3 compares three RMSE values in terms of the coordinate, radius and area

with four different arithmetic processes. Among the four processes, the GAUSS

42

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400 500 600

original circle
generated feature points

estimated result

Figure 4.13: Circle estimation example

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400 500 600

original ellipse
generated feature points

estimated result

Figure 4.14: Ellipse estimation example

43

solver provided the highest accuracy for 3 × 3 matrices whereas CRAMER with

long integer version showed the lowest accuracy. According to the ellipse estima-

tions, the differences in RMSE values are not significant. According to the long

integer method, Fig. 4.13 and Fig. 4.14 demonstrate estimation examples, showing

the original model, generated feature points with noises, and estimated models. In

accordance with the comparisons, the estimation errors among circle and ellipses

were around one pixel even for the largest error in the radius of the floating-point

version of CRAMER.

Moreover, Table 4.4 compares the statistics of errors in terms of maximum,

minimum and standard deviation values over 100 trials. Fig. 4.13 and Fig. 4.14

demonstrate the estimation examples of CRAMER long integer method, showing

the original model, generated feature points with noises, and estimated models.

Table 4.3 compares three RMSE values in terms of the coordinate, radius and area

with four different arithmetic processes. The number of digits after decimal point

30-digit precision is used in accumulation for statistical reliability. The average

errors are displayed with double format. After 100 trials, the average errors display

7 digits to simplify the accuracy comparison because of the different number of pixel.

The detailed error analysis for model fitting is concerned with the accuracy of three

parameters such as center points (x, y), radius and area.

The error values are identified between the actual and estimated parameters

with root mean square error method. RMSE for all parameters are generated and

calibrated 100 times. Even though CRAMER with long integer version showed the

lowest accuracy among the four processes whereas the GAUSS solver provided the

highest accuracy, the errors are acceptable. The peak error of this method makes

the accuracy degrade and occurs due to the difference of true value and estimated

value.

4.4.4 Memory Optimization

When it comes to the resource utilization, memory bit width optimization makes the

circuit area improved. For this reason, the number of bits are optimized depending

on the maximum bit width for every multiplication step in Cramer modules coupled

with long integer arithmetics. Fig. 4.15 depicts the circle estimation with optimized

Cramer module. As mentioned above, element-wise multiplication is an essential

step for finding the determinants of circle. In the circle estimation, the biggest

bit width for element-by-element multiplication of two values becomes 51 bits, i.e.

xiyi is multiplied by −xiΣ(x2
i + y2

i). Then, maximum bit width for three elements

multiplication gives 62 bits. Fig. 4.16 and Fig. 4.17 illustrate the optimized long

integer design for ellipse estimations. In terms of 4 elements multiplication, the bit

44

Table 4.5: FPGA mapping results for Optimized CRAMER (long integer) designs

Resource utilization Performance comparison

FF LUT BRAM36E1 BRAM18E1 DSP48E1s
Latency of fitting Throughput of fitting Max frequency

(clock cycles) (estimations/s) (MHz)

3x3 4915(1%) 5793(2%) - 6(1%) 25(2%) 83 1.27x106 105.7

4x4 5013(1%) 6459(3%) 4(1%) 6(1%) 41(4%) 190 0.52x106 98.1

5x5 7417(1%) 8756(4%) 5(1%) 6(1%) 82(9%) 821 0.12x106 98.98

width of design alternative gets one half of the bit width in original one. Moreover,

the bit width of five elements multiplication in optimized design can reduce 1.46

times compared to the original version of long integer method.

Table 4.5 shows the resource utilization and performance comparison of three

different matrices. Each new design can reduce the utilization of FFs and LUTs

compared to the same arithmetic type of each original design as shown in Table 4.1.

DSP usage obviously lessens 1% for all model estimations. In terms of the maximum

frequency, new design improves 1.18 times than the original frequency. Moreover,

throughput also increases from 1.07×106 to 1.27×106. Hence, memory optimization

impacts on the resource utilization and performance on FPGA.

4.4.5 Comparative Discussion

The above evaluation results reveal the tradeoff relationship between circuit size,

speed performance and estimation accuracy. In most cases, CRAMER with long

integer arithmetic offers the lower amount of resource usage, moderate throughput

and the lowest accuracy among all solver types. On the other hand, Gauss-Jordan

elimination with single FP utilizes the higher resources, maximum throughput and

higher accuracy. Since the estimation error of CRAMER is about one pixel and

FFs usage is less than 50% of GAUSS, the CRAMER approach can be considered

to be advantageous especially in embedded and mobile applications such as robotics

and unmanned aerial vehicles, where compact circuit size and high energy efficient

are often preferred. Accordingly, CRAMER with long integer method estimates the

ellipse using less amount of resources and moderate accuracy. On the other hand, in

the applications where precise accuracy is more important than resource utilization,

the Gauss-Jordan method would be desirable. In addition, when the number of

available DSP blocks is severely restricted compared to other general resources, the

Gauss-Jordan algorithm will have an advantage.

45

C
ou

nt
er

Si
gn

-a
nd

-a
dd

re
ss

 ta
bl

e

In
pu

ts
3x

3
m

at
ric

es
(3

2
bi

ts
 x

 3
)

C
o
lu

m
n

 T
ab

le

B
an

k0

B
an

k1

B
an

k2

d
iv

3
2

ad
d

m
u

l
R

eg
4

 D
et

er
m

in
an

ts
|A

|,
 |

A
1

|,
 |

A
2

|,
 |

A
3
|

O
ut

pu
ts

m
u

l

In

te
ge

rs
 (6

2
bi

ts
) t

o
Si

ng
le

 p
re

ci
si

on

flo
at

in
g

po
in

t (
32

 b
its

)

32 32

51

62

32

62

62

3
2 3
2

F
ig

u
re

4.
15

:
O

ve
rv

ie
w

of
op

ti
m

iz
ed

C
ra

m
er

m
od

u
le

fo
r

lo
n
g

in
te

ge
r

(c
ir

cl
e)

C
ou

nt
er

Si
gn

-a
nd

-a
dd

re
ss

 ta
bl

e

In
pu

ts
4x

4
m

at
ric

es
(4

0
bi

ts
 x

 4
)

C
o
lu

m
n

 T
ab

le

B
an

k0

B
an

k1

B
an

k2

B
an

k3

d
iv

3
2

ad
d

m
u

l

m
u

l
R

eg
|A

|,
 |

A
1

|,
 |

A
2

|,
 |

A
3
|,

 |
A

4
|

5
 D

et
er

m
in

an
ts

O
ut

pu
ts

40 40

69 60

80 80

80

m
u

l

40 40

D
ou

bl
e

pr
ec

is
io

n
flo

at
in

g
po

in
t

(6
4

bi
ts

) t
o

Si
ng

le
 p

re
ci

si
on

flo

at
in

g
po

in
t (

32
 b

its
)

In

te
ge

rs
 (8

0
bi

ts
) t

o
D

ou
bl

e
pr

ec
is

io
n

flo
at

in
g

po
in

t (
64

 b
its

)

F
ig

u
re

4.
16

:
O

ve
rv

ie
w

of
op

ti
m

iz
ed

C
ra

m
er

m
od

u
le

fo
r

lo
n
g

in
te

ge
r

(e
ll
ip

se
4

p
oi

nt
s)

46

C
ou

nt
er

Si
gn

-a
nd

-a
dd

re
ss

 ta
bl

e

In
pu

ts
5x

5
m

at
ric

es
(4

1
bi

ts
 x

 5
)

C
o
lu

m
n

 T
ab

le

B
an

k0

B
an

k1

B
an

k2

B
an

k3

B
an

k4

d
iv

3
2

ad
d

m
u

l

m
u

l

m
u

l
R

eg
6

 D
et

er
m

in
an

ts
|A

|,
 |

A
1

|,
 |

A
2

|,
 |

A
3
|,

 |
A

4
|,

 |
A

5
|

O
ut

pu
ts

m
u

l

41 41 41 41

41

79 70

12
9

14
0 14

0

14
0

D
ou

bl
e

pr
ec

is
io

n
flo

at
in

g
po

in
t

(6
4

bi
ts

) t
o

Si
ng

le
 p

re
ci

si
on

flo

at
in

g
po

in
t (

32
 b

its
)

In

te
ge

rs
 (1

40
 b

its
) t

o
D

ou
bl

e
pr

ec
is

io
n

flo
at

in
g

po
in

t (
64

 b
its

)

F
ig

u
re

4.
17

:
O

ve
rv

ie
w

of
op

ti
m

iz
ed

C
ra

m
er

m
od

u
le

fo
r

lo
n
g

in
te

ge
r

(e
ll
ip

se
5

p
oi

nt
s)

47

4.5 Summary

This chapter presented the comparative evaluation results on FPGA implemen-

tation of robust circle and ellipse estimations based on the RANSAC algorithm.

Among model estimation processes, the hypothesis generation processes with the

least square method are especially emphasized and four types of solver architectures

are compared. In the evaluation experiments, each type of hardware solved the si-

multaneous equations repeatedly for synthetic benchmarks of three different models.

The four solvers with the comparison criteria for resource usage, performance and

accuracy are described.

Furthermore, each new design with optimized memory bit width achieved the

improvement of circuit area and performance on FPGA. The evaluation results have

shown that the long integer method of the Cramer’s approach can reduce required

FPGA resources except for DSP blocks with acceptable performance and accuracy,

which would not be the case for software implementation. On the other hand, it has

been revealed that Gauss-Jordan’s approach with FP arithmetic can achieve better

accuracy with less usage of DSP blocks.

Although this dissertation approaches to circle and ellipse estimations for the ease

of quantitative comparison, other geometric shapes, such as triangle, rectangle or

square, can also be implemented by substituting the related equation in Eq. (4.1),

Eq. (4.2), Eq. (4.3), Eq. (4.4), Eq. (4.5) and Eq. (4.6). For example, the area of

triangle is

areatriangle = ±1

2

∣∣∣∣∣∣∣∣∣∣∣∣

x1 y1 1

x2 y2 1

x3 y3 1

∣∣∣∣∣∣∣∣∣∣∣∣

. (4.15)

The matrix of three vertices triangle to generate the hypothesis is

det(A) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 y1 1

x2 y2 1

x3 y3 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= x1y2 + x2y3 + x3y1 − x1y3 − x2y1 − x3y2.

(4.16)

48

Chapter 5

FPGA-based Real-time Object

Tracking

5.1 Overview

Recent technological developments regarding the object tracking have led to many

computer vision applications such as robotics, video surveillance, biomedical engi-

neering, etc. According to the filtering problems in high-dimensional space, particle

filters can trace the object well and enable a fully nonlinear and non-Gaussian anal-

ysis step whereas Kalman filters are untraceable. Moreover, the particle filter has

become popular among the nonparametric filters in marker-less tracking applica-

tions. Study of real-time processing for camera image using stream processing on

FPGAs is also popular to fulfill the demands for fast and robust object tracking with

low energy consumption. Hence, implementation of the particle filter in stream pro-

cessing is a promising approach for effective object tracking systems.

On the other hand, the resampling operation is the bottleneck in real-time par-

ticle filter implementation [63, 64]. Difficulty of parallel resampling comes from it

needs information of all particles and thus computational dependency arises. To cope

with this problem, the FPGA optimized resampling (FO-resampling) [47] has been

proposed, where virtual particles are randomly generated around the real particle

to avoid the elimination of real particles with small weights. Although effectiveness

of FO-resampling method has been shown with mathematical models [47], attempts

to combine the FO-resampling with stream processing have not been addressed.

With the deep-pipelined stream-oriented image processing architecture, a real-

time throughput can be achieved at a relatively low clock frequency without requir-

ing any external memories. Such an approach has already shown and that is of

benefit for a variety of image applications in terms of performance and power con-

sumption [42, 49, 54, 65]. In this chapter, a stream-based architecture of a particle

49

filter is proposed and implemented based on FO-resampling method. In addition,

five kinds of FPGA implementation are compared with the different resource usages

and clock frequencies for the purpose of achieving compact hardware architecture.

The major contributions of this chapter include:

• A deep pipelined stream architecture of a particle filter with FO-resampling is

proposed.

• Tracking quality of a real-time object tracking system based on the proposed

architecture is evaluated and compared with a conventional multinomial re-

sampling approach.

• The performance and resource utilization of FPGA implementation of the

proposed architecture are evaluated.

• Comparative discussion on implementation alternatives with improved area

efficiency is presented in terms of the hardware amount and power consump-

tion.

The rest of the chapter is organized as follows. Section 5.2 outlines the algorithm

of particle filter. The implementation of the system in detail with three steps: pre-

diction, likelihood calculation and parallel resampling are described in Section 5.3.

Section 5.4 shows the evaluation results and discussion on the first implementation.

Section 5.5 discusses the improvement of the proposed architecture to fit the design

in a smaller FPGA. Finally, summary and the scope of the future work are described

in Section 5.6.

5.2 Particle Filter Algorithm

5.2.1 Particle Filter

Particle filter is a recursive filter that provides the estimation of non-linear and non-

Gaussian processes. Each particle has application-specific states such as coordinates

and velocities, and these states are randomly initialized at t = 0. Then, particle filter

performs three steps: (1) prediction, (2) likelihood calculation and (3) resampling,

for each time step as shown in Fig. 5.1.

5.2.1.1 Prediction

Prediction utilizes the previous observations to predict the state of a system in future

time instants for each particle. Moreover, the noise is added to the states to adjust

the irregular movement. For example, when each particle has a state like its position

50

 Prediction Likelihood calculation Resampling

Removed

Removed

Figure 5.1: Overview of a particle filter

with a 2D coordinate (x, y) and velocities (vx, vy), and a weight for uniform linear

motion is assumed for a tracking target, this process will be expressed as follows:

xt = xt−1 + vxt−1 + nx (5.1)

yt = yt−1 + vyt−1 + ny (5.2)

vxt = vxt−1 + nvx (5.3)

vyt = vyt−1 + nvy (5.4)

where xt and xt−1 represent the predicted state of object at time t and t−1. v denotes

the velocity based on the position of a particle for each time state. According to

the noises, nx and ny stand for the positioning noises and nvx and nvy are the

velocity noises. The initial state of position and velocities are randomly generated.

Moreover, the values of noises are also randomly generated.

Fig. 5.2 demonstrates an example of prediction with a robot sample. The blue

circles represent the particles and sample robot is surrounded by them. These

particles are structured as an x coordinate, a y coordinate and also x, y velocities:

four values to comprise a single guess. The prediction step is to have the particles

guess where the robot might be moving. Two velocities: vxt and vxt is used to move

the particles forward or backward and up or down.

5.2.1.2 Likelihood calculation

In likelihood calculation step, weight for the sampled particle is computed as:

w[m]
t = p(zt|x[m]

t) (5.5)

51

robot m
oving path

1st place

2nd placemoving direction of a particle

x1_1

y1_1

vx1_1

vy1_1

x2_1

y2_1

vx2_1

vy2_1

x3_1

y3_1

vx3_1

vy3_1

x4_1

y4_1

vx4_1

vy4_1

x1_2

y1_2

vx1_2

vy1_2

x3_2

y3_2

vx3_2

vy3_2

x4_2

y4_2

vx4_2

vy4_2

+vxt

+vyt

-vyt

-vxt

Figure 5.2: Schematic diagram of prediction step

where zt is current sensor measurement and xt shows the m-th particle (1 ≤ m ≤ M

and M is the total number of particles).

Fig. 5.2 presents the weights of particles based on the measurement model.

For example, the robot has a sensor such as GPS or proximity sensors to range

the distance of nearby obstacles. These sensors help the robot determine a good

posterior distribution as to where it is. In fact, the closer particle is to the correct

position, the more likely will be the set of measurements given that the position. A

particle with a larger weight will survive at a higher proportion than a particle with

a small weight. Each of these particles will have a specific weight as indicated by

the size of blue circles.

5.2.1.3 Resampling

Resampling reduces the variance of particles to be loss of diversity and sample

again from the particles until the total number of particles (M) are the same as the

previous stage. During resampling step, some particles are replicated in proportion

to their weights whereas some particles with small weights are eliminated to remedy

for weight degeneration.

Fig. 5.2 shows the schematic diagram of resampling step. In particular, resam-

pling means randomly drawing new particles from the old ones with replacement in

52

robot m
oving path

1st place

2nd place

Figure 5.3: Schematic diagram of likelihood calculation step

proportion to their weights. It is important to weight degeneration. Small weight

particles far from the sample robot are died out whereas big weight particles near the

target are replicated many times. Hence, it can save the computational resources.

In essence, resampling gives the better matched position of object, i.e. robot in this

example.

5.2.2 FPGA Optimized Resampling (FO-resampling)

The conventional multinomial resampling algorithm draws M particles accord-

ing to the probability defined by the weights of each particle, so that small weight

particles far from target are died out and big weight particles near the target are

replicated. This process needs information of all particles, making parallel FPGA

implementation difficult. However, FO-resampling method [47] can solve this prob-

lem using virtual particles.

Pseudocode for FO-resampling process describes in Algorithm 1 compared with

multinomial resampling process as shown in Algorithm 2. B denotes the number of

virtual particles. x̂i,n represents a virtual particle and is randomly generated around

a real particle xi. A random number r is generated from a uniform distribution over

[-1, 1]. σxi measures the spread of x̂i,n around xi. To the highest possible weight,

53

robot m
oving path

1st place

2nd place

Figure 5.4: Schematic diagram of resampling step

the value of σxi varies inversely with the initial weight.

The weight of a virtual particle ŵi,n is obtained from the likelihood calculation

of virtual particle with the observation zt at the location of object x̂i,n. If ŵi,n is

greater than wi, xi and wi will be replaced by x̂i,n and ŵi,n, respectively whereas xi

and wi will keep the values in the opposite case. After being compared the weights of

a real particle and the related B virtual particles, FO-resampling method replaces a

particle with the largest weight. Since M is same in a whole process and all particles

are not related to each other, parallel resampling architecture enables an efficient

chip area usage on FPGAs.

5.3 Implementation

5.3.1 Overview

Object tracking system with FO-resampling using deep-pipelined stream architec-

ture is shown in Fig. 5.5. The whole system is synchronized with the pixel clock

of the camera. Pixel data from the camera interface are streamed into the system

for 1 pixel per 1 clock cycle and the weights of streamed pixel data are calculated

54

Algorithm 1 FO-resampling process

1: for i = 1 to M do
2: for n = 1 to B do
3: x̂i,n = xi + σxi ∗ r
4: ŵi,n = p(zt|x̂i,n)
5: if ŵi,n > wi then
6: xi = x̂i,n

7: wi = ŵi,n

8: end if
9: end for

10: end for

Algorithm 2 Multinomial resampling process

1: for i = 1 to M do
2: if wi < r then
3: continue
4: else
5: xi set

6: wi =
wi∑
i wi

7: end if
8: end for

in a pipelined manner. Compared with the weights of real and virtual particles, the

maximum weight of particles are replaced as real particles. As shown in Fig. 5.6,

the system is managed by a state machine with four states, which are initialization,

prediction of real particles, setting of virtual particles, and weight comparison of

both particles (resampling). Focusing on the fact that a video frame consists of a

valid pixel region and a synchronization region, weight comparison is processed in

the valid pixel region in a pipelined manner, while prediction and setting of virtual

particles are processed in the synchronization region.

Fig. 5.7 presents an overview of particle filter system. Firstly, RGB color values

from camera are fed into a likelihood module, which calculates and outputs a stream

of weights as well as the corresponding coordinate (hw, vw). Then, the weights

of the likelihoods are compared with M numbers of real particles, each with B

numbers of virtual particles. After selecting the maximum weight of each particle,

the coordinates and velocities of the selected particles are sent to a weighted center

module, where the center of gravity of real particles calculated as an estimated

55

Figure 5.5: Overview of the proposed system in object tracking

position of the tracking target. In parallel with this weighted center calculation,

prediction of the next states of the real particles and generation of new virtual

particles are performed.

5.3.2 Weight Calculation

The likelihood module takes a stream of RGB pixels as an input, and outputs a

stream of weights of likelihood in a pipelined manner. While the calculation process

of likelihood may vary depending on tracking targets, a color-based object tracking

function is implemented as an example in this experiment. Since RGB representation

is not intuitive for color object detection, color space conversion to hue, saturation

and intensity (HSI) model is performed [66]. In order to mitigate computational

costs and the hardware amount, an integer-based RGB to hue conversion method [67]

was adopted. In this method, hue value is calculated as: Hence, the color space

conversion entails for real-time image processing. The hue-histogram algorithm for

detecting colored objects comprises three steps: (1) converting a RGB color image

to a hue image (2) creating a histogram over all image columns of pixels matching

the object color (3) finding the maximum position in the column histogram [67].

Although H is an angle of HSI (hue, saturation and intensity) model ranging from

0◦ to 360◦, each coordinate of RGB can vary only from 0 to 255. Thus, a value of H

from −1 to 252 are specified in this implementation. According to the comparison

56

Figure 5.6: State transition diagram of weight comparison step

of three colors in 1 pixel, H is equivalent to the maximum color given by Eq. 5.6.

The red color channel has been moved to 42 from 60 and the digital values 126 and

210 are equivalent to 180 and 300 degrees [66]. The difference between maximum

and minimum colors is defined as the delta which indicates the gray involvements

as shown in Eq. 5.7. The combination equal parts of maximum color (white) and

minimum color (black) make the gray color obtained. Similarly, if the three color

values are similar or identical, H is defined as NO HUE (invalid hues) or (−1) to

avoid the arbitrary hue values.

H =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

42 +

⌊
42(G − B)

delta

⌋
if R = max(R,G,B), delta >

max(R,G,B)

2

126 +

⌊
42(B − R)

delta

⌋
if G = max(R,G,B), delta >

max(R,G,B)

2

210 +

⌊
42(R − G)

delta

⌋
if B = max(R,G,B), delta >

max(R,G,B)

2

−1 otherwise

(5.6)

delta = max(R,G,B) − min(R,G,B) (5.7)

where R, G, B are 8-bit color intensities for red, green and blue, while H is a hue

value ranging from −1 to 252. Then, the difference value of hue (Hd) is calculated

as follows:

Hd = min(|H − Ht|, 253 − |H − Ht|) (5.8)

57

w
ei

gh
te

d_
ce

nt
er

r g b hr
gb

vr
gb

lik
el

ih
oo

d

w hw vw
xc

en
te

r

ym
ax

w
m

ax

yc
en

te
r

xm
ax

pr
ed

ic
tio

n

ra
nd

_g
en

er
at

or

ra
nd

_g
en

er
at

or

pa
rt

ic
le

_0

ne
xt

_v
p_

ge
ne

ra
to

r

ra
nd

_g
en

er
at

or

re
sa

m
pl

in
g

xm
ax

ym
ax

vx
m

ax
vy

m
ax

w
m

ax

xr
p

yr
p

vx
rp

vy
rp

re
al

_p
ar

tic
le

pa
rt

ic
le

_1

pa
rt

ic
le

_M
-1

in
it_

rp
_g

en
er

at
or

ra
nd

_g
en

er
at

or

ra
nd

_g
en

er
at

or

re
sa

m
pl

in
g_

an
d_

pr
ed

ic
tio

n

vi
rt

ua
l_

pa
rt

ic
le

_0 vy
vp

vx
vp

yv
p

xv
pvi

rt
ua

l_
pa

rt
ic

le
_1

vi
rt

ua
l_

pa
rt

ic
le

_B
-1

center of gravity
drawing module

camera

F
ig

u
re

5.
7:

O
ve

rv
ie

w
of

a
p
ar

ti
cl

e
fi
lt

er
m

od
u
le

58

where Ht shows the hue of the tracked object and was set to 40 for this experiment.

In the final step, the weight of the likelihood of the input pixel is calculated as:

w =

⎧
⎪⎪⎨

⎪⎪⎩

⌊
α exp {−Hd

2

2s2 }
⌋

if H ̸= −1, R ≥ 64,

0 otherwise

(5.9)

where α denotes a parameter related to the scale of weights and s represents a

parameter indicating the spread of weight distribution. In this implementation, α

and s were set to 1023 and 20, respectively. Since Hd is an 8-bit integer value, the

function in Eq. 5.9 can be simply implemented as a table in FPGAs.

5.3.3 Weight Comparison or Resampling

As shown in Fig. 5.8, a resampling module takes weights of likelihood (w) as an input

stream, as well as the corresponding coordinates (xw, yw). Each resampling module

includes one real particle and B virtual particles. The purpose of this module is

to find the particle which has the coordinate of the maximum weight in the frame.

This particle will become the next real particle in this resampling module.

Each particle compares its coordinate with the input coordinate every clock cycle

in parallel. If one of the particles matches and the input weight is larger than the

value of the wmax register, the register is updated by the input weight, so that the

wmax register stores the maximum weight after processing all the weights in the

frame. When the value of wmax is updated, xmax, ymax, vxmax, and vymax are also

updated by the states of the matched particle. Logically, the matched particle can

send its states to the registers by a bus. However, since wired-OR buses cannot be

implemented inside an FPGA chip, this mechanism was implemented as actual OR

gates and multiplexers.

Maximum likelihood calculation employs the choice of xmax, ymax and wmax from

the comparison results of a real particle and virtual particles in Fig. 5.8. According

to the hardware structure, one real particle is rounded by the predefined virtual

particles. For example, if the number of real particles (M = 100) and virtual

particles (B = 50) are chosen, one process includes one real particle and fifty virtual

particles for one hundred times in parallel. Accordingly, the likelihoods of stream

processing are compared to the respective coordinates of one real particle and 0 to

49 virtual particles. When the coordinates of likelihood stream and that of real or

virtual particle are same initially, the coordinates and weight become xmax, ymax

and wmax. Then, the same process performs as the previous one and the weight of

current coordinates are compared with the previous maximum weight.

59

w
m

ax

xm
ax

ym
ax

xv
p0

yv
p0

=

=

xv
p1

yv
p1

=

=

xv
pB

-1
yv

pB
-1

=
=

w Xw yw

w
m

ax

Xm
ax

ym
ax

vx
vp

0
vx

vp
1

vx
m

ax
vx

m
ax

vx
vp

B-
1

0

vy
m

ax
vy

m
ax

xr
p

yr
p

=

=vx
rp

vy
rp

vy
vp

B-
1

Co
or

di
na

te
 c

om
pa

ris
on

vy
vp

0
vy

vp
1

0
0

0

vi
rt

ua
lp

ar
tic

le
 0

vi
rt

ua
lp

ar
tic

le
 B

-1
vi

rt
ua

l p
ar

tic
le

 1
re

al
 p

ar
tic

le

vx
vp

B-
1

vy
vp

B-
1

vx
vp

1

vy
vp

1

vx
vp

0

vy
vp

0

vx
rp

vy
rp

W
ei

gh
t c

om
pa

ris
on

Up
da

te
 s

ta
ge

s
fo

r t
he

 n
ex

t r
ea

l p
ar

tic
le

F
ig

u
re

5.
8:

R
es

am
p
li
n
g

m
od

u
le

60

Figure 5.9: A captured image from video

After comparing the weights of one real particle and fifty virtual particles in

different positions, the maximum weight value with the related coordinates and

velocities of x and y are selected. Since the number of real particle is one hundred,

the maximum likelihood, related coordinates and velocities will be one hundred

values after the resampling process had finished.

5.3.4 Virtual Particle Arrangement

After selecting the real particles in the resampling modules, the next states of the real

particle are predicted according to Eq. 5.1 to Eq. 5.4. Then, new B virtual particles

are generated by adding a random number ranging from −σ to σ to the states of

the real particle, to avoid too big or too small dispersion of virtual particles around

one real particle. In this experiment, considering the ease of FPGA implementation

σ was defined as:

σ =

⌊
1023 − w

16

⌋
(5.10)

where the division by 16 can be simply implemented with a shift operation.

5.3.5 Center of Gravity Calculation

To the tracking of a moving model, the center of gravity calculation purposes for

estimation of the object position across frames. The center of gravity calculation is

given by:

61

Figure 5.10: Corresponding image of weight representation

Figure 5.11: Example frame of benchmark video

g(x, y) =

⎛

⎜⎜⎜⎜⎝

M∑

i=1

xiwi

M∑

i=1

wi

,

M∑

i=1

yiwi

M∑

i=1

wi

⎞

⎟⎟⎟⎟⎠
(5.11)

where xi, yi and wi represent x and y coordinates and weight of the i-th particles,

respectively. After the calculation, the center of gravity known as the intersection

point of two lines in lime-green color is drawn on the object for tracing the trajec-

tories of the object.

62

5.3.6 Random Number Generation

A linear feedback shift register (LFSR), which can generate two random numbers

for each clock cycle, was implemented. By adding x32 in LFSR, the first random

generator (rand1) generates the random bits in the range of 31 to 0 and the second

one (rand2) selects the numbers from the range 32 through 1. Bitwise XOR operators

provide the four feedback taps at 31, 21, 1, and 0-th bit. Thus, the characteristic

polynomial is

x31 + x21 + x1 + 1. (5.12)

2-bit Shift Register

rand1

rand2

Figure 5.12: Circuit diagram of LFSR

The 33-bit pseudo-random number generator is shown in Fig. 5.12. A two-bit

shift operation is performed every clock cycle. Random numbers generated by this

module are used for initialization of particles, prediction of next states of particles,

and arrangement of virtual particles.

5.4 Evaluation and Discussion

5.4.1 Preliminary Evaluation

At first, the required number of real and virtual particles are evaluated for the FO-

resampling method in software before implementing on an FPGA, using an object

tracking benchmark video [68] whose tracking target is a red soccer ball. The video-

captured image and a snapshot of weight representation are shown in Fig. 5.9 and

Fig. 5.10. An example of tracking results is also shown in Fig. 5.11.

The estimation accuracy was evaluated using four metrics: Tracker Detection

Rate (TDR), Average Tracking Error (ATE), Maximum Tracking Error (MTE) and

Root Mean Square Error (RMSE) given by Eq. 5.13, Eq. 5.14, Eq. 5.15 and Eq. 5.16.

TDR =
Ft

F
(5.13)

63

ATE =
1

F

F∑

n = 1

√
(xg − xn)2 + (yg − yn)2 (5.14)

MTE = max
(√

(xg − xn)2 + (yg − yn)2
)

(5.15)

RMSE =

√√√√ 1

F

F∑

n = 1

(xg − xn)2 + (yg − yn)2 (5.16)

where F and Ft denote the total number of frames and successfully tracked frames

in a video. The frame size for benchmark video is 320×240 and F is 602. A tracker

is initialized in the first frame of a sequence and tracks the object of interest up to

the end. The produced trajectory is then compared to ground truth using a number

of measures specified in the particular experiment

Table 5.1: Tracker Detection Rate of each implementation

TDR
No. of real particles: M

50 100 500 1000 2000

20 0.934 0.935 0.935 0.939 0.942

40 0.965 1.000 1.000 1.000 1.000

No. of virtual particles: B 50 1.000 1.000 1.000 1.000 1.000

60 1.000 1.000 1.000 1.000 1.000

80 1.000 1.000 1.000 1.000 1.000

The ground truth data indicating the correct coordinate of the target object,

which is distributed with the benchmark video, is given as the rectangular area for

each frame. If the target object is inside a rectangular area, Ft will increase. ATE

measures average discrepancy between centroid of ground truth bounding box and

that of tracking system. MTE specifies the maximum tracking error between the

center coordinate of each ground truth rectangular (xg, yg) and tracking coordinate

(xn, yn). When M is above 100, the tracker detecting rate and the accuracy errors are

not much different as shown in Table. 5.1, Table. 5.2 and Table. 5.3. The number

of real particles (M = 100) on the number of virtual particles (B = 50) is chosen

as the appropriate parameters in terms of the reasonable tracking accuracy and

64

Table 5.2: Average Tracking Error of each implementation

ATE
No. of real particles: M

50 100 500 1000 2000

20 0.033 0.029 0.027 0.026 0.025

40 0.023 0.018 0.017 0.016 0.016

No. of virtual particles: B 50 0.019 0.017 0.015 0.016 0.015

60 0.020 0.018 0.016 0.016 0.016

80 0.020 0.019 0.018 0.018 0.018

Table 5.3: Maximum Tracking Error of each implementation

MTE
No. of real particles: M

50 100 500 1000 2000

20 0.452 0.315 0.387 0.365 0.368

40 0.155 0.082 0.100 0.083 0.076

No. of virtual particles: B 50 0.106 0.054 0.048 0.048 0.045

60 0.061 0.056 0.048 0.047 0.048

80 0.085 0.063 0.055 0.053 0.052

Table 5.4: FPGA mapping result for the first design (X1 NORMAL)

Resources Available Resources X1 NORMAL

LUT 203,800 160,940(78.97%)

FF 407,600 177,229(43.48%)

BRAM 445 0(0.00%)

DSP48E 840 408(48.57%)

Max clock frequency (MHz) 28.00

Available clock cycles in one frame (clock cycles) 450,450

Throughput (FPS) 62.16

65

600500400

R
M

S
E

 f
or

 c
oo

rd
in

at
e

(p
ix

el
s)

Number of Frames

FO-resampling

multinomial resampling

3002001000

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Figure 5.13: RMSE comparison of FO-resampling and multinomial resampling

less amount of resource utilization. Fig. 5.14 illustrates the comparison of tracker

detection rate with five types of real particles. Fig. 5.15 and Fig. 5.16 demonstrate

the examples of average and maximum tracking errors based on the real and virtual

particles. The different color lines represent the five different groups of real particles

on the number of virtual particles.

Table. 5.5 shows the accuracy comparisons using FO-resampling (B = 50) and

multinomial resampling on 602 frames. Obviously, FO-resampling can track success-

fully in all frames with smaller errors. Fig. 5.13 shows how tracking error changes

along the frames with the two resampling methods. While the error with the FO-

resampling was decreased along frame goes, the error was sometimes increased with

the multinomial resampling, showing the effectiveness of the FO-resampling.

5.4.2 FPGA Mapping

The proposed system is implemented on a Kintex-7 XC7K325T FPGA using Xilinx

Vivado 2016.3. According to the results of the preliminary evaluation, M and B

were set to 100 and 50, respectively. The constraint for the clock frequency was set

to 27 MHz, which is the pixel clock of a Video Graphic Array (VGA: 640× 480 pix-

els) camera with the frame rate of more than 60 FPS. Table. 5.4 illustrates FPGA

resources for the first design, namely X1 NORMAL. As shown in the table, the

clock constraint was met with the maximum clock frequency. In terms of through-

puts, more than 60 FPS was shown for every design, demonstrating the realtime

66

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

T
ra

c
k
e

r
D

e
te

c
ti
o

n
 R

a
te

Number of Virtual Particles

Number of Real Particles
50

100
500

1000
2000

Figure 5.14: Tracker Detection Rate for real and virtual particles

 4

 5

 6

 7

 8

 9

 10

 11

 20 30 40 50 60 70 80

A
ve

ra
g

e
 T

ra
ck

in
g

 E
rr

o
r

Number of Virtual Particles

Number of Real Particles
50

100
500

1000
2000

Figure 5.15: Average Tracking Error for real and virtual particles

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 20 30 40 50 60 70 80

M
a

xi
m

u
m

 T
ra

ck
in

g
 E

rr
o

r

Number of Virtual Particles

Number of Real Particles
50

100
500

1000
2000

Figure 5.16: Maximum Tracking Error for real and virtual particles

67

Table 5.5: Accuracy comparison of FO-resampling and Multinomial Resampling

M Sampling method Ft F − Ft TDR ATE MTE RMSE

50
Multinomial 158 444 0.262 0.476 0.864 0.037

FO (B = 50) 602 0 1.000 0.019 0.106 0.001

100
Multinomial 256 346 0.425 0.388 0.910 0.022

FO (B = 50) 602 0 1.000 0.017 0.054 0.001

500
Multinomial 600 2 0.997 0.052 0.383 0.005

FO (B = 50) 602 0 1.000 0.015 0.048 0.001

1000
Multinomial 600 2 0.997 0.051 0.171 0.004

FO (B = 50) 602 0 1.000 0.016 0.048 0.001

2000
Multinomial 602 0 1.000 0.050 0.094 0.004

FO (B = 50) 602 0 1.000 0.015 0.045 0.001

performance for input video images.

When it comes to the latency in clock cycles, latencies for the likelihood cal-

culation (Llikelihood), resampling (Lresampling), prediction (Lprediction), virtual particle

generation (Lvirtual), and weighted center calculation (Lcenter) have to be considered.

As aforementioned, the prediction and virtual particle generation are performed in

parallel with the weighted center calculation. Thus, the total latency is given as:

Ltotal = Llikelihood + Lresampling + max(Lprediction + Lvirtual, Lcenter) (5.17)

and each latency in this implementation is given as:

Llikelihood = 3 (5.18)

Lresampling = 858 × 479 + 640 = 411, 622 (5.19)

Lprediction = 1 (5.20)

Lvirtual = B + 1 (5.21)

Lcenter = M + 36. (5.22)

68

By assigning Eq. 5.18 ∼ Eq. 5.22, M = 100, and B = 50 to Eq. 5.17, the following

equation descirbes the total latency of the proposed design:

Ltotal = 411, 625 + max(B + 2,M + 36) = 411, 761. (5.23)

On the other hand, as Fig. 5.6 shows, available clock cycles for one frame including

the synchronization region is

Lframe = 858 × 525 = 450, 450. (5.24)

Since Ltotal < Lframe, it has been shown that the implemented particle filter system

achieves an in-frame operation.

The proposed design fits in XC7K325T which is a mid-range Kintex-7 device

and achieves real-time performance in terms of both throughput and latency. At

the same time, the mapping results in Table 5.4 suggest there is a possibility of

design improvement for three reasons. Firstly, the resource utilization was not

well-balanced especially due to no BRAM utilization. If the balance of resource

utilization can be changed, the design may fit in a smaller chip. Secondly, the slack

of clock cycles can be taken up in synchronization region. If so, then more tasks can

be put into synchronization region to change resource balance. Finally, the required

clock frequency of 27 MHz is too slow for typical FPGA design. The FPGA actually

may operate much faster, by inserting registers in combinations logic paths. By in-

creasing clock frequency, the hardware amount can be reduced by reusing hardware

resources in a time-sharing manner. Section 5.5 discusses the improvement of the

proposed architecture to fit the design in a smaller FPGA.

5.5 Improvement of Resource and Time Manage-

ment

5.5.1 Design Alternatives

In this section, the impact of the resource and time management which is available

to improve area and speed on FPGA are mainly highlighted. The following four

additional design alternatives are implemented, aiming at reducing the hardware

amount.

5.5.1.1 X1 NORMAL SEP

The first attempt of improvement comes from the separate implementation of mod-

ules in X1 NORMAL. In likelihood module, three modules are separated with re-

69

source sharing manner to provide the compact design. The first module is used to

select the maximum value from two values. Then, the second module compares the

third value and maximum value from the first one. In this case, these modules are

used for the comparison of red, green and blue pixel values. The third module is

used to calculate the minimum distance of hue value given by Eq. (5.8).

0

X_out1
X_out

X_in

clk

set_vp

Figure 5.17: A feedback path in virtual particle module

Moreover, the asynchronous reset of particle module in X1 NORMAL is replaced

with a synchronous alternative to the gated clock using a data path in terms of area

optimizations. As shown in Fig. 5.17, set vp performs one-hot encoding to generate

the random pixel coordinates and velocities for virtual particles within the valid

pixel region. This design can reduce one-half of the DSP usage compared to the

original design.

5.5.1.2 X1 SYNC V

The improvement of X1 SYNC V focuses on the resampling module shown in Fig. 5.8.

The inefficiency comes from the (B + 1)-input OR gates, which are utilized to sent

the states of the matched particle to registers. Considering any BRAM resources

have not been used and there is a slack of the latency, the task mapping of the re-

sampling is modified. Instead of completing the whole resampling task in the valid

pixel region, the resampling task is divided into two sub-tasks: weight comparison

and state reading. While the weight comparison is performed in the same manner

with the first design, the velocity of the next real particle is sequentially searched

and read out in the synchronization region. In this way, large amounts of OR gates

can be eliminated as shown in Fig. 5.18. On the other hand, as Fig. 5.19 illustrates,

BRAM with a 29-bit width and 50 depth is used to store velocity of the particles.

In the weight comparison sub-task, the coordinate of the next real particle is found.

After that, using this coordinate as a key, the corresponding velocity is searched

on this BRAM. In addition, in order to reduce the logic amount for arithmetic, bit

70

widths for each particle data are optimized.

5.5.1.3 X5 LUT RAM

This design is based on X1 SYNC V, but operates at a 5 times higher clock fre-

quency, that is 135 MHz. Thus, a new pixel is given in this design every 5 clock

cycles. Comparisons with up to 5 different particles can be performed using the

same logic in a time sharing manner. As shown in Fig. 5.20, the states of particles

are stored in on-chip memory with a 190-bit width and 5 depth, since only one fifth

of the particles are accessed at the same time. This memory is implemented as

distributed RAM using LUTs.

5.5.1.4 X5 BRAM

This design is based on X5 LUT RAM. The difference is that the 5-depth table

for particle states is implemented as BRAM, not as distributed RAM unlike the

previous design.

5.5.2 Mapping Results

The above four designs are implemented on the Kintex-7 XC7K325T FPGA with 100

real particles and 50 virtual particles. Table. 5.6 summarizes the FPGA mapping

results. Compared to the results of the original X1 NORMAL design (Table. 5.4)

each new design reduces the utilization of LUTs and FFs while increasing BRAM

usage. Especially, as shown in Table. 5.6, the X5 LUT RAM design was successfully

implemented on a smaller FPGA chip (XC7K160T), demonstrating that resource

sharing with a high clock frequency leads to the compact architecture and the cost

down. Although X5 BRAM achieved the highest resource reduction rates in terms of

LUTs and FFs, it consumed approximately 80% of the BRAM offered by XC7K325T.

That is why this design cannot be fitted in the smaller chip.

The clock constraints were met for each new design, achieving the throughput of

above 60 FPS for VGA frames. The difference in the latency between X1 SYNC V

and X1 NORMAL only exits in the resampling:

Lresampling = 411, 622 + B (5.25)

since the state reading sub-task was added. Thus, the total latency becomes:

Ltotal = 411, 811 (5.26)

which is also smaller than Lframe given by Eq. 5.24.

71

m
ax

real particle

vp
0

y
0

vp

virtual particle 0

vp
1

x
vp

1

y

virtual particle 1

vp
B-

1
vp

B-
1

y
x =

virtual particle B-1

w yw x

yw x

w

x

y

x
rpy

rpx

m
ax

=

=

=

=

=

=

=

w

m
ax

m
ax

m
ax

m
ax

F
ig

u
re

5.
18

:
W

ei
gh

t
co

m
p
ar

is
on

m
od

u
le

of
X

1
S
Y

N
C

V

72

prediction next_vp_generator
rand_generator

xrp yrp vxrp vyrp

real_particle

vp_for_likelihood_comp_0
yvp0xvp0

vp_for_likelihood_comp_1

vp_for_likelihood_comp_49

likelihood_comp
xmax ymax wmax

velocity_update
vxmax vymax

resampling
particle_0

(xvp0,yvp0),(vxvp0,vyvp0)
(xvp1,yvp1),(vxvp1,vyvp1)

(xvp49 ,yvp49),(vxvp49,vyvp49)

0

1

49

yvpxvp vyvpvxvp

vp_for_velocity_update
BRAM

rand_generator

rand_generator

Figure 5.19: Overview of a particle filter module for X1 SYNC V

The total latency (Ltotal) of X1 NORMAL SEP is the sum of latencies for likeli-

hood calculation (Llikelihood), resampling (Lresampling), prediction (Lprediction), virtual

particle generation (Lvirtual) and weighted center calculation (Lcenter) as shown in

Eq. (5.27) ∼ Eq. (5.31).

Llikelihood = 5 (5.27)

Lresampling = (858 × 479 + 640) + B + 2 (5.28)

Lprediction + Lvirtual = 3 + (B + 5) (5.29)

Lcenter = M + 36 (5.30)

Ltotal = 5 + 411, 674 + max(3 + (50 + 5), 100 + 36)

= 411, 815
(5.31)

For X5 LUT RAM and X5 BRAM, the latencies were changed as follows.

Llikelihood = 7 (5.32)

Lresampling = (858 × 479 + 640) × 5 + B + 2 = 2, 058, 112 + B (5.33)

Lprediction = 4 (5.34)

Lvirtual = B + 5 (5.35)

73

prediction next_vp_generator

rand_generator

xrp yrp vxrp vyrp

real_particle

(xvp0 ,yvp0),(xvp1 ,yvp1),...,(xvp9 ,yvp9)

Distributed RAM or BRAM

(xvp10,yvp10),(xvp11,yvp11),...,(xvp19,yvp19)
(xvp20,yvp20),(xvp21,yvp21),...,(xvp29,yvp29)
(xvp30,yvp30),(xvp31,yvp31),...,(xvp39,yvp39)
(xvp40,yvp40),(xvp41,yvp41),...,(xvp49,yvp49)

0

1

2

3

4

yvp0xvp0 yvp1xvp1 yvp9xvp9

vp_for_likelihood_comp

likelihood_comp
xmax ymax wmax

velocity_update
vxmax vymax

resampling
particle_0

(xvp0,yvp0),(vxvp0,vyvp0)
(xvp1,yvp1),(vxvp1,vyvp1)

(xvp49 ,yvp49),(vxvp49,vyvp49)

0

1

49

yvpxvp vyvpvxvp

vp_for_velocity_update
BRAM

rand_generator

rand_generator

Figure 5.20: Overview of a particle filter module for X5 LUT RAM and X5 BRAM

Lcenter = M + 37. (5.36)

For M = 100 and B = 50, the total latency becomes:

Ltotal = 2, 058, 119 + B + max(B + 9, M + 37) = 2, 058, 306 (5.37)

which is smaller than Lframe × 5 = 2, 252, 250. Thus, it has been revealed that for

each design alternative, realtime performance was achieved in terms of not only

throughput but also latencies.

5.5.3 Power Consumption

Particle filter design can be fitted in a smaller FPGA chip, by introducing resource

time sharing with a higher clock frequency. Use of a smaller chip will also con-

tribute in reduction of power consumption, while increase in the clock frequency has

a negative effect for power reduction. In order to analyze and discuss the tradeoff,

power consumption of each design is estimated using Xilinx Vivado tool. Table. 5.7

shows the results. By comparing X5 LUT RAM on XC7K325T and the same de-

sign on XC7K160T, approximately 6% of total on-chip power reduction was shown.

However, the power consumption for X5 LUT RAM on XC7K160T was about 2.5

times higher than the designs synchronized with the camera clock. That is, the

increase in power consumption caused by the increase in the clock frequency cannot

be compensated by downsizing the chip. In summary, large designs with a slow

74

Table 5.6: FPGA mapping results for improved designs

Resources X1 NORMAL SEP X1 SYNC V
X5 LUT RAM X5 LUT RAM

X5 BRAM
(XC7K325T) (XC7K160T)

LUT 124,395(61.04%) 102,750(50.42%) 81,895(40.18%) 81,868(80.74%) 69,203(33.96%)

FF 204,494(50.17%) 156,119(38.30%) 106,646(26.16%) 106,646(52.59%) 68,646(16.84%)

BRAM 1.5(0.34%) 51(11.46%) 51(11.46%) 51(15.69%) 351(78.88%)

DSP48E 203(24.17%) 203(24.17%) 203(24.17%) 203(33.83%) 203(24.17%)

Max frequency (MHz) 27.81 33.70 139.38 141.18 141.25

Available clock cycles in
450,450 450,450 2,252,250 2,252,250 2,252,250

one frame (clock cycles)

Throughput (FPS) 61.74 74.81 61.88 62.68 62.72

Table 5.7: Power consumption comparison

X1 NORMAL X1 NORMAL SEP X1 SYNC V X5 LUT RAM X5 LUT RAM X5 BRAM

(XC7K325T) (XC7K160T)

Dynamic Power [W] 0.842 0.733 0.772 2.289 2.186 3.530

Static Power [W] 0.165 0.165 0.169 0.179 0.127 0.209

Total on-chip power [W] 1.008 0.898 0.941 2.469 2.314 3.740

clock frequency were more efficient than small designs with a fast clock frequency

in terms of power consumption.

5.6 Summary

This chapter proposed efficient FPGA implementation of particle filters with an

FO-resampling method. The software-based preliminary evaluation demonstrated

that the FO-resampling method can achieve better object tracking quality compared

to multinomial resampling by setting an appropriate number of real particles and

virtual particles. According to the tradeoff between accuracy and FPGA resources,

100 real particles and 50 virtual particles are chosen as an optimized result based on

the accuracy and performance comparison given by Table. 5.5. The implementation

experiment on a KC7K325T FPGA revealed that the proposed architecture achieved

realtime performance of higher than 60 FPS for VGA images without using any

external memory devices, by making best use of a stream processing approach in

75

0

X_out1
X_out

X_in

clk

set_vp

Async reset in

 virtual particle module

Sync alternatives
Eg.

weight center

calculation
likelihood

likelihood

(xvp0,yvp0),(vxvp0,vyvp0)
(xvp1,yvp1),(vxvp1,vyvp1)

(xvp49 ,yvp49),(vxvp49,vyvp49)

0

1

49

yvpxvp vyvpvxvp

vp_for_velocity_update
BRAM

(xvp0 ,yvp0),(xvp1 ,yvp1),...,(xvp9 ,yvp9)

Distributed RAM or BRAM

(xvp10,yvp10),(xvp11,yvp11),...,(xvp19,yvp19)
(xvp20,yvp20),(xvp21,yvp21),...,(xvp29,yvp29)
(xvp30,yvp30),(xvp31,yvp31),...,(xvp39,yvp39)
(xvp40,yvp40),(xvp41,yvp41),...,(xvp49,yvp49)

0

1

2

3

4

yvp0xvp0 yvp1xvp1 yvp9xvp9

vp_for_likelihood_comp

virtual_particle_0
yvpxvp

virtual_particle_1

virtual_particle_49

(xvp0,yvp0),(vxvp0,vyvp0)
(xvp1,yvp1),(vxvp1,vyvp1)

(xvp49 ,yvp49),(vxvp49,vyvp49)

0

1

49

yvpxvp vyvpvxvp

vp_for_velocity_update
BRAM

resampling

In synchronization region

In valid region

X1_NORMAL X1_NORMAL_SEP

X1_SYNC_V X5_LUT_RAM and X5_BRAM

resampling

X5_LUT_RAM: Distributed RAMX5_BRAM: BRAM

max_2

max_3

hue_diff

Figure 5.21: Design comparison

a valid pixel region while performing some sequential process in a synchronization

region. The accuracy and performance were evaluated using four metrics: tracker

detection rate, maximum tracking error, average tracking error and root mean square

error. Tracker detection rate in FO-resampling can successfully tracked all frames

whereas the multinomial resampling can only track 42.5% with the number of real

particles 100. The percentages of average error in two resampling methods based on

100 real particles and 50 virtual particles are FO-resampling approach (4.7%) and

multinomial resampling approach (95.3%).

Fig. 5.21 illustrates the design comparison of original design and improved de-

signs. X1 NORMAL design includes three main modules: likelihood, resampling

and prediction, and weight center calculation. In X1 NORMAL SEP design, three

modules are separated using resource sharing manner in likelihood module. These

three modules are (1) finding the maximum values from two values comparison, (2)

finding the maximum values from three values comparison by reusing the two values

comparison module, and (3) finding the difference of hue called color appearance

parameters. Moreover, the asynchronous reset of particle module in X1 NORMAL

is replaced with a synchronous alternative in terms of area optimization. Hence, this

76

design can reduce one-half of the DSP usage compared to the original design with

the minimum power consumption. The improvement of X1 SYNC V focuses on the

resampling module. Instead of implementing the whole resampling task in the valid

pixel region, the velocity of the next real particle is sequentially searched and read

out in the synchronization region. In this way, the large amounts of OR gates can

be eliminated. X1 SYNC V design achieved the maximum throughput 74.81 FPS.

X5 LUT RAM design is based on X1 SYNC V, but operates at 135 MHz com-

pared to 27 MHz in the original design. The memory in this design is implemented

as distributed RAM using LUTs. In addition, by introducing a higher clock fre-

quency than the pixel clock and by improving a balance of resource utilization,

this design can be fitted in a smaller XC7K160T FPGA. The difference between

X5 LUT RAM and X5 BRAM is that the 5-depth table for particle states is imple-

mented as BRAM, not as distributed RAM unlike the previous design. X5 BRAM

design utilized the minimum FFs and LUTs usage with the maximum BRAM usage.

In addition, it was also shown that the power consumption for a smaller design with

a 5 times clock frequency was increased by approximately 4.0 times, compared to a

design implemented on a larger chip synchronizing with a slow camera pixel clock.

Hence, the proposed system enhances the real-time object tracking system when it

comes to the low power, high performance and high accuracy.

77

Chapter 6

Conclusions

This dissertation deals with the design and implementation for real-time image pro-

cessing with random sampling. To achieve the high energy efficiency, cost effec-

tiveness and high performance of dedicated hardware, the proposed systems in this

dissertation are based on FPGA which owns parallel architectures to perform high

speed computing for general-purpose applications. This dissertation presents many

evaluation results with the aim of reducing the hardware costs and power consump-

tion. More specifically, the key contributions of this study are fast and low-power

FPGA implementation for real-time image processing.

Despite some progress in object fitting and tracking technology on FPGA, not

much is known about a deep-pipelined stream architecture of image processing.

Therefore, this dissertation focused on stream-oriented process to enhance the com-

putation performance and memory utilization. FPGA-based object fitting system

described in Chapter 4 utilized the deep-pipelined stream architecture to access one

pixel per one clock cycle intended to get the high throughput and low latency.

Four solver types are proposed in this study because single precision FP for

Cramer’s rule causes numeric overflow in multiplication steps and long integer ver-

sion is not appropriate for division step in Gauss-Jordan elimination method. Ac-

cording to the tradeoff analysis between the resource utilization and performance,

CRAMER with long integer arithmetics are selected for best approach because it

can reduce most hardware resources with acceptable estimation accuracy compared

to other arithmetic types.

On the other hand, optimizing the bit width of operands in long integer arith-

metic for Cramer’s modules reduced the resource utilization on FPGA. More specif-

ically, DSP usage reduced 1% for each new design compared to each original de-

sign. Moreover, used resources for FFs and LUTs are less than the original designs.

Throughput of circle estimation increases almost 19% of the original design. The

proposed system can apply for various geometric shapes including triangle, rect-

angle, circle, and so on. The three different models with various matrix sizes are

78

selected as examples of real-time object fitting system to easily evaluate the matrix

size and performance. For future work, the tradeoffs for other solver algorithms

will be analyzed. In addition, the estimation associated with hardware devices will

be performed for practical real-time applications such as eye pupil detection, traffic

sign detection, mobile robotics, and so on.

As mentioned in Chapter 5, deep-pipelined stream architecture makes best use

of on-chip memories with respect to achieving execution efficiency and the proposed

systems can operate above 60 FPS for 640×480-pixel images at a pixel clock camera

frequency of 27 MHz. Since technological developments of object tracking enhances

many computer vision applications, this study focused on the real-time object track-

ing of non-linear and non-Gaussian systems. Particle filter with stream processing

is an effective algorithm for this purpose. In accordance to the object tracking,

color-based real-time object tracking is one of the applications of particle filter. The

color-based particle filtering requires minimal computation time and is very well

suited for embedded vision systems.

In fact, traditional resampling method in particle filtering cannot work in parallel

processing because the current particle sets are related to the next particle sets.

Therefore, FO-resampling method was chosen to implement the fully parallel particle

filter architecture on FPGA for real-time object tracking. In order to compare

the performance and accuracy of object tracking with the impact of multinomial

resampling and FO-resampling, particle filter with both resampling methods are

performed by software in advance. The simulation is done using Intel(R) Xeon(R)

CPU E3-1240 v3 @ 3.40GHz and one frame execution time takes 0.00704 seconds.

However, X1 NORMAL design takes 411, 761 ns in hardware simulation. Hence,

FPGA-based design is about 17 times faster than the software version. On the

other hand, the design with higher clock frequency is 3.42 times faster than the

software simulation.

When it comes to Tracking Detection Rate, FO-resampling can successfully track

all frames. From the error comparison, FO-resampling gives more accurate results

than multinomial resampling for color-based object tracking process. Thus, the

evaluation result shows that FO-resampling is far superior to multinomial resam-

pling in terms of accuracy and performance. In hardware architecture, the tradeoff

between the accuracy and hardware resource usage becomes the most important

factor. While the optimal result requires the tradeoff analysis of the amount of

resources on FPGAs and required criteria, the number of real particles (M = 100)

and virtual particles (B = 50) is promised as a better solution for the stream-based

FPGA implementation using the fully parallel particle filter.

In summary, large designs with a slow clock frequency were more efficient than

smaller designs with a fast clock frequency in terms of power consumption. FPGA-

79

based real-time object tracking architecture in this study will be a benefit for endo-

scope motion estimation, video surveillance, robot localization, etc. The challenging

future work includes the evaluation of particle filters with a large number of particles

for non-rigid objects and to find the best tradeoff point between chip size and clock

frequency. Moreover, real-time object tracking with particle filter algorithm can as-

sist machine learning classifier for FPGA implementation. For example, Histograms

of Oriented Gradients (HOG) features are widely used as image features for machine

learning [69]. Real Adaptive Boosting (AdaBoost) and a linear Support Vector Ma-

chine (SVM) are typically utilized for HOG-based human detection. The particle

filter algorithm associated with the machine learning techniques on FPGA is ac-

tively addressed in a wide range of applications such as Advanced Driving Assistant

Systems (ADAS), surveillance system, robotics and so on.

The combination of both object fitting and object tracking systems is essential

for many real-world applications. For example, real-time eye tracking system can

improve the security, medical diagnostics, robot navigation, eye control system aim-

ing at people with physical disabilities to communicate with others, etc. Efficient

eye-tracking system on FPGA can be divided into four main parts. They are (1)

pre-processing part, (2) pupil contour detection part, (3) RANSAC part and (4)

particle filter part. The first part will include (1) image data fetching from camera

device as a pixel stream, (2) bayer to RGB conversion, (3) RGB to luminance con-

version, (4) removing cornel reflection and (5) box blur implementation. Although

most of the pre-processing can be straightforwardly implemented on stream-based

pipeline architecture, the reflection removal process is relatively complex. Hence,

the process will be split into two steps: the determination of envelop pixels and the

bilinear interpolation. As a result, dynamic control flows were mitigated and all the

pre-processing modules will be implemented on the streamed architecture.

The second part focuses on the extraction of feature points of a pupil contour.

Some feature detection algorithms for corner or interest points are Harris Corner

Detector, SUSAN corner detector, Shi-Tomasi corner detector, Laplacian of Gaus-

sian corner detector, Hessian corner detector, Features from Accelerated Segment

Test (FAST) corner detector, etc. From the real-time image processing point of

view, FAST algorithm is fast enough for feature detection [70]. The main functions

of FAST algorithm are (1) selecting a base point (Ps) in an image to distinguish

whether the pixel is an interest point or not, (2) selecting an appropriate threshold

value, and (3) choosing a circle of 16 pixels around the center of a detected corner

candidate [71]. In addition, starburst algorithm is designed to find feature points

from a base point for non-uniform target distributions. It returns a set of the nearest

points which have larger intensity derivative than a threshold on each ray. Moreover,

another extraction process will start from firstly extracted features towards the base

80

point to improve the robustness. Therefore, the starburst feature extraction process

can be divided into three parts: (1) calculation of intensity derivatives for all the

pixels with FAST corner detection, (2) calculation of distances and angles from the

center point, and (3) update of the feature point table which has 128 entries.

In RANSAC part, ellipse estimation is more suitable than circle estimation for

eye tracking system because the eye pupil area is not modeled by perfect circle

with the eye movements. In that case, CRAMER and GAUSS approaches have

own benefits and one of them will be chosen depending on the applications. In

particular, CRAMER approach coupled with long integer arithmetic brings benefits

for embedded and mobile applications such as robotics and unmanned aerial vehi-

cles, where compact circuit size and high energy are preferred. On the other hand,

GAUSS approach is far superior to CRAMER approach where precise accuracy is

more important than resource utilization and the number of DSP blocks is severely

restricted compared to other general resources. After selecting the best parame-

ters with RANSAC algorithms, the center point and estimated ellipse come out.

To localize the center of the eye, particle filter algorithm with FO-resampling will

estimate the object position across frames using the center of gravity calculation.

In this way, the combination method will develop the accuracy and performance of

real-time eye tracking system and overcome the constraint of bleary pupil on the

system. To summarize, the random sampling with stream-oriented image processing

architectures achieve low power and high performance designs.

81

Bibliography

[1] S. Pllana and F. Xhafa, Programming multi-core and many-core computing

systems, Wiley, Jan 2017.

[2] S. Brown and Z. Vranesic, Fundamentals of digital logic with verilog design,

3rd ed., McGraw-Hill Higher Education, Feb. 2013.

[3] Thomas L. Floyd, Digital fundamentals, 11st ed., Pearson, July 2014.

[4] C. Maxfield, The design warrior’s guide to FPGAs, Newnes Newton, 2004.

[5] https://www.blog.digilentinc.com.

[6] https://www.coursera.org/learn/intro-fpga-design-embedded-

systems.

[7] E. Stavinov, 100 power tips for FPGA designers, CreateSpace Paramount, 2011.

[8] Xilinx, “Xilinx 7 series FPGA libraries guide for schematic designs v14.1, user

guide ug799.”

[9] Xilinx, “7 series FPGAs clocking resources v1.13, user guide ug472.”

https://www.xilinx.com/support/documentation/user guides/

ug472 7Series Clocking.pdf.

[10] https://reference.digilentinc.com/ media/reference/programmable-

logic/pynq-z1/pynq-rm.pdf.

[11] https://www.sparkfun.com/datasheets/Components/General/COM-09622-

MAX7219-MAX7221.pdf.

[12] Xilinx, “Vivado design suite 7 series FPGA libraries guide v2012.2, user guide

ug953.” https://www.xilinx.com/support/documentation/sw manuals/

xilinx2012 2/ug953-vivado-7series-libraries.pdf.

[13] P. Chu, FPGA Prototyping By Verilog Examples: Xilinx Spartan-3 Version,

Wiley, 2011.

82

[14] Xilinx, “AXI reference guide v13.4, user guide ug761.” https://www.xilinx.

com/support/documentation/ip documentation/axi ref guide/v13 4/

ug761 axi reference guide.pdf.

[15] D.W. Hawkins, “Altera JTAG-to-Avalon-MM tutorial v1.0.” https:

//www.ovro.caltech.edu/∼dwh/correlator/pdf/altera jtag to avalon

mm tutorial.pdf.

[16] Xilinx, “7 series FPGAs PCB design guide v1.13, user guide ug483.”

https://www.xilinx.com/support/documentation/user guides/

ug483 7Series PCB.pdf.

[17] Xilinx, “LVDS source synchronous 7:1 serialization and deserializa-

tion using clock multiplication v1.1.1, user guide xapp585.” https:

//www.xilinx.com/support/documentation/application notes/xapp585-

lvds-source-synch-serdes-clock-multiplication.pdf.

[18] Xilinx, “7 series FPGAs selectio resources v1.9, user guide ug471.”

https://www.xilinx.com/support/documentation/user guides/

ug471 7Series SelectIO.pdf.

[19] Xilinx, “Implementing a TMDS video interface in the Spartan-6 FPGA v1.0,

user guide xapp495.” https://www.xilinx.com/support/documentation/

application notes/xapp495 S6TMDS Video Interface.pdf.

[20] D.D.W. Group, “Digital visual interface DVI revision 1.0.” http://www.cs.

unc.edu/∼stc/FAQs/Video/dvi spec-V1 0.pdf.

[21] Omnivision, “Advanced information preliminary datasheet v1.01.” https://

www.voti.nl/docs/OV7670.pdf.

[22] M.A. Fischler and R.C. Bolles, “Random sample consensus: a paradigm for

model fitting with applications to image analysis and automated cartography,”

Commun. ACM, vol.24, no.6, pp.381–395, June 1981.

[23] S. Martelli, R. Marzotto, A. Colombari, and V. Murino, “FPGA-based robust

ellipse estimation for circular road sign detection,” Proc. IEEE 6th IEEE Work-

shop on Embedded Computer Vision, pp.53–60, June 2010.

[24] W.J. MacLean, “An evaluation of the suitability of FPGAs for embedded vision

systems,” 2005 IEEE Computer Society Conf. on Computer Vision and Pattern

Recognition, pp.131–138, IEEE, 2005.

83

[25] R.J. Petersen and B.L. Hutchings, “An assesment of the suitability of FPGA-

based systems for use in digital signal processing,” 5th Int’l Workshop on Field-

Programmable Logic and Applications, pp.293–302, Springer, 1995.

[26] F. Dellaert and S. Tariq, “A multi-camera pose tracker for assisting the visu-

ally impaired,” 2005 IEEE Computer Society Conf. on Computer Vision and

Pattern Recognition, IEEE, 2005.

[27] D. Bekele, M. Teutsch, and T. Schuchert, “Evaluation of binary keypoint de-

scriptors,” 2013 IEEE Int’l Conf. on Image Processing, pp.3652–3656, IEEE,

2013.

[28] T.L. Chao and K.H. Wong, “An efficient FPGA implementation of the Har-

ris Corner feature detector,” 2015 14th IAPR Int’l Conf. on Machine Vision

Applications (MVA), pp.89–93, IEEE, 2015.

[29] J. Svab, T. Krajnik, J. Faigl, and L. Preucil, “FPGA based speeded up robust

features,” 2009 IEEE Int’l Conf. on Technologies for Practical Robot Applica-

tions, pp.35–41, 2009.

[30] D. Bouris, A. Nikitakis, and I. Papaefstathiou, “Fast and efficient FPGA-based

feature detection employing the SURF algorithm,” 2010 18th IEEE Annual Int’l

Symposium on Field-Programmable Custom Computing Machines (FCCM),

pp.3–10, IEEE, 2010.

[31] J. Zhao, S. Zhu, and X. Huang, “Real-time traffic sign detection using SURF

features on FPGA,” 2013 IEEE High Performance Extreme Computing Conf.

(HPEC), pp.1–6, IEEE, 2013.

[32] F. C. Huang, S. Y. Huang, J. W. Ker, and Y. C. Chen, “High-performance

SIFT hardware accelerator for real-time image feature extraction,” IEEE Trans.

Circuits Syst. Video Technol., vol.22, no.3, pp.340–351, 2012.

[33] J. Jiang, X. Li, and G. Zhang, “SIFT hardware implementation for real-time

image feature extraction,” IEEE Trans. Circuits Syst. Video Technol., vol.24,

no.7, pp.1209–1220, 2014.

[34] J. Vourvoulakis, J. Kalomiros, and J. Lygouras, “Fully pipelined FPGA-based

architecture for real-time SIFT extraction,” Microprocessors and Microsystems,

vol.40, pp.53–73, 2016.

[35] R. de Lima, J. Martinez-Carranza, A. Morales-Reyes, and R. Cumplido, “Accel-

erating the construction of BRIEF descriptors using an FPGA-based architec-

84

ture,” 2015 Int’l Conf. on ReConFigurable Computing and FPGAs (ReConFig),

pp.1–6, IEEE, 2015.

[36] R. Marzotto, P. Zoratti, D. Bagni, A. Colombari, and V. Murino, “A real-time

versatile roadway path extraction and tracking on an FPGA platform,” Com-

puter Vision and Image Understanding, vol.114, no.11, pp.1164–1179, 2010.

[37] M. Fularz, M. Kraft, A. Schmidt, and A. Kasiński, “FPGA implementation

of the robust essential matrix estimation with RANSAC and the 8-point and

the 5-point method,” in Facing the Multicore-Challenge II, pp.60–71, Springer,

2012.

[38] A. Fijany and F. Hosseini, “Image processing applications on a low power highly

parallel SIMD architecture,” 2011 IEEE Aerospace Conf., pp.1–12, IEEE, 2011.

[39] B. Tippetts, S. Fowers, K. Lillywhite, D.J. Lee, and J. Archibald, “FPGA

implementation of a feature detection and tracking algorithm for real-time ap-

plications,” Int’l Symposium on Visual Computing, pp.682–691, 2007.

[40] G. Zhou, J. Ye, W. Ren, T. Wang, and Z. Li, “On-board inertial-assisted visual

odometer on an embedded system,” 2014 IEEE Int’l Conf. on Robotics and

Automation (ICRA), pp.2602–2608, IEEE, 2014.

[41] G. Lentaris, I. Stamoulias, D. Soudris, and M. Lourakis, “HW/SW co-design

and FPGA acceleration of visual odometry algorithms for rover navigation on

Mars,” 2015.

[42] K. Dohi, Y. Hatanaka, K. Negi, Y. Shibata, and K. Oguri, “Deep-pipelined

FPGA implementation of ellipse estimation for eye tracking,” Proc. IEEE 22nd

Int’l Conf. Field Programmable Logic and Applications, pp.458–463, 2012.

[43] L.V.G. Katja Nummiaro, Esther Koller-Meier, “An adaptive color-based parti-

cle filter,” in Image and vision computing, pp.99–110, Elsevier, 2003.

[44] M.S. Arulampalam, S. Maskell, and N. Gordon, “A tutorial on particle filters

for online nonlinear/non-gaussian bayesian tracking,” in IEEE Transactions on

Signal Processing, pp.174–188, Feb 2002.

[45] S. Fleck and W. Strasser, “Adaptive probabilistic tracking embedded in a smart

camera,” 2005 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’05), pp.134–134, IEEE, 2005.

85

[46] L. Miao, J.J. Zhang, C. Chakrabarti, and A. Papandreou-Suppappola, “A new

parallel implementation for particle filters and its application to adaptive wave-

form design,” Signal Processing Systems (SIPS), 2010 IEEE Workshop on,

pp.19–24, IEEE, 2010.

[47] F. Schwiegelshohn, E. Ossovski, and M. Hübner, “A fully parallel particle filter

architecture for FPGAs,” in Applied Reconfigurable Computing, pp.91–102,

Springer, 2015.

[48] K. Dohi, Y. Yorita, Y. Shibata, and K. Oguri, “Pattern compression of FAST

corner detection for efficient hardware implementation,” Proc. IEEE 21st Int.

Conf. Field Programmable Logic and Applications, pp.478–481, Sept. 2011.

[49] K. Negi, K. Dohi, Y. Shibata, and K. Oguri, “Deep pipelined one-chip FPGA

implementation of a real-time image-based human detection algorithm,” Proc.

Int. Conf. Field-Programmable Technology, pp.1–8, Dec. 2011.

[50] Theint Theint Thu, Y. Hayashida, A. Tahara, Y. Shibata and K. Oguri, “Deep-

pipelined FPGA implementation of real-time object tracking using a particle fil-

ter,” International Journal of Networking and Computing, vol.7, no.2, pp.372–

386, July 2017.

[51] A. Tahara, Y. Hayashida, Theint Theint Thu, Y. Shibata, and K. Oguri,

“FPGA-based real-time object tracking using a particle filter with stream ar-

chitecture,” Proc. CANDAR, 2016 4th International Symposium on Computing

and Networking, pp.422–428, Sept. 2016.

[52] J.L.H. David A. Patterson, Computer architecture: a quantitative approach,

Morgan Kaufmann Publishers Inc., 2011.

[53] http://www.community.cadence.com.

[54] H. Matsubayashi, S. Nino, T. Aramaki, Y. Shibata, and K. Oguri, “Re-

trieving 3-D information with FPGA-based stream processing,” Proc. 16th

ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, pp.261–261, Feb.

2008.

[55] A. Tahara, Y. Hayashida, Theint Theint Thu, Y. Shibata, and K. Oguri, “Power

performance analysis of FPGA-based particle filtering for realtime object track-

ing,” Advances in Intelligent Systems and Computing, vol.611, pp.451–462, July

2017.

[56] Theint Theint Thu, J. Hamamura, R. Soejima, Y. Shibata and K. Oguri, “Com-

parative evaluation of FPGA implementation alternatives for real-time robust

86

ellipse estimation based on RANSAC algorithm,” IEICE Transactions on Fun-

damentals of Electronics, Communications and Computer Sciences, vol.E-100A,

no.7, pp.1409–1417, July 2017.

[57] Theint Theint Thu, Y. Shibata and K. Oguri, “FPGA implementation alterna-

tives of robust circle and ellipse estimation based on ransac algorithm,” Proc.

ICSE, 2015 6th International Conference on Science and Engineering, Yangon,

Myanmar, Paper No. McE-01, Dec. 2015.

[58] Theint Theint Thu, A. Tahara, Y. Hayashida, Y. Shibata and K. Oguri, “A

parallel resampling method of an FPGA-based particle filter for real-time ob-

ject tracking,” Proc. ICSE, 2016 7th International Conference on Science and

Engineering, Yangon, Myanmar, Paper No. McE-01, Dec. 2016.

[59] Theint Theint Thu, J. Hamamura, Y. Shibata and K. Oguri, “A cost effective

FPGA implementation of robust circle estimation based on RANSAC algo-

rithm,” COOLChips XVIII, 2015 IEEE Symposium on Low-Power and High-

Speed Chips, COOLXVIII-P23, Yokohama, Japan, April 2015.

[60] Theint Theint Thu, Y. Hayashida, A. Tahara, Y. Shibata and K. Oguri, “FPGA

implementation of a particle filter for stream image processing,” Proc. JSST,

2017 The 14th Joint Symposium of Jeju National University and Nagasaki

University on Science and Technology, Jeju Island, Korea, May 2017.

[61] http://www.cse.psu.edu.

[62] “Streaming SIMD Extensions - Inverse of 4x4 Matrix,” tech. rep., Intel Corp.,

1999.

[63] A. Athalye, M. Bolic, S. Hong and P. M. Djuric, “Architectures and mem-

ory schemes for sampling and resampling in particle filters,” Proc. IEEE 11th

Digital Signal Processing Workshop, pp.92–96, IEEE, Aug 2004.

[64] A. Athalye, M. Bolic, S. Hong and P. M. Djuric, “Generic hardware archi-

tectures for sampling and resampling in particle filters,” EURASIP Journal of

Applied Signal Processing, pp.2888–2902, 2005.

[65] K. Dohi, Y. Yorita, Y. Shibata, and K. Oguri, “Pattern compression of FAST

corner detection for efficient hardware implementation,” Proc. IEEE 21st Int.

Conf. Field Programmable Logic and Applications, pp.478–481, Sept. 2011.

[66] M. Hanumantharaju, G. Vishalakshi, S. Halvi, and S. Satish, “A novel

FPGA based reconfigurable architecture for image color space conversion,” in

87

Global Trends in Information Systems and Software Applications, pp.292–301,

Springer Berlin Heidelberg, 2012.

[67] T. Bräunl, Embedded robotics: mobile robot design and applications with em-

bedded systems, Springer Science & Business Media, 2008.

[68] “Bobot-bonn benchmark on tracking.” http://www.iai.uni-bonn.de/

∼kleind/tracking/index.html.

[69] M. Oishi, Y. Hayashida, R. Fujita, Y. Shibata, and K. Oguri, “A comparison of

machine learning classifiers for FPGA implementation of hog-based human de-

tection,” Applied Reconfigurable Computing - 12th International Symposium,

ARC 2016, Mangaratiba, RJ, Brazil, March 22-24, 2016, Proceedings, pp.91–

104, 2016.

[70] https://docs.opencv.org/3.0-beta/doc/py tutorials/py feature2d/

py fast/py fast.html.

[71] E. Rosten, R. Porter, and T. Drummond, “Faster and better: A machine learn-

ing approach to corner detection,” IEEE Trans. Pattern Analysis and Machine

Intelligence, vol.32, pp.105–119, 2010.

88

