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We began our investigation by trying benzoylation of 
ethyl DL-3-hydroxybutanoate (4) as a model compound 
to see whether it could be recognized by chiral cop-
per(II) complex or not. We found out the following, in 
the absence of copper(II) triflate and (R,R)-Ph-BOX the 
reaction of 4 with BzCl did not almost proceed, while in 
the presence of the catalysts, benzoylated product 5 was 
obtained in 19% yield based on 4. In contrast, DL-3-
hydroxy-N-phenylbutanamide (6a) was benzoylated 
more efficiently in the presence of Cu(II)−(R,R)-Ph-
BOX to afford benzoylated product 7a in 41% yield 
(Scheme 2). These results imply that 6a was efficiently 
recognized by Cu(II)−(R,R)-Ph-BOX complex.  

Abstract: Kinetic resolution of 3-hydroxyalkanamides with good 
to high selectivities was achieved by benzoylation using cop-
per(II) triflate and (R,R)-Ph-BOX as a catalyst,  which also medi-
ated enantioselective tosylation of 2,2-
bis(hydroxymethy)alkanamides with high efficiency. 
Key words: Kinetic resolution, 3-Hydroxyalkanamides, Acyla-
tions, Chiral copper complex, Molecular recognition 

Optically active 3-hydroxyalkanoic acid derivatives are 
important precursors for preparations of various bio-
logically active compounds.1 A variety of enzymatic 
kinetic resolution methods has been developed for 
preparation of optically pure 3-hydroxyalkanoic acid 
derivatives.2 To the best of our knowledge, non-
enzymatic method has been little known to date.3 Re-
cently, we have reported an efficient method for kinetic 
resolution of 1,2-diols 1. The method is based on recog-
nition of 1 by copper ion associated with chiral ligand 
(R,R)-Ph-BOX4 to afford the activated intermediates 2 
followed by benzoylation (Scheme 1).5 
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Scheme 1 Asymmetric benzoylation of 1,2-diols 1 based on the 
recognition by Cu(II)−(R,R)-Ph-BOX 
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Scheme 2 Benzoylation of ester 4 and amide 6a in the absence or 
presence of Cu(OTf)2 and (R,R)-Ph-BOX 

We report herein non-enzymatic kinetic resolution of 3-
hydroxyalkanamides by benzoylation with 
Cu(II)−(R,R)-Ph-BOX catalyst affording optically ac-
tive 3-hydroxyalkanamide derivatives in good to high 
yields and enantioselectivities. 

Next, we tried competitive reaction between 6a and 2,4- 
pentanediol (8) (syn:anti≈50:50) with or without 
Cu(II)−(R,R)-Ph-BOX (Scheme 3). In the presence of 
Cu(II)−(R,R)-Ph-BOX or Cu(II)−racemic-Ph-BOX 7a 
was exclusively formed, whereas in the absence of 
Cu(II)−(R,R)-Ph-BOX only monobenzoylated  diol 9 
(syn:anti≈63:37) was generated. From these results, we 
deduced that 6a is preferentially recognized over 8 by 
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the copper catalyst.6 Acceleration for benzoylaiton of 6a 
was also observed in the presence of Cu(OTf)2 without 

(R,R)- (or racemic-) Ph-BOX. 
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Scheme 3 Competitive reaction between 6a and 8 by benzoylation in the absence or presence of Cu(OTf)2 and (R,R)- (or racemic-) Ph-BOX

In our quest to get excellent reaction conditions for 
kinetic resolution of DL-6a, we investigated the effect of 
bases and solvents on benzoylation.7 These results are 
summarized in Table 1. They show a dependence of 
yield and % ee of the product 7a as well as the reaction 
time on the solvents and bases used. Use of AcOEt as a 
solvent and K2CO3 as a base gave (S)-7a8 in 41% yield 
and a high enantioselectivity (85% ee) with a selectivity 
s value10 of 27 for 2h (Entry 1). THF and 1,4-dioxane 

gave comparable results to AcOEt (Entries 2 and 3), 
while CH2Cl2 and Et2O were less efficient (Entries 4 
and 5). Moreover, use of alcohols such as iPrOH or 
EtOH gave (S)-7a in high enantioselectivity (Entries 6 
and 7). K2CO3 was the most effective base (Entry 1) 
among the tested bases (Entries 8-11). Use of 0.05 
equiv of Cu(OTf)2 and (R,R)-Ph-BOX led to slightly 
inferior result compared to using 0.1 equiv of chiral 
Cu(II) catalyst (Entry 12). 

Table 1  Kinetic Resolution of DL-3-hydroxy-N-phenylbutanamide (DL-6a)a 

(R,R)-Ph-BOX +
N
H

OOBz
Ph

N
H

OOH
Ph

(R)-6a(S)-7a

N
H

OOH
Ph

DL-6a

Cu(OTf)2

BzCl (0.5 equiv) 
base (1.0 equiv)
solvent, rt

Entry Solvent Base Time (h) Product (S)-7a 
Yield (%)          eeb (%) 

Recovered (R)-6a 
Yield (%)         eeb (%) 

Selectivity 
s 

1 AcOEt K2CO3  2 41                    85 52                    74 27 
2 THF K2CO3  2 45                    83 55                    64 21 
3 1,4-dioxane K2CO3 12 44                    85 56                    52 21 
4 CH2Cl2 K2CO3 12 38                    74 62                    45 10 
5 Et2O K2CO3  2 40                    75 60                    48 11 
6 iPrOH K2CO3 12 37                    78 63                    47 13 
7 EtOH K2CO3 24 18                    88 82                    27 20 
8 AcOEt Li2CO3 24 26                    68 74                    28 7 
9 AcOEt Na2CO3 24 45                    82 46                    80 25 
10 AcOEt NaHCO3 24 48                    70 52                    64 11 
11 AcOEt DIPEA 24 30                    73 70                    36 9 

 12c AcOEt K2CO3  2 37                    85 63                    56 22 
a DL-6a (0.5 mmol), Cu(OTf)2 (0.05 mmol), (R,R)-Ph-BOX (0.05 mmol), BzCl (0.25 mmol), base (0.5 mmol) in a solvent (2.0 mL) at rt. 
b Determined by HPLC. 
c DL-6a (0.5 mmol), Cu(OTf)2 (0.025 mmol), (R,R)-Ph-BOX (0.025 mmol), BzCl (0.25 mmol), K2CO3 (0.5 mmol) in AcOEt (2.0 mL) at rt. 

Utilizing the conditions optimized in Table 1, we 
screened the effect of amide N-substituents shown in 
Table 2. The s value of N-4-chlorophenyl amide 6b was 
slightly lower than that of 6a (Entry 1), while N-4-
methylphenyl amide 6c gave high s value of 34 (Entry 

2). Benzoylation of N-3,5-dimethylphenyl amide  6d 
and the corresponding hexafluorinated amide 6e re-
quired longer reaction time, and the s values were mod-
erate for 6d and poor for 6e (Entries 3 and 4). N-2-
Methylphenyl amide 6f was smoothly asymmetrically 
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benzoylated to afford 7f with 89% ee. N-Benzyl amide 
6g was inferior to N-phenyl amide 6a (Entry 6). N,N-

Disubstituted amides 6h, 6i and 6j also gave slightly 
lower s values compared to that of 6a (Entries 7-9). 

Table 2  Kinetic resolution of DL-3-hydroxybutanamide derivatives (DL-6b-j)a 

K2CO3 (1.0 equiv), AcOEt, rt

(R,R)-Ph-BOX  (0.1 equiv)
+

N

OOBz

R1

N

OOH

R1

(R)-6b-j(S)-7b-j

N

OOH

R1

DL-6b-j R2 R2 R2

Cu(OTf)2  (0.1 equiv)

BzCl (0.5 equiv)

 
Entry Substrate R1 R2 Time (h) Product           (S)-7b-jb 

            Yield (%)       eec (%) 
Recovered (R)-6b-j 

    Yield (%)      eec (%) 
Selectivity 

s 
1 6b 4-ClC6H4 H   2 7b             46                79 54              66 17 
2 6c 4-MeC6H4 H   3 7c             44                88 56               73 34 
3 6d 3,5-diMeC6H3 H 24 7d             47                78 53               65 16 
4 6e 3,5-diCF3C6H3 H 24 7e             30                57  70               27  5 
5 6f 2-MeC6H4 H 1.5 7f              37                89 63               56 30 
6 6g Bn H   3 7g             48                78 47               65 16 
7 6h Ph Me 12 7h             37                84 53               60 21 
8 6i Me Me   3 7i              46                76 7               31 10 
9 6j −(CH2)2-O-(CH2)2− 24 7j              39                82 23               57 18 

a DL-6b-j (0.5 mmol), Cu(OTf)2 (0.05 mmol), (R,R)-Ph-BOX (0.05 mmol), BzCl (0.25 mmol), K2CO3 (0.5 mmol) in AcOEt (2.0 mL) at rt. 
b Absolute stereoconfigurations of 7b-j were deduced on the basis of that of (S)-7a. 
c Determined by HPLC. 

Table 3 summarizes kinetic resolution of various 3-
hydroxyalkanamides 6ap-aw by benzoylation under the 
optimized reaction condition. Compounds 6ap substi-
tuted with Et and 6aq with nPr group were asymmetri-
cally benzoylated to afford corresponding optically 
active (S)-7ap11 and (S)-7aq11 in good yield and moder-
ate enantioselectivity, respectively (Entries 1 and 2). 
Although compounds 6ar and 6as substituted with iPr 
and iBu were kinetically resolved with moderate enan-

tioselectivity, the yield was low (Entries 3 and 4). Ben-
zoylation of cyclohexylated compound 6at did not pro-
ceed (Entry 5), while phenylated 6au was benzoylated 
to afford (R)-7au12 in moderate yield and good enanti-
oselectivity (Entry 6). Straight carbon-chained com-
pounds 6av terminally fuctionalized with Br atom and 
6aw with N-Boc protected amino group gave good s 
value of 16 and 18, respectively (Entries 7 and 8).  

Table 3 Kinetic resolution of various DL-3-hydroxyalkanamides (DL-6ap-aw)a 

+
R3 N

H

OOBz

Ph
R3 N

H

OOH

Ph

Recovered 6ap-aw7ap-aw

R3 N
H

OOH

Ph

DL-6ap-aw K2CO3 (1.0 equiv), AcOEt, rt

(R,R)-Ph-BOX  (0.1 equiv)
Cu(OTf)2  (0.1 equiv)

BzCl (0.5 equiv)

 
Entry Substrate R3 Time (h) Product       7ap-aw 

                Yield (%)      eeb (%)
Recovered       6ap-aw 

             Yield (%)      eeb (%) 
Selectivity 

s 
1 6ap Et 12 (S)-7ap        38             67            (R)-6ap     62              41 8 

2 6aq nPr 24 (S)-7aq        34             68           (R)-6aq     64              45 8 

3 6ar iPr 24 (R)-7ar        20             64          (S)-6ar      80              24 6 

4 6as iBu 24 (S)-7as         23             58 (R)-6as      52              37 5 

5 6at Cyclohexyl 24 7at           0               - 6at     100                0 - 

6 6au Ph 24 (R)-7au        18             74  (S)-6au      82              20 8 

7 6av 
Br 4  

  2 (S)-7av         40             80 (R)-6av      60              58 16 

8 6aw 
N
H

3
Boc

 

12 (S)-7aw        40             82 (R)-6aw      50              55 18 

a 6ap-aw (0.5 mmol), Cu(OTf)2 (0.05 mmol), (R,R)-Ph-BOX (0.05 mmol), BzCl (0.25 mmol), K2CO3 (0.5 mmol) in AcOEt (2 mL) at rt. 
b Determined by HPLC. 

To increase the scope of our reaction, we tried enantiose-
lective benzoylation and tosylation13 of 2,2-
bis(hydroxymethyl)alkanamides 10a-c. The results are 
shown in Table 4. Asymmetric benzoylation and tosyla-

tion of 10a-c smoothly proceeded to give the corre-
sponding mono-benzoylated compounds 11a-c14 and 
mono-tosylated compounds 12a-c14 with good to high 
yields and enantioselectivities (Entries 1-6). It is note-
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worthy to state that 12a-c were obtained in higher enan-
tiomeric purity than those of 11a-c (Entries 4-6), par-
tially due to an intramolecular acyl transfer15 which 
caused racemization of optically pure benzoylated com-
pound 11c, but did not happen in the case of tosylation. 
This is illustrated in Scheme 4.  

Table 4 Asymmetric benzoylation and tosylation of prochiral 10a-ca 

R4

OH OH

H
N

O

Ph R4

OH OR5

H
N

O

Ph
*

R5-Cl

(R,R)-Ph-BOX

rt
AcOEt

Cu(OTf)2
K2CO3

10a-c R5=Bz : 11a-c
    =Ts : 12a-c  

Entry Substrate R4 R5 Product  Yield (%) eeb (%)
1 10a H Bz 11a        73              75 

2 10b Me Bz 11b        95              77 

3 10c Et Bz 11c        76              71 

4 10a H Ts 12a        89              85 

5 10b Me Ts 12b        99              90 

6 10c Et Ts 12c        85              85 
a 10a-c (0.5 mmol), Cu(OTf)2 (0.05 mmol), (R,R)-Ph-BOX (0.05 
mmol), R5-Cl (0.5 mmol), K2CO3 (0.75 mmol) in AcOEt (2 mL) at rt 
for 4 h (benzoylation) or 12 h (tosylation). 
b Determined by HPLC. 
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Cu(OTf)2 (0.1 equiv)

R5=Bz : 11c (71% ee)
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AcOEt, rt, 12 h

R5=Bz : 11c (5% ee)
    =Ts : 12c (85% ee)  

Scheme 4 Racemization of 11c and 12c  

In summary, we have accomplished the non-enzymatic 
kinetic resolution of 3-hydroxyalkanamides by benzoyla-
tion and desymmetrization of 2,2-bis(hydroxymethyl)-
alkanamides by tosylation utilizing chiral copper catalyst. 
The mechanistic study of these reactions and their syn-
thetic applications16 are underway. 
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