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Magnetic Properties of Fe-Based Ribbons and
Toroidal Cores Prepared by Continuous
Joule Heating Under Tensile Stress
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Nanocrystallized Fe,3 5 Cu; Nb3Si; 5 s Br ribbons with controlled permeability were prepared by using continuous stress-annealing
by Joule heating (CSA-JH) method. An optimization of the annealing conditions revealed that a completely developed anisotropy per-
pendicular to the ribbon axis can be obtained stably in the moving velocity range from 1 to 200 cm/min at the current density of 37.5
A/mm?. In particular, the highest velocity of 200 cm/min achieved the significant reduction in effective annealing time. The core made
from the above-mentioned ribbon had good ac-magnetic properties such as constant permeability up to 2 MHz and low magnetic loss
compared with those for different types of cores with controlled permeability.

Consequently, it was clarified that the CSA-JH method is one of effective techniques for production of high performance toroidal cores

with controlled permeability.

Index Terms—Continuous stress-annealing, controlled permeability, Joule heating, magnetic toroidal core, nano-crystalline, stress-

induced anisotropy.

1. INTRODUCTION

N order to advance the high-density packaging and energy

saving of electric devices, size reduction and improvement
in efficiency of magnetic cores are strongly required. We,
therefore, proposed several kinds of Fe-based toroidal cores
with controlled permeability and low loss, and showed that they
could be applicable to choke coils [1]-[4].

A choke coil operates under dc-bias field and we need to
control its permeability at several hundreds, because it operates
under dc-bias field. For preparation of a high performance mag-
netic core with controlled permeability, we used a uniaxial mag-
netic anisotropy developed perpendicularly to the ribbon axis by
stress-annealing, because the perpendicular anisotropy leads the
magnetization rotation mode and reduces magnetic loss. From
the viewpoint of improving the controllability of the perme-
ability, we have reported several methods of stress-annealing
such as the continuous stress-annealing with a furnace (CSA-F)
[5]-[7] and the Joule-heating under tensile stress (JH) [8]-[11].
Although both the methods are hopeful candidates for obtaining
aribbon with controlled permeability, the CSA-F method needs
a furnace and the JH method had difficulty in obtaining a long
ribbon efficiently.

We, therefore, developed a fabrication method which com-
bines the advantages in each method. This contribution reports
the developed method, which was called the continuous stress-
annealing by Joule-heating (CSA-JH) method, with the poten-
tial for high productivity.
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Fig. 1. Schematic representation of apparatus for continuous stress-annealing
by Joule heating. (Color version available online at http://ieeexplore.ieee.org.)

II. EXPERIMENTAL PROCEDURE

A. Annealing for Development of Anisotropy

Amorphous ribbons (Hitachi Metals Ltd.), 200 or 500 mm in
length, 2 mm in width, and 20 pm in thickness, were annealed
under tensile stress, o, from 50 to 175 MPa by the CSA-JH
method in air. The apparatus used for the annealing is shown in
Fig. 1. Rotatable Cu tubes connected with a dc-current source
were used as electrodes, and the ribbon was kept contact with the
electrodes under CSA-JH. The supplied current density, 5, and
the moving velocity, v,,, of the ribbons were varied from 32.5
to 42.5 A/mm? and from 1 to 200 cm/min, respectively. Mag-
netic anisotropy was developed perpendicularly to the ribbon
axis through the stress-annealing, which changes the magne-
tization mode to the rotation mode from the domain wall dis-
placement one [12]-[15]. Details of the origin of anisotropy de-
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Fig. 2. Relationship among development state of anisotropy, current density,
7, and moving velocity, v,,,. “QO”, “O0”, “/”, “x”, and “+” indicate “completely

»

developed”, “under development”, “not developed”, “magnetically deteriorate”,
and “mechanically broken during annealing”, respectively.

veloped by stress-annealing in nanocrystallized Fe-based ribbon
were reported by Ohnuma et al. [16], [17].

B. Measurements

We traced dc-hysteresis loops of the annealed ribbons and the
prepared cores with a computer-aided B-H loop tracer (Riken
BHS-40), and determined the saturation magnetization, I, the
uniaxial anisotropy energy constant, K, and the anisotropy
field, H 4, from the measured loop. K, was obtained by numer-
ical integration of H - AT in the first quadrant of the loop.

The annealed 500-mm-long ribbons were formed into
toroidal cores using ceramic bobbins, and then their ac mag-
netic loss and relative permeability at B,, = 0.1 T were
evaluated with a B-H analyzer (Iwatsu SY-8232) in the fre-
quency, f, ranging from 0.1 to 2 MHz.

III. RESULTS AND DISCUSSIONS
A. Optimization of Annealing Conditions

In order to determine suitable annealing conditions for
CSA-JH method, amorphous ribbons were annealed under
various conditions, and then relationship among the devel-
opment states of anisotropy, j and v,, was evaluated. Fig. 2
shows the results for the development state of anisotropy. The
states were categorized into 5 ones based on the shape of
hysteresis loops for the annealed ribbons. Symbols, “()”, “[0”,
“r’, “x”, and “+”, indicate “completely developed”, “under
development”, “not developed”, “magnetically deteriorated”,
and “mechanically broken during annealing”, respectively. The
completely developed anisotropy could be obtained stably at
¥ = 1 — 200 cm/min and j = 37.5 A/mm?. The highest
moving velocity of 200 cm/min in our equipment corresponds
to effective annealing time of approximately 1 sec, and enables
us to reduce effective annealing time by 75% compared with
that for the CSA-F method [7]. However, a ribbon annealed at
high v,,, tended to wrinkle mechanically. From the viewpoint of
forming the annealed ribbon into a toroidal core, the wrinkles
should be improved in the future. In this experiment, we could
obtain the ribbons with completely developed anisotropy and
good mechanical stability below v,,, = 10 cm/min.

Fig. 3 shows the dependence of anisotropy energy, K, on o,
together with results for the CSA-F [7] and JH [11] methods.
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Fig. 3. Anisotropy energy of ribbons prepared by CSA-JH as a function of
tensile stress during annealing. The results obtained by CSA-F and JH methods
were also shown in the figure [7], [11] (Color version available online at
http://ieeexplore.ieee.org.).
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Fig. 4. Distribution of anisotropy energy, /., in a 500-mm-long ribbon
prepared by CSA-JH method.

The slope of the K,, vs o curve for the ribbons prepared by
CSA-JH method was 2 times as large as that for JH method,
indicating that a required o value can be reduced.

From the above results, we concluded that the CSA-JH
method has high productivity compared with those for the
CSA-F and JH methods.

B. Distribution of Anisotropy in Annealed Ribbons

In order to apply the long ribbon with controlled permeability
to a toroidal core, K, of 500-mm-long ribbons was evaluated
every 50 mm in length. The measurement was carried out using
single-sheet tester (SST). The long ribbon inserted into pick-up
coil, and then excited at f = 50 mHz. Lengths of an exciting
coil and pick up one are 50 and 3 cm, respectively. The exciting
coil is long enough to guarantee a uniform magnetic field in the
pick up coil. An error of the measurement is less than 5%. Fig. 4
shows the measured K, at each measurement point. The K,
value was almost constant in each point, and we could confirm
that the CSA-JH method enables us to fabricate long ribbons
with homogeneous anisotropy.

C. AC Magnetic Properties of Prepared Core

A toroidal core with the inner diameter, D, of 20 mm was pre-
pared from a 500-mm-long annealed ribbon (j = 40 A/mm?,
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Fig. 5. Relative permeability, s, and magnetic loss of a developed core as
a function of frequency, together with those for different types of cores with
controlled permeability [18].

Uy, = 9 cm/min and 0 = 100 MPa), and its ac magnetic prop-
erties were evaluated at B,, = 0.1 T in the frequency range
from 0.1 to 2 MHz.

Fig. 5 shows relative permeability, ,., and magnetic loss per
cycle of the prepared core as a function of frequency, together
with those for conventional cores with controlled permeability
[18]. The prepared core had the low value of magnetic loss com-
pared with those for the conventional ones, and also kept the
permeability constant up to 2 MHz. These properties were al-
most the same as those for the previously reported ones [1]-[4].

IV. CONCLUSION

We developed a fabrication method of continuous stress-an-
nealing by Joule-heating (CSA-JH) which combined some pro-
ductive advantages of the continuous stress-annealing with a
furnace (CSA-F) and the Joule-heating (JH) methods for ob-
taining a magnetic ribbon with controlled permeability. The ob-
tained results are summarized as follows;

1)  The CSA-JH method achieved a significant reduction
in an effective annealing time compared with that of
the CSA-F method.

2) In the CSA-JH method, the magnitude of tensile stress
during annealing for obtaining a suitable anisotropy
energy value could be reduced compared with the JH
method.

3) A toroidal core prepared from the ribbon obtained by
the CSA-JH method had constant permeability up to
2 MHz and showed lower magnetic loss than those for
different types of cores with controlled permeability.
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