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ABSTRACT

This paper introduces a scalable FPGA implementation of a
stochastic simulation algorithm (SSA) called the Next Re-
action Method. There are some hardware approaches of
SSAs that obtained high-throughput on reconfigurable de-
vices such as FPGAs, but these works lacked in scalability.
The design of this work can accommodate to the increasing
size of target biochemical models, or to make use of increas-
ing capacity of FPGAs. Interconnection network between
arithmetic circuits and multiple simulation circuits aims to
perform a data-driven multi-threading simulation. Approx-
imately 8 times speedup was obtained compared to an exe-
cution on Xeon 2.80GHz.

1. INTRODUCTION

The emergence of an academic field called a systems bi-
ology has brought out a new challenge for both computer
scientists and biologists, which is to simulate cellular sys-
tems using computational resources. Refinements of sim-
ulation algorithms and modeling techniques therefore have
been continuous attempts in this field.

A stochastic biochemical simulation algorithm (SSA)[1]
is a variation of the Monte-Carlo methods, known for its
large number of calculation involved. Consequently, the
stochastic approach could only be applied to extremely small
testing models, and it was difficult to simulate large scale
models with complex reaction systems.

A significant performance enhancement of general-purpose
microprocessors since late in the ’90s were one of the main
causes for the stochastic approach to be reappraised as a fea-
sible method to simulate large-scale biochemical models,
and many refinements were made to the simulation algo-
rithms. Following these trends, some hardware approaches

of stochastic simulators on reconfigurable devices began to
appear around 2004[2][3]. These works suggest tangibility
to achieve 10 to 100 times performance improvement com-
pared to running stochastic simulation on general-purpose
microprocessors, while requiring much lower development
cost than dedicated hardware.

Recent biochemical simulation softwares adopt an algo-
rithm called the Next Reaction Method(NRM). It is widely
known as an SSA with the finest scalability to the size of
target models[4]. This work addresses an FPGA implemen-
tation of the NRM, which has not yet been reported.

In this paper, we propose a new framework of imple-
menting NRM by connecting several calculation units with
an interconnection network. This design aims to maintain a
scalability towards size of biochemical models, while pos-
sessing flexibility to each target models and circuit sizes. As
a prototype implementation, we designed the interconnec-
tion using multiplexers, and investigated performance and
scalability of the design.

2. STOCHASTIC BIOCHEMICAL SIMULATION

2.1. Stochastic Simulation Algorithm (SSA)

Gillespie proposed stochastic modeling techniques of chem-
ically reacting systems, the aim of which is to obtain “state”
variations of a model from moment to moment[1]. A bio-
chemical model is defined as a list of reactions, and the
model’s state as a quantity of each species that appears in
these reactions. Thus, stochastic simulation algorithm (SSA)
is a method to calculate the quantity from time to time. An
example of a biochemical model which has N reactions is
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defined as in (1a)-(1c).

R1 : S1 + S2
k1−→ S3 (1a)

R2 : S2 + S3
k2−→ S4 (1b)

...

RN : SN + S1
kN−−→ S2 (1c)

S1, S2, · · · in equations above represent chemical species,
whose numbers are integers. Species in the left-hand side
are called “reactants”, and ones in the right-hand side are
“products”. Each reactant in reaction Rj has event prob-
ability kj to bring about a chemical reaction. After initial
numbers of each species are given, it is ready to execute a
whole process of one computational cycle, which is to ob-
tain the time change of the model. However, because the
algorithm being a variation of the Monte Carlo method, it
requires many trials of computational cycles to obtain accu-
rate results.

Since the Gillespie’s First Reaction Method (FRM) and
the Direct Method (DM) had been proposed[1], several im-
proved versions of SSA were presented[4][5]. One notable
proposal was made in 2000 by Gibson and Bruck, who pre-
sented a new algorithm called the Next Reaction Method
(NRM). It reduced the time complexity from O(N) of the
original version to O(log(N)), while mathematically “prov-
ing the statistical equivalence of the simulation results”. NRM
is applied to representative software biochemical simulators
such as E-Cell3[6]. The detail of the algorithms are de-
scribed in the next section.

2.1.1. First Reaction Method

The idea of SSA is to obtain the state-change of the model
through a repetition of a process to select a reaction that is
“most likely to occur in the next reaction cycle”.

In this algorithm, the following steps are included in one
reaction cycle. First, the chosen reaction of FRM has the
smallest τj , predicted time of occurrence among all reac-
tions in the system[1]. Then, a predicted time of occurrence
for each reaction (2) is obtained by (3).

−→τ = (τ1, · · · , τN ) (2)

τj = ln (1/r) /aj (3)

Value r is a uniform random number between 0 and 1. aj is
called “a propensity”, which is a multiple of an event prob-
ability kj and a combination number of all the reactants in
Rj .

2.1.2. Next Reaction Method

NRM obtains −→τ according to (3) just like FRM, but two new
ideas are introduced to reduce time complexity[4]: Indexed

Priority Queue(IPQ) and Dependence Graph(DG). The cal-
culation steps in one reaction cycle are as follows. Once −→τ
is calculated, a set of value τj and its reaction ID j are stored
in a heap tree called an IPQ. With this modification, NRM
only requires a calculation of τμ for reaction Rμ that oc-
curred in one reaction cycle without recalculation of whole−→τ . The root node of IPQ points to the next reaction and its
time of occurrence. Afterward, (4) modifies several values
in −→τ .

τj,new = aj,old/aj,new(τj,old − τμ) + τμ (4)

Meanwhile, each biochemical reaction may be depend among
each other; a change in quantity of certain species due to
one biochemical reaction may affect the others. Thus, all
predicted time of reactions τj that are influenced by cur-
rent occurrence needs to be modified. In order to clarify
these causal relationships, NRM uses a list called a DG. For
each reaction, DG enumerates other reactions whose related
species’ number would be modified. For instance, DG of
R1(1a) is given as (5).

DG(R1) = {R2, R3, RN} (5)

Finally, the heap tree is updated to maintain its order. The
update is necessary whenever value τj has been changed
with (3) or (4).

Table 1 shows a comparison of operational processes
in FRM and NRM in a reaction cycle. In NRM, Gibson
and Bruck also introduced a barometer D for representing
a complexity of a biochemical model. Assume a value dj

that represents a dependency of reaction Rj , which is a to-
tal number of reactions that will be updated due to the oc-
curence of Rj . This is equal to a number of executing (3)
or (4) when Rj occurs. The barometer is an average num-
ber D(� N) of dj in the model. Number of calculation
increases according to the model size for FRM, while NRM
is proportional to log(N). This table indicates higher scala-
bility of NRM compared to FRM.

In this paper, the NRM circuit design was evaluated with
a model D4S(D = 4 System) defined in (1a)-(1c) by chang-
ing its N .

Table 1. Number of calculations and time complexity of
FRM and NRM

FRM NRM
Eq. 3 N 1
Eq. 4 0 dμ − 1

updating IPQ 0 dμ

Order O(N) O(log(N))
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Fig. 1. Drop-off of the throughput versus model size

2.2. Stochastic Biochemical Simulators on FPGA

2.2.1. Related work

Several challenges have been made to design a stochastic
biochemical simulator on FPGA since 2004. Keane et al.
and Salwinski et al. both successfully achieved approxi-
mately 20 times speedup compared to general-purpose mi-
croprocessors [2][7]. However, both of their works are based
on more approximated version of Gillespie’s algorithm, and
calculation steps were also simplified. For example, they
convert floating-point to integer values to perform high speed
computation. Thus, simulations on these platforms may re-
quire many more computational cycles to obtain the same
level of accuracy with software-based simulators.

2.2.2. The FRM implementation on an FPGA

We have been implementing and evaluating stochastic bio-
chemical simulators since 2004 [8][3]. In 2006, a circuit was
designed with two simulation threads that time-share one
single-precision floating point computational unit. Pipeline
of the computational unit can receive consecutive input data
to achieve high throughput [3]. And without using approx-
imated stochastic algorithm, this implementation achieved
more than 80 times speedup compared to execution on Xeon
2.80GHz by running six threads in parallel to simulate a
model with 1000 reactions (N = 1000).

Cao et al. has already compared computational time of
NRM and DM, which is known to be more computationally-
efficient than FRM[5]. To investigate more detail, we wrote
execution programs of FRM and NRM in C++, and evalu-
ated throughput versus models size for both algorithms us-
ing D4S. Here, we define a term ”throughput” as an exe-
cution time of one reaction cycle. The results are shown
in Fig.1, together with the FPGA execution result of FRM.
According to these results, throughput degradation of the
FPGA implementation of FRM is more prominent than NRM
execution on Xeon as the model size increases. Advantage
of the two turns back at a point of N = 425, and NRM
move out ahead by about three times at N = 1000. This
implies that calculation cost of FRM on an FPGA is purely

First Reaction Method

Next Reaction Method

Reaction Cycle Reaction Cycle
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PROC
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Reaction Cycle(DU2) Reaction Cycle(DU2)

Reaction Cycle(DU1) Reaction Cycle(DU1)

Fig. 2. Usage of calculation units for FRM and NRM

disadvantageous compared NRM on microprocessors, con-
sidering that NRM is proved to produce equivalent results
with FRM.

Discussions above suggested the possibility of FPGA
implementation of NRM to achieve higher throughput for
stochastic biochemical simulations. Operating frequency of
FPGAs are generally dozen times lower than that of micro-
processors, therefore it is difficult to obtain high throughput
with a single task execution without degrading numerical
precision. Consequently, we followed the policy of running
multiple threads as in our FRM implementation, by arrang-
ing multiple thread execution circuits with small number of
computational units. In addition to achieve high through-
put, we aim to investigate a scalable design toward size of a
target model, or number of threads running in parallel.

3. DESIGN CONCEPT

A schematic figure of calculation steps in FRM and NRM
per a reaction cycle is illustrated in Fig.2. Unlike FRM that
calculates −→τ by repetitively accessing the same calculation
for N times, NRM performs several arithmetic operations
and update of heap trees according to occurrences of reac-
tions. To carry out a seamless operation, a circuit was de-
signed to perform a data-driven multi-threading simulation
unlike previous works with statically scheduled data-flow.

Calculation units for NRM generally occupy a large cir-
cuit area due to having logarithmic arithmetic units. How-
ever, number of logarithmic calculation in one cycle is very
small. Thus, it is effective to share the unit among multiple
simulation threads in terms of area efficiency and through-
put.

Consequently, the modules are divided into two groups.
The first group of modules need to be prepared for each
simulation thread, while the other group is shared among
the multiple threads. These would be connected via some
communication networks. A schematic figure of calculation
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Fig. 4. Connection Diagram of the NRM circuit

steps per simulation cycle of NRM is shown in Fig.3. A sim-
ulation cycle starts from an “Update State” stage, followed
by the next three stages. Each step should be proceeded se-
quentially as shown in Fig.3. “modify-τ” stage is repeated
for dμ − 1 times per cycle, so calculation steps differ among
reactions Rμ that occurred. Three blocks on the right-hand
side of Fig.3 are arrays to store variables and intermediate
data of the simulation, so these blocks should be prepared
for each simulation thread. A set of the three blocks is called
a “Thread Private Unit (TPU)” in the following sections. On
the other hand, six blocks in the left-hand side of the figure
are units that perform calculation based on data of TPUs,
and retrieve the result. Since all simulation threads can use
the same calculation units, they are called “Thread Share
Units (TSUs)” in the following sections.

Fig.4 illustrates a configuration with four sets of TPUs
each of which is connected to TSU with a multiplexer. By
selecting an appropriate interconnection network and num-
ber of TPUs, it becomes tangible to configure a circuit de-
sign according to FPGA area and model size. This paper
evaluates performance and area with a prototype implemen-
tation of the NRM circuit, followed by an investigation of
scalability through an FPGA-implementation of NRM cir-
cuit with variable number of TPUs and TSU sets connected
with a multiplexer.

4. IMPLEMENTATION

4.1. TPU and TSU

A prototype of TPU and TSU was implemented based on
the design described in Section 3. All modules were written
in Verilog-HDL, and synthesis, placement and routing were
done by Xilinx’s ISE8.2i.

Target device of the design is Virtex-II Pro (XC2VP70-
6) on a ReCSiP-2 board[3], a biochemical simulation ori-
ented platform. Single-precision floating-point arithmetic
units were from Xilinx’s LogiCORE floating-point. As a
storage for variables in each unit, BlockRAMs on the Virtex-
II Pro were utilized, whose entry size is 32bit ×1024 words.
Maximum number of biochemical reactions supported by
this implementation is 1024, which is sufficient for existing
stochastic models.

Table 2 is a rough estimate of area and operating fre-
quency of each unit. Area of TCAL in TSU is large, be-
cause it owns a logarithmic arithmetic unit in order to calcu-
late (3). Random numbers required in the same equation are
generated with M-sequence random number generator, and
logarithmic values are obtained with second order interpola-
tion. PRPC and TMOD are calculation units for propensity
and τj modification with (4). REAT, UPDT and DGTB are
tables for storing constant values: species IDs of reactants
in each reaction, state update vectors, and a Dependency
Graph. Components of a TSU have pipeline pitches whose
size are shown as ”flit” in Table 2.

A TPU has three arrays in BlockRAMs, as shown in
Fig.3. It also has controllers to communicate with each TSU
based on the algorithm of NRM. There are two controllers
in the TPU for external and internal use. The external one
handles data transfer between TSUs, and the internal one is
in charge of updating IPQ and reading data required in each
calculation. It should be noted that current implementation
does not perform a continuous data transfer, that is, once a
data sending request is accepted, the next request is not is-
sued before retrieving the calculation result. This data trans-
fer method will make latency longer, but it does not require
any output buffers so that the area is kept small.

Table 2. Resource utilization and operating frequency of
TPU and TSU

TPU TSU
DU REAT TCAL PRPC UPDT& TMOD

DGTB
Slices 640 0 3894 961 0 169

BRAMs 8 2 6 2 3 4
Mult 0 0 13 8 0 0
Freq. 139 122 132 132 115 126

In. width 64 10 64 74 10 64
flit 1 1 1 1 1 2

Latency - 1 21 11 1 27
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Fig. 5. Area and operating frequency

4.2. Interconnect

An interconnection network between TPUs and TSUs can
be categorized into two components: an input network and
an output network to/from the TSU. The input network espe-
cially requires a mechanism to appropriately transfer send-
ing requests from multiple TPUs to the corresponding TSUs.
For this work, T -input multiplexers (MUX) are adopted as
the interconnect, where T represents a number of TPUs.
Each TSU has its own MUX, data bandwidth and functions
of which are correspondent to the TSU.

Each MUX receives data transfer request (REQ) sig-
nal and data from multiple TPUs, then returns acknowledge
(ACK) signal to a TPU, and outputs data to the output line.
Each MUX has a buffer to store one flit of input data. Thus,
when an MUX is connected to a TSU whose transfer data
size is more than two flits, an acknowledged TPU can dom-
inate the MUX for the equal number of clock cycles with
the number of flits. Other TPUs in need to use the same
TSU wait until the end of current data transfer. Current im-
plementation has six TSUs, the input network of which are
connected with six different MUXs. Table 2 shows data size
and number of flits for each MUX. This restriction mecha-
nism of the input networks forms up the output data stream,
so there is no case when multiple TSUs try to send results to
one TPU. Thus, no arbitration mechanism is required in the
output networks.

Area and latency of MUXs increase as T becomes larger.
Their interrelationship will be discussed in Section 5.

5. EVALUATION

5.1. Area evaluation

Fig.5 shows an area and maximum operating frequency with
different numbers of TPU (T ). Current implementation can
accommodate up to 30 TPUs on Xilinx’s XC2VP70-6. From
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the figure, number of used BlockRAMs increases by 8 as
number of T is incremented. Increasing rate of the Block-
RAM (2.43%) is larger than that of the area (1.87%), but
this is not the main reason of limiting the maximum number
of T , since TSUs dominate many slices in the target FPGA.

Slices of TPUs increase linearly as T becomes large.
This causes the increase of slices for MUXs, but its rate is
gradual compared to that of TPUs since they own an output
buffer only for one flit data. However, fan-out to the output
buffer of MUXs also increases, which degrades maximum
operating frequency.

Fig.5 also indicates that critical paths lies in a 64-bit
integer-float converting module when T ≤ 8, and in a TPU-
TMOD MUX when T ≥ 16.

5.2. Performance evaluation

Fig.6 shows throughput measured through RTL simulations
for different model sizes between N = 16 and N = 1000
of D4S model (as defined in (1a)-(1c)). Gain in throughput
and performance based on execution on Xeon 2.80GHz are
also evaluated.

Execution of 16 and 30 threads achieved approximately
5.2 to 8.4 times throughput compared to that of Xeon. The
result also indicates an advantage of the design for sim-
ulating models with larger N . In case when D is com-
mon and N differs, the difference of calculation time is only
caused by the update of a heap tree. Since branch penalties
on Xeon microprocessor is relatively large because it takes
much longer time for updating the heap tree, while the TPU
completes data reading, comparison and exchange in only
3 clock cycles. Critical path of simulation circuits when
T ≥ 16 lies in an MUX between TPU and TSU. Conse-
quently, the throughput of T = 30 is below that of T = 16.
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Based on the analysis above, an improved interconnection
is expected to suppress the degradation of the operating fre-
quency. One idea is to replace the multiplexers with a hier-
archical bus structure.

Data flow rate within the interconnect would significantly
affect the throughput in such structure, therefore we also
evaluated an average clock cycles per one reaction cycle for
different model sizes N in case of T = 16 and T = 30. The
result is shown in Fig.7. The figure tells that the increase
of the clock cycles were small and follows O(log(N)). In
case of D4S model, the number of calculation and update of
heap tree is same among all model sizes. Thus, Fig.7 corre-
sponds to the difference in time required to update the heap
tree in case of the same T and different N , and difference
of waiting time to the multiplexer in case of the same N and
different T . Clock cycles are larger for T = 30 than T = 16
in any case as small as 5 clock cycles. This is because data is
not frequently sent over the interconnection, and the length
is 2 flits at most. Thus, replacement of the interconnect from
multiplexers to the hierarchical bus structure would possi-
bly minimize throughput degradation due to the increase of
waiting time in data transfer.

These evaluation results indicate scalability of the cur-
rent NRM circuit design to the increasing model size, espe-
cially in contrast with execution on Xeon processor. Fea-
sibility of achieving higher throughput is also suggested by
modifying the structure of the interconnection network.

6. CONCLUSION AND FUTURE WORK

This paper described an FPGA-based design of a biochemi-
cal simulation circuit for performing a stochastic simulation
based on the Next Reaction Method, and evaluated its pro-
totype implementation. The circuit was designed to achieve
high throughput by allowing multiple simulation threads run-
ning in parallel. Every module in the circuit is categorized
into a group that should be prepared for each simulation
thread and a group that are shared among multiple threads.
Currently, their interconnection is designed with a multi-
plexer, and approximately 5.2 to 8.4 times higher through-

put was obtained compared to execution on Xeon 2.80 GHz.
Some investigation results are given to suggest a feasibility
of a higher throughput design by selecting appropriate inter-
connection network.

As a future work, we are planning to improve throughput
based on the current structure. Methodology of data transfer
will also be modified from current ping-pong transmission
to a mechanism that tolerates continuous requests. Further-
more, we will analyze utilization of each arithmetic unit and
data transfer rate with several biochemical models, and carry
out more investigation of a suitable design for the intercon-
nection network with higher throughput and scalability.
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