Non-enzymatic kinetic resolution of 3-hydroxyalkanamides with chiral copper catalyst

Yosuke Demizu, Yuki Kubo, Yoshihiro Matsumura, Osamu Onomura*
"Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan"

Fax: +81-95-819-2476
E-mail: onomura@nagasaki-u.ac.jp
Received: The date will be inserted once the manuscript is accepted.

Abstract

Kinetic resolution of 3-hydroxyalkanamides with good to high selectivities was achieved by benzoylation using copper(II) triflate and $(R, R)-\mathrm{Ph}-\mathrm{BOX}$ as a catalyst, which also mediated enantioselective tosylation of 2,2bis(hydroxymethy)alkanamides with high efficiency.

Key words: Kinetic resolution, 3-Hydroxyalkanamides, Acylations, Chiral copper complex, Molecular recognition

Optically active 3-hydroxyalkanoic acid derivatives are important precursors for preparations of various biologically active compounds. ${ }^{1}$ A variety of enzymatic kinetic resolution methods has been developed for preparation of optically pure 3-hydroxyalkanoic acid derivatives. ${ }^{2}$ To the best of our knowledge, nonenzymatic method has been little known to date. ${ }^{3}$ Recently, we have reported an efficient method for kinetic resolution of 1,2 -diols $\mathbf{1}$. The method is based on recognition of 1 by copper ion associated with chiral ligand $(R, R)-\mathrm{Ph}-\mathrm{BOX}^{4}$ to afford the activated intermediates 2 followed by benzoylation (Scheme 1). ${ }^{5}$

1
2

3

Scheme 1 Asymmetric benzoylation of 1,2-diols 1 based on the recognition by $\mathrm{Cu}(\mathrm{II})-(R, R)-\mathrm{Ph}-\mathrm{BOX}$

We report herein non-enzymatic kinetic resolution of 3hydroxyalkanamides by benzoylation with $\mathrm{Cu}(\mathrm{II})-(R, R)$-Ph-BOX catalyst affording optically active 3-hydroxyalkanamide derivatives in good to high yields and enantioselectivities.

We began our investigation by trying benzoylation of ethyl DL-3-hydroxybutanoate (4) as a model compound to see whether it could be recognized by chiral copper(II) complex or not. We found out the following, in the absence of copper(II) triflate and $(R, R)-\mathrm{Ph}-\mathrm{BOX}$ the reaction of 4 with BzCl did not almost proceed, while in the presence of the catalysts, benzoylated product 5 was obtained in 19% yield based on 4 . In contrast, DL-3-hydroxy- N-phenylbutanamide (6a) was benzoylated more efficiently in the presence of $\mathrm{Cu}(\mathrm{II})-(R, R)-\mathrm{Ph}-$ BOX to afford benzoylated product 7a in 41% yield (Scheme 2). These results imply that 6a was efficiently recognized by $\mathrm{Cu}(\mathrm{II})-(R, R)-\mathrm{Ph}-\mathrm{BOX}$ complex.

Scheme 2 Benzoylation of ester 4 and amide 6a in the absence or presence of $\mathrm{Cu}(\mathrm{OTf})_{2}$ and $(R, R)-\mathrm{Ph}-\mathrm{BOX}$

Next, we tried competitive reaction between 6a and 2,4pentanediol (8) (syn:anti $\approx 50: 50$) with or without $\mathrm{Cu}(\mathrm{II})-(R, R)$ - $\mathrm{Ph}-\mathrm{BOX}$ (Scheme 3). In the presence of $\mathrm{Cu}(\mathrm{II})-(R, R)-\mathrm{Ph}-\mathrm{BOX}$ or $\mathrm{Cu}(\mathrm{II})-$ racemic-Ph-BOX 7a was exclusively formed, whereas in the absence of $\mathrm{Cu}(\mathrm{II})-(R, R)$ - Ph -BOX only monobenzoylated diol 9 (syn:anti $\approx 63: 37$) was generated. From these results, we deduced that 6a is preferentially recognized over $\mathbf{8}$ by
the copper catalyst. ${ }^{6}$ Acceleration for benzoylaiton of $\mathbf{6 a}$
(R, R) - (or racemic-) Ph-BOX.
was also observed in the presence of $\mathrm{Cu}(\mathrm{OTf})_{2}$ without

Scheme 3 Competitive reaction between $\mathbf{6 a}$ and $\mathbf{8}$ by benzoylation in the absence or presence of $\mathrm{Cu}(\mathrm{OTf})_{2}$ and (R, R) - (or racemic-) $\mathrm{Ph}-\mathrm{BOX}$

In our quest to get excellent reaction conditions for kinetic resolution of DL-6a, we investigated the effect of bases and solvents on benzoylation. ${ }^{7}$ These results are summarized in Table 1. They show a dependence of yield and $\%$ ee of the product 7 a as well as the reaction time on the solvents and bases used. Use of AcOEt as a solvent and $\mathrm{K}_{2} \mathrm{CO}_{3}$ as a base gave (S)-7a ${ }^{8}$ in 41% yield and a high enantioselectivity (85% ee) with a selectivity s value ${ }^{10}$ of 27 for 2 h (Entry 1). THF and 1,4-dioxane
gave comparable results to AcOEt (Entries 2 and 3), while $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{2} \mathrm{O}$ were less efficient (Entries 4 and 5). Moreover, use of alcohols such as $i \mathrm{PrOH}$ or EtOH gave (S)-7a in high enantioselectivity (Entries 6 and 7). $\mathrm{K}_{2} \mathrm{CO}_{3}$ was the most effective base (Entry 1) among the tested bases (Entries 8-11). Use of 0.05 equiv of $\mathrm{Cu}(\mathrm{OTf})_{2}$ and (R, R) - $\mathrm{Ph}-\mathrm{BOX}$ led to slightly inferior result compared to using 0.1 equiv of chiral $\mathrm{Cu}(\mathrm{II})$ catalyst (Entry 12).

Table 1 Kinetic Resolution of DL-3-hydroxy- N-phenylbutanamide (DL-6a) ${ }^{\text {a }}$

		(R Cu Bz b so	Ph-BOX f) 2 0.5 equiv) 1.0 equiv) t, rt			-Ph		$\begin{aligned} & \\ & \mathrm{N}^{-\mathrm{Ph}} \\ & \mathrm{H} \\ & \mathrm{ja} \end{aligned}$
Entry	Solvent	Base	Time (h)	Produ	-7a	Recover	R)-6a	Selectivity
				Yield (\%)	ee^{b} (\%)	Yield (\%)	ee ${ }^{\text {b }}$ (\%)	,
1	AcOEt	$\mathrm{K}_{2} \mathrm{CO}_{3}$	2	41	85	52	74	27
2	THF	$\mathrm{K}_{2} \mathrm{CO}_{3}$	2	45	83	55	64	21
3	1,4-dioxane	$\mathrm{K}_{2} \mathrm{CO}_{3}$	12	44	85	56	52	21
4	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	12	38	74	62	45	10
5	$\mathrm{Et}_{2} \mathrm{O}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	2	40	75	60	48	11
6	iPrOH	$\mathrm{K}_{2} \mathrm{CO}_{3}$	12	37	78	63	47	13
7	EtOH	$\mathrm{K}_{2} \mathrm{CO}_{3}$	24	18	88	82	27	20
8	AcOEt	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	24	26	68	74	28	7
9	AcOEt	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	24	45	82	46	80	25
10	AcOEt	NaHCO_{3}	24	48	70	52	64	11
11	AcOEt	DIPEA	24	30	73	70	36	9
$12^{\text {c }}$	AcOEt	$\mathrm{K}_{2} \mathrm{CO}_{3}$	2	37	85	63	56	22
${ }^{\text {a }}$ dL-6a $(0.5 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}),(R, R)-\mathrm{Ph}-\mathrm{BOX}(0.05 \mathrm{mmol}), \mathrm{BzCl}(0.25 \mathrm{mmol})$, base $(0.5 \mathrm{mmol})$ in a solvent $(2.0 \mathrm{~mL})$ at rt. ${ }^{\mathrm{b}}$ Determined by HPLC. ${ }^{\mathrm{c}} \mathrm{DL}-6 \mathrm{Ga}(0.5 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(0.025 \mathrm{mmol}),(R, R)-\mathrm{Ph}-\mathrm{BOX}(0.025 \mathrm{mmol}), \mathrm{BzCl}(0.25 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{mmol})$ in $\mathrm{AcOEt}(2.0 \mathrm{~mL})$ at rt.								

Utilizing the conditions optimized in Table 1, we screened the effect of amide N-substituents shown in Table 2. The s value of N-4-chlorophenyl amide $\mathbf{6 b}$ was slightly lower than that of 6a (Entry 1), while N-4methylphenyl amide 6c gave high s value of 34 (Entry
2). Benzoylation of N-3,5-dimethylphenyl amide $\mathbf{6 d}$ and the corresponding hexafluorinated amide $\mathbf{6 e}$ required longer reaction time, and the s values were moderate for 6d and poor for $\mathbf{6 e}$ (Entries 3 and 4). N-2Methylphenyl amide $\mathbf{6 f}$ was smoothly asymmetrically
benzoylated to afford 7 f with 89% ee. N-Benzyl amide 6 g was inferior to N -phenyl amide 6a (Entry 6). N, N -

Disubstituted amides $\mathbf{6 h}, \mathbf{6 i}$ and $\mathbf{6 j}$ also gave slightly lower s values compared to that of $\mathbf{6 a}$ (Entries 7-9).

Table 2 Kinetic resolution of DL-3-hydroxybutanamide derivatives (DL-6b-j) ${ }^{\text {a }}$

			$\begin{aligned} & \begin{array}{l} (R, R)-\mathrm{Ph}-\mathrm{BOX} \text { (0.1 equiv) } \\ \mathrm{Cu}(\mathrm{OTf})_{2} \text { (0.1 equiv) } \end{array} \\ & \mathrm{BzCl}(0.5 \text { equiv) } \\ & \mathrm{K}_{2} \mathrm{CO}_{3} \text { (1.0 equiv), AcOEt, rt } \end{aligned}$					$+$		
Entry	Substrate	R ${ }^{1}$	R^{2}	Time (h)	Product	(S)-7		Recovered	-6b-j	Selectivity
						Yield (\%)	ee ${ }^{\mathrm{c}}$ (\%)	Yield (\%)	ee^{c} (\%)	s
1	6b	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	H	2	7b	46	79	54	66	17
2	6c	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	H	3	7c	44	88	56	73	34
3	6 d	3,5-diMeC6 H_{3}	H	24	7d	47	78	53	65	16
4	6 e	3,5-diCF ${ }_{3} \mathrm{C}_{6} \mathrm{H}_{3}$	H	24	7e	30	57	70	27	5
5	$6 f$	$2-\mathrm{MeC}_{6} \mathrm{H}_{4}$	H	1.5	7f	37	89	63	56	30
6	6g	Bn	H	3	7 g	48	78	47	65	16
7	6h	Ph	Me	12	7h	37	84	53	60	21
8	61	Me	Me	3	7 i	46	76	7	31	10
9	6j	-($\left.\mathrm{CH}_{2}\right)_{2}$ - O -(24	7j	39	82	23	57	18

${ }^{\mathrm{a}}$ dL-6b-j $(0.5 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}),(R, R)-\mathrm{Ph}-\mathrm{BOX}(0.05 \mathrm{mmol}), \mathrm{BzCl}(0.25 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{mmol})$ in $\mathrm{AcOEt}(2.0 \mathrm{~mL})$ at rt .
${ }^{\mathrm{b}}$ Absolute stereoconfigurations of $\mathbf{7 b} \mathbf{- j}$ were deduced on the basis of that of $(S)-7 \mathbf{a}$.
${ }^{\mathrm{c}}$ Determined by HPLC.

Table 3 summarizes kinetic resolution of various 3hydroxyalkanamides 6ap-aw by benzoylation under the optimized reaction condition. Compounds 6ap substituted with Et and 6aq with $n \mathrm{Pr}$ group were asymmetrically benzoylated to afford corresponding optically active (S)-7ap ${ }^{11}$ and (S)-7aq ${ }^{11}$ in good yield and moderate enantioselectivity, respectively (Entries 1 and 2). Although compounds 6ar and 6as substituted with $i \operatorname{Pr}$ and $i \mathrm{Bu}$ were kinetically resolved with moderate enan-
tioselectivity, the yield was low (Entries 3 and 4). Benzoylation of cyclohexylated compound 6at did not proceed (Entry 5), while phenylated 6au was benzoylated to afford $(R)-7 \mathbf{a u}^{12}$ in moderate yield and good enantioselectivity (Entry 6). Straight carbon-chained compounds 6av terminally fuctionalized with Br atom and 6aw with N-Boc protected amino group gave good s value of 16 and 18, respectively (Entries 7 and 8).

Table 3 Kinetic resolution of various DL-3-hydroxyalkanamides (DL-6ap-aw) ${ }^{\text {a }}$

${ }^{\mathrm{a}}$ 6ap-aw $(0.5 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}),(R, R)-\mathrm{Ph}-\mathrm{BOX}(0.05 \mathrm{mmol}), \mathrm{BzCl}(0.25 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{mmol})$ in AcOEt $(2 \mathrm{~mL})$ at rt .
${ }^{\mathrm{b}}$ Determined by HPLC.

To increase the scope of our reaction, we tried enantioselective benzoylation and tosylation ${ }^{13}$ of 2,2bis(hydroxymethyl)alkanamides 10a-c. The results are shown in Table 4. Asymmetric benzoylation and tosyla-
tion of 10a-c smoothly proceeded to give the corresponding mono-benzoylated compounds 11a-c ${ }^{14}$ and mono-tosylated compounds 12a-c ${ }^{14}$ with good to high yields and enantioselectivities (Entries 1-6). It is note-
worthy to state that 12a-c were obtained in higher enantiomeric purity than those of 11a-c (Entries 4-6), partially due to an intramolecular acyl transfer ${ }^{15}$ which caused racemization of optically pure benzoylated compound 11c, but did not happen in the case of tosylation. This is illustrated in Scheme 4.

Table 4 Asymmetric benzoylation and tosylation of prochiral 10a-c ${ }^{\text {a }}$

		$\xrightarrow[(R, R)-\mathrm{Ph}-\mathrm{BOX}]{\mathrm{R}^{5}-\mathrm{Cl}}$			$\begin{aligned} \mathrm{R}^{5} & =\mathrm{Bz}: \\ & =\mathrm{Ts}: \end{aligned}$	
Entry	Substrate	R^{4}	R^{5}	Product	Yield (\%)	ee ${ }^{\text {b }}$ (\%)
1	10a	H	Bz	11a	73	75
2	10b	Me	Bz	11b	95	77
3	10c	Et	Bz	11c	76	71
4	10a	H	Ts	12a	89	85
5	10b	Me	Ts	12b	99	90
6	10c	Et	Ts	12c	85	85

(5) Mono-benzoylation: (a) Matsumura, Y.; Maki, T.;
(5) Mono-benzoylation: (a) Matsumura, Y.; Maki, T.;
Murakami, S.; Onomura. O. J. Am. Chem. Soc. 2003, 125, 2052. Mono-carbamoylation: (b) Matsumoto, K.; Mitsuda, M.; Ushijima, N.; Demizu,
Y.; Onomura. O.; Matsumura, Y. Tetrahedron Lett. tsumoto, K.; Mitsuda, M.; Ushijima, N.; Demizu,
Y.; Onomura. O.; Matsumura, Y. Tetrahedron Lett. 2006, 47, 8453. Mono-oxidation of 1,2-diols: (c)
Onomura, O. Arimoto, H: Matsumura, Y; 2006, 47, 8453. Mono-oxidation of 1,2-diols: (c)
Onomura, O.; Arimoto, H.; Matsumura, Y.; Demizu, Y. Tetrahedron Lett. 2007, 48, 8668. Benzoylation of vic-aminoalcohols: (d) Mitsuda, M.; Tanaka, T.; Tanaka, T.; Demizu, Y.; Onomura, O.; Matsumura, Y. Tetrahedron Lett. 2006, 47, 8073. Matsumura, Y. Tetrahedron Lett. 2006, 47, 8073.
Review: (e) Matsumura, Y.; Onomura, O.; Demizu, Y. Yuki Gosei Kagaku Kyokaishi 2007, 65, 216.
(6) Representative literatures for non-enzymatic asymmetric desymmetrization of 1,3-diols: Monocarbamoylation; (a) Otera, J.; Sakamoto, K.; Tsukamoto, T.; Orita, A. Tetrahedron Lett. 1998, 39, 3201. Mono-benzoylation: (b) Oriyama, T.; Taguchi, H.; Terakado, D.; Sano, T. Chem. Lett. 2002, 26. (c) Trost, B. M.; Mino. T. J. Am. Chem. Soc. 2003, 125, 2410. (d) Mizuta, S.; Tsuzuki, T.; Fujimoto, T.; Yamamoto, Y. Org. Lett. 2005, 7, 3633. Mono-acetylation of 2-amino-1,3-diols: (e) Honjo, T.; Nakano, M.; Sano, S.; Shiro, M.; Yamaguchi, K.; Sei, Y.; Nagao, Y. Org. Lett. 2007, 9, 509.
(7) Typical procedure for kinetic resolution: Into a solution of $\mathrm{Cu}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 18.1 \mathrm{mg})$ and (R, R) - $\mathrm{Ph}-\mathrm{BOX}(0.05 \mathrm{mmol}, 16.7 \mathrm{mg}$) in AcOEt (2 mL) were added DL-6a ($0.5 \mathrm{mmol}, 89.6 \mathrm{mg}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{mmol}, 69.1 \mathrm{mg})$ and benzoyl chloride $(0.25 \mathrm{mmol}, 0.029 \mathrm{~mL})$. After stirring for 2 h at rt , to the reaction mixture water $(10 \mathrm{~mL})$ was added. The organic portion was extracted with AcOEt (20 $\mathrm{mL} \times 3$). The combined organic layer was dried over MgSO_{4} and solvent removed in vacuo. The residue was chromatographed on SiO_{2} (n-hexane : $\mathrm{AcOEt}=3: 1)$ to afford $(S)-7 \mathrm{a}(58.1 \mathrm{mg}, 41 \%$ yield, 85% ee) as a white solid. M.p. $98-99{ }^{\circ} \mathrm{C}$. $[\alpha]^{23}{ }_{\mathrm{D}}+55.4\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $7.56(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{t}$, $J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.09(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.63-5.50$ $(\mathrm{m}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=6.3,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}$, $J=6.3,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$. Optical purity of product (S)-7a was determined by chiral HPLC: Dicel Chiralcel OD-H column ($4.6 \mathrm{~mm} \phi, 250 \mathrm{~mm}$), n-hexane : isopropanol = 10 : 1, wavelength: 220 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $20.0 \mathrm{~min}((R)-7 \mathbf{a}), 22.5 \mathrm{~min}((S)-7 \mathbf{a})$.

References
 Refers

(1) (a) Berks, A. H. Tetrahedron 1996, 52, 331. (b) Pàmies, O.; Bäckvall, J. -E. Adv. Synth. Catal.

2002, 344, 947. (c) Genet, J. -P. Acc. Chem. Res. 2003, 36, 908. (d) Mlynarski, J. Eur. J. Org. Chem. 2006, 4779.
(2) Recent literatures for kinetic resolution of 3hydroxyalkanoic acid derivatives by enzymatic methods: (a) Xu, C.; Yuan, C. Tetrahedron 2005, 61, 2169. (b) Turcu, M. C.; Kiljunen, E.; Kanerva, L. T. Tetrahedron: Asymmetry 2007, 18, 1682.

Ishihara, K.; Kosugi, Y.; Akakura, M. J. Am. Chem. Soc. 2004, 126, 12212.
A recent review of chiral bis(oxazoline) ligands: Desimoni, G; Faita, G.; Jørgensen, K. A. Chem. Rev. 2006, 106, 3561.
${ }^{\mathrm{a}}$ 10a-c $(0.5 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}),(R, R)-\mathrm{Ph}-\mathrm{BOX}(0.05$ $\mathrm{mmol}), \mathrm{R}^{5}-\mathrm{Cl}(0.5 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.75 \mathrm{mmol})$ in $\mathrm{AcOEt}(2 \mathrm{~mL})$ at rt for 4 h (benzoylation) or 12 h (tosylation).
${ }^{\mathrm{b}}$ Determined by HPLC.

Scheme 4 Racemization of 11c and 12c
In summary, we have accomplished the non-enzymatic kinetic resolution of 3-hydroxyalkanamides by benzoylation and desymmetrization of 2,2-bis(hydroxymethyl)alkanamides by tosylation utilizing chiral copper catalyst. The mechanistic study of these reactions and their synthetic applications ${ }^{16}$ are underway.

Acknowledgment

O.O. and Y.D. are grateful for a Grant-in-Aid for Scientific Research (C) (19550109) from Japan Society for the Promotion of Science and a Grant-in-Aid for Young Scientists (B) (19790017) from the Ministry of Education, Science, Sports and Culture, Japan, respectively.

The absolute stereoconfiguration of recovered (R) 6a was determined by comparing with specific rotation of authentic sample. Compound $(R)-\mathbf{6 a}$ (74% ee): $[\alpha]^{22}{ }_{\mathrm{D}}-28.6$ (c 1.1, CHCl_{3}). $\left[\right.$ lit. ${ }^{9}(R)$-6a $\left.[\alpha]^{20}{ }_{\mathrm{D}}-37\left(c 1.0, \mathrm{CHCl}_{3}\right)\right]$.
(9) Gendre, P. L.; Offenvecher, M.; Bruneau, C.; Dixneuf, P. H. Tetrahedron: Asymmetry 1998, 9, 2279.
(10) The selectivity factor s was determined using the equation $s=k_{\text {rel(fast/slow) }}=\ln \left[(1-C)\left(1-\mathrm{ee}_{\mathrm{A}}\right)\right] / \ln [(1-$ $\left.C)\left(1+\mathrm{ee}_{\mathrm{A}}\right)\right]$, where $C=\mathrm{ee}_{\mathrm{A}} /\left(\mathrm{ee}_{\mathrm{A}}+\mathrm{ee}_{\mathrm{B}}\right), \mathrm{ee}_{\mathrm{A}}=\mathrm{ee}$ of recovered starting material, $\mathrm{ee}_{\mathrm{B}}=$ ee of product. Kagan, H. B.; Fiaud, J. C. Topics in Stereochemistry; Eliel, E. L., Ed.; Wiley \& Sons: New York, 1988, Vol. 18, 249-330.
(11) Absolute stereoconfigurations of 7ap-at,av,aw shown in Table 3 were deduced on the basis of those of (S)-7a and (R)-7au.
(12) The absolute stereoconfiguration of (R)-7au was determined by comparing with that of authentic (S)-7au, which was prepared from commercially available (S)-(-)-3-hydroxy-3-phenylpropionitrile: Dicel Chiralcel OD-H column ($4.6 \mathrm{~mm} \mathrm{\phi}, 250 \mathrm{~mm}$), n-hexane : isopropanol $=10: 1$, wavelength: 220 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: 36 min $((R)-7 \mathbf{a u}), 42 \mathrm{~min}((S)-7 \mathbf{a u})$. (R)-7au (74% ee): $[\alpha]^{25}$ D -13.8 (c 1.0, CHCl_{3}).
(13) Kinetic resolution of DL-6a with $p-\mathrm{TsCl}$ gave (S)tosylated product with somewhat lower yield (36%) and enantioselectivity (67% ee) than those of benzoylation.
(14) Specific rotations 11a: $[\alpha]^{28}{ }_{\mathrm{D}}-16.4$ (c 1.0 , $\left.\mathrm{CHCl}_{3}\right) .11 \mathrm{~b}:[\alpha]^{28}{ }_{\mathrm{D}}+6.9\left(c 1.0, \mathrm{CHCl}_{3}\right) .11 \mathrm{c}:$ $[\alpha]^{28} \mathrm{D}+0.6\left(c 1.0, \mathrm{CHCl}_{3}\right) .12 \mathrm{a}:[\alpha]_{\mathrm{D}}^{24}+15.2(c$ $0.95, \mathrm{CHCl}_{3}$). 12b: $[\alpha]_{\mathrm{D}}^{24}-21.8$ (c $1.0, \mathrm{CHCl}_{3}$). 12c: $[\alpha]^{26} \mathrm{D}-43.2$ (c 1.0, CHCl_{3}).
(15) Edin, M.; Martín-Matute, B.; Bäckvall J.-E. Tetrahedron: Asymmetry 2006, 17, 708.
(16) Mesylation of (R)-6a followed by cyclization under basic conditions gave the corresponding optically ${ }_{17}$ active β-lactam with complete stereoinversion.
(17) Sakaki, J.; Kobayashi, S.; Sato, M.; Kaneko, C. Chem. Pharm. Bull. 1989, 37, 2952.

