Hydrogen Sensing Properties of an Anodized TiO₂ Film Equipped with a Pd-Pt Electrode Masaki Nakaoka¹, Takeo Hyodo¹, Yasuhiro Shimizu² and Makoto Egashira^{2,*} ¹Graduate School of Science and Technology, ²Faculty of Engineering Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan *egashira@nagasaki-u.ac.jp An anodized TiO_2 sensor equipped with a Pd-Pt electrode was subjected to heat treatment in air (air-treated) and additionally in N_2 (N_2 -treated), and then its responses to H_2 balanced with air or N_2 were investigated under dry and wet conditions. Among the conditions tested, the N_2 -treated sensor showed the largest H_2 response in dry N_2 atmosphere. But, H_2 response of the air-treated sensor increased with the existence of water vapor, while that of the N_2 -treated sensor decreased with the existence of water vapor. As a result, H_2 response of the air-treated sensor in wet air was quite comparable with that of the N_2 -treated sensor in wet N_2 . Thus, it was revealed that the existence of water vapor reduced the pretreatment-and measurement atmosphere-dependent H_2 response of the sensor. #### Introduction Our previous studies have revealed that a TiO_2 thin film having sub-micron pores could be fabricated by anodic oxidation of a Ti plate, and that the anodized TiO_2 thin film equipped with a Pd top electrode and the Ti plate bottom electrode exhibited high H_2 response in a wide range of H_2 concentration as a diode-type sensor under flowing both air and N_2 atmospheres (1-4). In addition, alloying of Pd with Pt was quite effective in improving the reproducibility of H_2 response and its long-term stability (5-7). In the present study, sensing properties of an anodized TiO_2 sensor equipped with a Pd-Pt alloy top electrode to H_2 balanced with air or N_2 were investigated under dry and wet atmospheres. #### **Experimental** #### Preparation and Characterization of an Anodized TiO₂ Thin Film A half part of a Ti plate $(5.0 \times 10.0 \times 0.5 \text{ mm}^3)$ was anodically oxidized in a 0.5 M H_2SO_4 aqueous solution at 20°C for 30 min at a current density of 50 mA cm⁻². Microstructure of the anodized film was observed by scanning electron microscopy (SEM; JEOL, JSM-7500F). # Fabrication and Measurement of a Pd-Pt/TiO₂ Sensor Figure 1 shows schematic drawing of a diode-type sensor fabricated using the anodized TiO_2 thin film and a Pd-Pt (Pd : Pt = 36 : 64 (wt%)) alloy top electrode (Pd-Pt/TiO₂ sensor). The Pd-Pt alloy electrode $(3.0 \times 3.0 \text{ mm}^2)$ was fabricated on both the TiO₂ thin film and the Ti plate by radio-frequency magnetron sputtering (Shimadzu, HSR-552S, output power: 300 W(Pd) - 200 W(Pt), sputtering time: 7 min) and the electrical contact to Au lead wires was achieved by application of a Pt paste and then was ensured by subsequent firing at 600°C for 1 h in dry air (air-treated sensor). Thus, the actual electrode configuration was the Pd-Pt/TiO₂/Ti plate. A dc voltage of 1 or 100 mV was applied to the Pd-Pt/TiO₂ sensor under forward bias condition (Pd-Pt(+)-TiO₂-Ti(-)), and the H₂ sensing properties were measured at 250°C to 50~8000 ppm H₂ balanced with air or N₂ under dry and wet conditions (absolute humidity (AH) range: 0 ~ 30.4 g m⁻³). The H₂ response properties of the sensor subjected to the additional treatment in dry N₂ at 600°C for 1 h (N₂-treated sensor) were also measured. For easy comparison, air- and N₂-treatments are expressed as T_{air} and T_{N2}, respectively, and measurements in air and in N₂ atmosphere are indicated as M_{air} and M_{N2}, respectively. Current (*I*)-voltage (*V*) characteristics of the sensor were measured in a range of -1~1 V. Fig. 1 Schematic drawing of a Pd-Pt/TiO₂ sensor. #### **Results and Discussion** # Microstructure of an Anodized TiO₂ Thin Film Figure 2 shows SEM photographs of the surfaces of a Ti plate, an anodized TiO_2 thin film and the anodized TiO_2 thin film coated with a Pd-Pt alloy electrode. Formation of submicron-sized pores was observed at the surface after the anodic oxidation, as shown in Fig. 2(b). The pore size decreased obviously after the sputtering of the Pd-Pt alloy electrode, as shown in Fig. 2(c). Fig. 2 SEM photographs of the surfaces of (a) a Ti plate, (b) an anodized TiO_2 thin film and (c) the anodized TiO_2 thin film coated with a Pd-Pt alloy electrode. #### I-V Characteristics of a Pd-Pt/TiO₂ Sensor Figure 3 shows I-V curves of the Pd-Pt/TiO₂ sensor in 8000 ppm H₂ balanced with air and N₂ at 250°C. A nonlinear *I-V* curve, which is typical for a diode-type sensor, was observed for the air-treated sensor in dry air, but it changed to an almost ohmic I-V curve in wet air, i.e. current values increased with the existence of water under the forward bias conditions, as shown in Fig. 3(a). On the other hand, the I-V curve for the N₂-treated sensor in dry N₂ showed better linearity than that in dry air, and little change in current was induced by the existence of water in N2, as shown in Fig. 3(b). It is reasonable to consider that the surface of the Pd-Pt electrode is partially covered with chemisorbed oxygen or partially oxidized in the case of the air-treated sensor. During the H₂ response measurement in dry air (dry environment under the T_{air}-M_{air} conditions), it is anticipated that chemisorbed oxygen cannot be consumed completely by the reaction with H₂ (a small but a certain coverage of chemisorbed oxygen is maintained), but almost no oxygen chemisorption may be easily achieved under the H₂ response measurement in dry N_2 (dry environment under the T_{N_2} - M_{N_2} conditions). Thus, it is considered that the chemisorbed oxygen on the electrode contributes to the formation of the Schottky barrier at the interface between the Pd-Pt electrode and the anodized TiO2 thin film, since the existence of chemisorbed oxygen on the electrode further promotes electron extraction from the anodized TiO₂ thin film than the level expected from the difference between the work function of the electrode and the electron affinity of the anodized TiO₂ thin film. In addition, the results shown in Fig. 3 confirm that the existence of water vapor under the T_{air} - M_{air} conditions weakens the above role of chemisorbed oxygen. Fig. 3 *I-V* characteristics of a Pd-Pt/TiO₂ sensor in 8000 ppm H_2 balanced with (a) air or (b) N_2 at 250°C. The sensor was pretreated at 600°C for 1 h in (a) dry air and (b) dry N_2 . AH: absolute humidity # H₂ Response Properties of a Pd-Pt/TiO₂ Sensor Figure 4 shows response transients of the Pd-Pt/TiO₂ sensor to 8000 ppm H_2 at 250°C under a forward bias voltage of 1 mV. The air-treated sensor showed very small H_2 response in dry air, as shown in Fig. 4(a) and the N_2 -treated sensor showed the largest H_2 response in dry N_2 among the conditions tested, as shown in Fig. 4(b). The H_2 response of the air-treated sensor was increased by the existence of water vapor. In contrast, the H_2 response of the N_2 -treated sensor was decreased by the existence of water vapor in this case. Fig. 4 Response transients of a Pd-Pt/TiO₂ sensor to 8000 ppm H_2 balanced with (a) air or (b) N_2 at 250°C. The sensor was pretreated at 600°C for 1 h in (a) dry air and (b) dry N_2 (applied voltage: 1 mV). AH: absolute humidity Fig. 5 Variations in (a) sensor current and (b) response and recovery times of a Pd-Pt/TiO₂ sensor in 8000 ppm H₂ operated at 250°C under a forward bias voltage of 1 mV with absolute humidity. Figure 5(a) depicts the variations in H_2 response of the sensor with absolute humidity in the measurement atmosphere. The magnitude of the H_2 response of the air-treated sensor in wet air was quite comparable to that of the N_2 -treated sensor in wet N_2 (a response current range of $3.0{\sim}4.5{\times}10^{-4}$ A), and it showed little absolute humidity dependence. Thus, it was revealed that the existence of water vapor reduced the pretreatment- and measurement atmosphere-dependent H_2 response of the sensor. Figure 5(b) shows the variations in response and recovery times of the sensor with absolute humidity in the measurement atmosphere. In dry atmosphere, a longer response time was observed under the T_{air} - M_{air} conditions, in comparison with that under the T_{N_2} - M_{N_2} conditions. This is because the response time under the T_{air} - M_{air} conditions contains the time necessary to remove chemisorbed oxygen to a certain level before the dissociative adsorption of H_2 and subsequent dissolution of H atoms into the electrode which is the main sensing mechanism of this type sensor. On the other hand, the T_{air} - M_{air} conditions offered a shorter recovery time than the T_{N_2} - M_{N_2} conditions, implying that the gaseous oxygen accelerates release of H atoms from the electrode. The response time became longer with the existence of water vapor on the whole under both the T_{air} - M_{air} and T_{N_2} - M_{N_2} conditions. Thus, it is obvious that water vapor and/or chemisorbed water molecules on the electrode interferes the dissociative adsorption of H_2 and subsequent dissolution of H atoms into the electrode from the view point of response time. However, the recovery time remained almost unchanged with the existence of water vapor under both the T_{air} - M_{air} and T_{N_2} - M_{N_2} conditions. # H₂ Concentration Dependence of Response of a Pd-Pt/TiO₂ Sensor The response transients of the Pd-Pt/TiO₂ sensor to $50\sim8000$ ppm H₂ balanced with dry air and dry N₂ under a forward bias voltage of 100 mV are shown in Fig. 6(a). The sensor current decreased drastically with decreasing H₂ concentration under the T_{air} -M_{air} conditions. And then the sensor current in $50\sim500$ ppm H₂ became extremely small. In contrast, much larger responses to $50\sim8000$ ppm H₂ were observed under the T_{N2} -M_{N2} conditions than the T_{air} -M_{air} conditions, especially in the H₂ concentration range (C_{H2}) less than 500 ppm. In addition, the sensor current in H₂ is directly proportional to the H₂ concentration under the T_{nir} -M_{air} conditions, while it is proportional to the logarithm of H₂ concentration under the T_{N2} -M_{N2} conditions, as shown in Fig. 6(b). From these results, it was confirmed that oxygen in the measurment atmosphere lowered the H₂ response, especially in the low concentration range less than 500 ppm. Fig. 6 (a) Response transients to $50\sim8000$ ppm H_2 and (b, c) variations in sensor current of a Pd-Pt/TiO₂ sensor to $50\sim8000$ ppm H_2 (C_{H_2}) in (i) dry air and (ii) dry N_2 at 250° C (applied voltage: 100 mV). Similar measurements were also conducted with the Pd-Pt/TiO₂ sensor to 50~8000 ppm H₂ in wet atmosphere (AH: 17.3 g m⁻³), as shown in Fig. 7(a). The sensor current decreased drastically with decreasing H₂ concentration in wet atmosphere under both the T_{air} - M_{air} and T_{N_2} - M_{N_2} conditions. Especially, the H_2 response in the H_2 concentration range less than 500 ppm became very small. From the comparison between Figs. 6 and 7, we could confirm the effects of water vapor on the H₂ response explained by referring to the results shown in Figs. 5(a) and 5(b), i.e. water vapor enhances the H₂ response under the T_{air} - M_{air} conditions, but reduce the H_2 response under the T_{N_2} - M_{N_2} conditions, over the whole H₂ concentration range studied. In addition, it was found that the sensor current in wet H₂ atmosphere was well proportional to the logarithm of H₂ concentration under the T_{air} - M_{air} conditions (1000~8000 ppm) and the T_{N_2} - M_{N_2} conditions (500~8000 ppm), as shown in Fig. 7(b). This behavior is similar to that observed under the dry T_{N2} - M_{N_2} conditions shown in Fig. 6(c) in all the H_2 concentration range, but the slope of the current in H₂ under the wet T_{air}-M_{air} conditions is apparently smaller than that under the T_{N2}-M_{N2} conditions in the H₂ concentration range higher than 1000 ppm. Under both T_{air} - M_{air} and T_{N2} - M_{N2} conditions the sensor showed very small H_2 responses in the H_2 concentration range less than 500 ppm H₂. Poor linearities were observed between the sensor current and the H_2 concentration under both the T_{air} - M_{air} and T_{N_2} - M_{N_2} conditions, as shown in Fig. 7(c). Thus, water vapor may induce a similar effect to that of oxygen from a view point of H₂ sensing mechanism, more precisely the H₂ concentration dependence of response, though the details are not clarified yet. Fig. 7 (a) Response transients and (b~c) variations in sensor current of a Pd-Pt/TiO₂ sensor to $50\sim8000$ ppm H₂ (C_{H2}) in (i) wet air and (ii) wet N₂ (AH: 17.3 g m⁻³) at 250° C (applied voltage: 100 mV). #### **Conclusions** H_2 sensing properties of an anodized TiO_2 sensor equipped with a Pd-Pt alloy top electrode were investigated in air and N_2 under dry and wet conditions. It was revealed that the existence of water vapor reduced the influence of pretreatment- and measurement atmosphere-dependent H_2 sensing properties of the anodized Pd-Pt/TiO₂ sensor. It is also suggested that the H_2 sensing mechanism is affected by oxygen as well as water vapor. ## Acknowledgments The present work was partly supported by Grant-in-Aid for Scientific Research (B) (No. 18360333) from Japan Society for the Promotion of Science. ## References - 1) Y. Shimizu, N. Kuwano, T. Hyodo and M. Egashira, Sens. Actuators B, 83, 195 (2002). - 2) T. Iwanaga, T. Hyodo, Y. Shimizu and M. Egashira, Sens. Actuators B, 93, 519 (2003). - 3) T. Hyodo, T. Iwanaga, Y. Shimizu and M. Egashira, *ITE Lett.*, **4**, 594 (2003). - 4) H. Miyazaki, T. Hyodo, Y. Shimizu and M. Egashira, *Sens. Actuators B*, **108**, 467 (2005). - 5) K. Sakamoto, M. Matsuura, T. Hyodo, Y. Shimizu and M. Egashira, *Chemical Sensors*, **22**, 114 (2006). - 6) T. Hyodo, K. Sakamoto, Y. Shimizu and M. Egashira, *Chemical Sensors*, **23**, 91 (2007). - 7) Y. Shimizu, K. Sakamoto, M. Nakaoka, T. Hyodo and M. Egashira, Adv. Mater. Res., 47-50, 1510 (2008).