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Abstract. We studied the effect of treadmill exercise on muscle fibers in mice with experimental steroid
myopathy.  Frozen sections of the extensor digitorum longus (EDL) and soleus (SOL) muscles were
stained with hematoxylin-eosin, and the muscle fiber diameters measured.  In the EDL, muscle fiber
diameters in the steroid groups decreased significantly compared with those in the control groups;
moreover, muscle fiber diameters in the exercise groups increased significantly compared with those
in the non-exercise groups, whereas the diameters in the SOL did not differ.  We speculate that tread-
mill exercise may prevent corticosteroid-induced muscle fiber atrophy.
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Corticosteroid therapy is a common clinical treatment for
autoimmune diseases such as multiple sclerosis, myasthenia
gravis, and rheumatoid arthritis, and steroid myopathy is a
common side-effect of systematically administered
corticosteroids1-4).  It is not clear, however, whether
therapeutic exercises can prevent corticosteroid-induced
muscle atrophy during corticosteroid therapy.  We therefore
examined the effect of treadmill exercise on the muscle
fibers of mice with experimental steroid myopathy.

Materials and Methods

We used 20 male C57BL/10ScSn mice, aged 32 weeks,
randomly divided into four groups: control non-exercise
(CN), control exercise (CE), non-exercise with steroid
(SN), and exercise with steroid (SE).  In the steroid groups,
a 2 mg/kg dose of dexamethasone sodium phosphate was
injected to the upper lumbar region subcutaneously 6 days/
week for 5 weeks.  The control groups likewise were

injected with 2 ml/kg normal saline solution 6 days/week
for 5 weeks.  During the experimental period, the mice were
able to move in the cage, to drink water and eat food freely.
The mice with exercise were forced to run on a treadmill
(Model-SN460 Sinano Ltd., Tokyo) at 10 m/min5)6) for 20
min/day, 6 days/week for 5 weeks.  At the end of the
experimental period, the extensor digitorum longus (EDL)
and soleus (SOL) muscles were extracted.  Frozen sections
of these muscles were stained with hematoxylin-eosin.  The
experimental protocol used was approved by the Ethics
Review Committee for Animal Experimentation at our
institution7).

The diameters of 200 muscle fibers from each of the
muscles were measured with a personal computer and the
public domain NIH Image program.  Results were analyzed
by a two-way analysis of variance (two-way ANOVA).  If
the interaction was showed (p<0.05), pairwise comparisons
were made using non paired Student’s t-test.

Results

In the EDL, muscle fiber diameters in the steroid
groups decreased significantly (p<0.01) compared with
those in the control groups, the means of the muscle fiber
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diameters in the exercise groups increased significantly
(p<0.01) compared with those in the non-exercise groups.
There was not the interaction between steroid and exercise
(Fig. 1a).

In the SOL, muscle fiber diameters in the steroid
groups decreased significantly (p<0.01) compared with
those in the control groups, and the means of the muscle
fiber diameters in the exercise groups did not showed
significant difference from those in the non-exercise
groups.  There was the interaction between steroid and
exercises (p<0.01).  However, result from non paired
Student’s t-test, muscle fiber diameters in the group CN did
not showed significant difference from those in the group
SN (Fig. 1b).  These statistical data induced that there was
not significance in the difference of the mean fiber
diameters between the steroid groups and the control groups
in the SOL.

No necrotic fibers was found in this experiment.

Discussion

Our data show that corticosteroid administration
induced muscle fiber atrophy in the EDL but not in the
SOL.  Furthermore, the muscle fibers showed no atrophy

during treadmill exercise in spite of corticosteroid being
administered in the EDL.

The EDL is composed mainly of type II fibers, and the
SOL of type I fibers.  ATP is produced by fatty acid
oxidation in type I fibers, but it is not produced in type II
fibers.  Corticosteroids also inhibit the synthesis of muscle
protein and ATP8)9), thereby inducing accelerated protein
degradation and muscle fiber atrophy in the EDL.

There are a few reports that physical training restores
atrophied muscle in corticosteroid-treated humans and
animals.  Horber et al. showed that in humans isokinetic
training of knee extension-flexion increased the thigh
femoral muscle area, decreased the thigh fat area, and
normalized the mean peak torque and total work output in
12 patients treated with prednisone10).  Gardiner et al.
reported that in rats isometric exercise, such as mild weight-
lifting exercise, decreases atrophy of fast-twitch muscle
fibers under chronic glucocorticoid administration11).
Takahashi reported that in rats free running exercise
improve glucocorticoid-induced type II fiber atrophy12).

Physiological muscle overload, as in isometric and
isokinetic exercise, results in hypertrophy of fast-twitch
fibers in animals13)14) and humans15-17).  The treadmill
exercise, used as isotonic exercise, raises myofibrillar

Two-way ANOVA Two-way ANOVA
Factor 1 (Control vs Steroid); p<0.01 Factor 1 (Control vs Steroid); p<0.01
Factor 2 (Non Exercise vs Exercise); p<0.01 Factor 2 (Non Exercise vs Exercise); p>0.05
Interaction (Factor 1 × Factor 2); p>0.05 Interaction (Factor 1 × Factor 2); p<0.01

Non paired student’s t-test
CN vs SN; p>0.05

Fig. 1 Means of muscle fiber diameters in the four groups.
In the extensor digitorum longus (EDL) muscle, the steroid groups decreased significantly (p<0.01) compared with the
control groups, and the exercise groups increased significantly (p<0.01) compared with the non-exercise groups.
In the soleus (SOL) muscle, the steroid groups decreased significantly (p<0.01) compared with the control groups, the
exercise groups did not show significant difference from the non-exercise groups.  There was the interaction between
steroid and exercise statistically.  Result from non paired Student’s t-test of the group CN did not show significant dif-
ference from the group SN.
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ATPase activity18), and glycolytic or oxidative enzyme
activities in normal rat skeletal muscles19).  These changes
produced by treadmill exercise may prevent the muscle
atrophy that reflects the corticosteroid-induced decrease of
protein synthesis and ATP synthesis.  And Takahashi had
presumed that the running exercises inhibit the protein
degradation and accelerate protein synthesis in type II fiber
with steroid myopathy12).  However, the mechanism by
which training exercise prevents corticosteroid-induced
muscle atrophy is not known.

It is better for patients with steroid myopathy to have
the dose of corticosteroid decreased, but it sometimes is
impossible to do this because of the high activity of
autoimmune diseases.  This study showed that treadmill
exercise was effective in preventing muscle atrophy in mice
with experimental steroid myopathy.  In humans, isotonic
exercise may also prevent corticosteroid-induced muscle
atrophy.
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