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    Present paper consists of peak strength model and failure process simulation of both 
experimental and numerical method. The peak strength model of brittle materials with a pre-existing 
open-hole defect is proposed in this paper. A modified Sammis-Ashby model is deduced, which can 
be used to calculate the peak strength of brittle materials. It shows the law between peak strength 
σ and independent variable μ, which is the ratio of open-hole radius (a) to half-width of the specimen 
(t). Then in the second part, both of experimental and numerical investigations were carried on 
open-hole specimens. A progressive elastic damage method (RFPA) is employed to inspect and verify 
the modified model and simulation the failure process. The investigation finds that there are good 
correlations between the experimental and numerical values. In the process simulation, due to the 
influences of boundary conditions, secondary cracks developed in the shear zones till failure, 
therefore the shear failure type was obtained. 
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NOMENCLATURE  
 
    E0     specimen’s Young’s modulus                         μ         ratio of  a/t 
    λ        ratio of  σ3/σ1                                                                                           KIC          fracture toughness 
    α        a constant (0.55 in this study)                         l     the length of the secondary crack  
    a    radius of an open-hole                              L     normalised crack length 
    t    half-width of the specimen                           G     crack-extension force  

  γ    surface energy per unite area 
 

 

1. INTRODUCTION 
     Structural materials especially concrete or 
other brittle materials, they usually contain some 
pre-existing defects, either because of the making 
process of materials themselves or due to the 
requirements of structures, for example the structural 
components may need to be weakened according to 
the utility pipelines and other realistic functions. 
When they are loaded in compression, those 
secondary failures are always determined by these 
pre-existing defects, and finally they have great 

effects on the whole failure. In order to clarify the 
effect of defects on concrete structural and other 
brittle materials, the plate specimen was chosen. 
Because in present methods to obtain the inside crack 
paths are not so accurate or acceptable, by using the 
plate specimen, secondary cracks can easily occur 
and develop on the surface, therefore this study was 
carried out. Although the mechanics of brittle failure 
of solids containing open-hole defects has been a 
subject of intensive research for many years [1], 
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there is no standard on the experiment of plates of 
concrete or other artificial materials containing holes. 
Such theoretical analysis is also rarely carried out [2]. 
Because of their complexity, such experimental tests 
are seldom carried out too [3]. Failure of this type is 
most generally observed in solid laboratory samples 
(Jaeger and Cook, 1976; Holzhausen and Johnson, 
1979). The pre-existing open-hole can interact with a 
compressive stress field in a way which causes new 
cracks to grow from it. If these cracks extend to the 
specimen’s surface, or if they interact with each 
other so that they grow unstably, then a macroscopic 
failure may follow [3].Because the type of failure 
highly depends upon the confining pressure [4], in 
order to get the uniform fracture type, uniaxial 
compression analysis is carried out in this analysis, 
in which σ3＝0.  
     In Sammis and Ashby’s experiments (1986), 
plate specimens containing a single hole of the same 
size or an array of holes with various diameters were 
tested. The purpose of their experiments is to 
investigate the interaction of growing cracks with the 
surfaces of the specimen and the interaction with 
secondary cracks themselves. The experimental 
results show that cracks initiated from the holes 
interact with the surfaces of the finite specimen in a 
way that causes them to grow longer than they do in 
an infinite medium. Based on Sammis and Ashby 
theoretical crack model [5], the modified formulation 
for calculating the peak strength of brittle specimens 
with an open-hole is deduced in this study. This paper 
also presents a series of numerical test results of 
uniaxial compression. Test samples contain single 
hole with varied diameters and the sample widths are 
also changed for two types. The theoretical peak 
strength of brittle materials and the numerical values 
are also compared and discussed in this paper. 
 

2. SAMMIS-ASHBY`S THEORY 
     In Sammis and Ashby’s research, they analyzed 
the growth of a crack from a circle hole with the 
radius a, contained in a plate subjected to a remote 
biaxial stress field (σ1, σ3), as shown in Fig.1. 
     The hole in an infinite plate is considered first; 
then the interaction of the growing crack with the 
edges of a finite plate is analyzed, it can be 

completely divided into two steps: 
 

 
 Fig.1 Crack geometry and co-ordinate system in an 

infinite plate 

   

 a. Diagram of a finite plate 
with an open-hole  

 

b. The bending displacement 
    and associated cracks 

Fig.2 Schematic of a finite plate containing a 
open-hole under loading 

 
2.1 Crack growth from a hole in an infinite plate 
     Sammis and Ashby Considered an elastic plate 
containing an open-hole of radius a and subjected to 
principal stresses σ1 and σ3. The stresses are treated 
as positive when tensile and negative when 
compressive. By setting the ratio of σ3/σ1  as λ,  
according to the Appendix of referenced paper [4], 
the equation as follows is deduced:  
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2.2 Interaction of the cracks with the surface 
     Sammis and Ashby’s research shows that the 
cracks grow in the way described by equation (2) 
when they are short and the plate containing them is 
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large, but that they extended much further than this 
when l (the length of secondary cracks) becomes 
comparable with the plate width 2t as shown in 
Fig.2[2]. Considering the interaction of the 
micro-cracks during extending, they got equation (3) 
as follows to determine the stress intensity: 
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Sammis and Ashby’s experiments shows that ΚΙ

Β is 
negligible for wide plate (t/a»1), but becomes 
increasingly important as t/a approaches 1[2].  
 
3. MODIFIED MODEL 
     Since the deduction is based on uniaxial 
compression test and the specimens follows the 
failure mode I (tension crack mode), for the uniaxial 
loading σ3＝0, which means λ＝σ3/σ1＝0. So the 
equation (2) is given by 
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In which L (normalized crack length) can be 
determined either from the laboratory test or 
numerical test. And it is simply defined by L＝l/a (l 
is the length of the crack and a is the radius of 
open-hole). The crack grows until the stress intensity 
KI becomes equal to the fracture toughness KIC. 
     By setting μ = a/t, meanwhile because of λ =0, 
equation (3) is given by: 

 

( ) ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+⋅⋅++
⋅−=

22

0

1
2

1

2

1121

1
1

3

L
E

a
L

K B
I

μσ
π

πσαμ
π

 

                     (5)       
In which E0 is the brittle materials’ Young’s Modulus, 
α a constant of effective hole-depth, it is mainly 
depended on the material itself. Sammis and Ashby 
found that for α =0.6, it gives the best 
correspondence between theoretical and experimental 

values [5]. In this deduction α =0.55 is employed. 
(Culled from referenced paper [6].) 
     Before the loading reaches the peak strength, 
the fracture toughness KIC must be attained. Here KIC 
contains two parts which is the one for cracks growth 
and the other for calculating the interaction of the 
cracks during their developing. Which are shown in 
equation (4) and (5). When the specimen failed which 
means:  

                  pσσ =1                  (6) 

     Here σp is the peak strength of the specimens 
with an open-hole. It is treated as positive when 
tensile, negative when compressive. 
  Then the fracture toughness of the whole specimen 
with an open-hole is setting: 
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By setting: 
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The equation (8) is given by: 
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     Because of L, α and E0 are depend on the 
materials` properties, they would be constants, which 
means A, B and C in equations above are constants 
for this research too.  In equation (12), σp is the 
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peak strength of brittle specimens with open-hole 
defect and μ = a/t shows the degree of imperfection 
for an integral specimen. The equation shows us not 
only the correspondence between σp and μ, but also 
the geometry effect of the specimens by containing 

the factor of aπ . That is much more acceptable 

when calculating the peak strength.  
     The analysis of the fracture toughness KIC is 
evaluated based on the calculating of the elastic 
energy. By giving the crack-extension force G, KIC 
can be done by the relationship of equation (13). 

                     (13) ( ) γEEGKIC 22 ==

     In which γ is the surface energy per unite area 
[5]. As many researchers have done lots on the 
studied, most of the popular theories about it are also 
based on the experimental analysis [7] [8]. In our 
study, we used SENRB method to calculate the 
fracture toughness KIC. Detail about this method was 
filed by R.H.Wong [9]. By using it, the fracture 
toughness can be determined by the numerical test, so 
that peak strength can be obtained according to 
equation (11). Test method is shown in Fig.3.  

 
Fig.3 Schematic of three points test method 

 
     The fracture toughness can be calculated by 
follow equation (13) [9]. 
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4. FAILURE PROCESS SIMULATION 
 
4.1 Experimental investigation 
    The interpretation of results of experimental 
investigation on real rock is usually complicated by 

sample variability [2]. In order to overcome this 
difficulty, laboratory specimens were made from an 
mixture of plaster, water and retardant in a weight 
ratio of 1:0.2:0.005 was used to describe soft rock. 
Parameters of specimen are shown in Table.1 and 
schematic of compression test are shown in Fig.4 

Table.1: Specimens` parameter 
a×b×c  σc  σt  Es     ν 

mm  MPa  
100×100×10 47.4 2.5 28700 0.23 

 
    Digital Image Correlation Method (DICM) has 
been developed and used to measure deformation and 
strains of materials under various loading regimes 
with sub-pixel accuracy since the 1980’s. It has been 
successfully applied to determine strains in 
specimens of solid and applied to a wide range of 
experiments. 
    By using this measurement, uniaxial 
compression test was carried out on the artificial 
rock-like specimens with an open hole. In fact a 
series of specimens were tested, the radius of 
open-hole increased from 5mm to 40mm at a step of 
every 5mm. 
 

 

Fig.4 Schematic of compression test by using 
DICM and specimen with an open-hole 

  
    Due to the limitation of textual length, the strain 
contours of α = 20mm obtained by DICM are listed , 
this specimen failed at step 721, the final failure type 
agree well with the strain process analysis. Counter 
figures shows us the crack started from the edge of 
pre-existing defect, according to the theoretical 
analysis, split crack would be obtain. However due to 
the boundary effect, they develop in the shear zones 
till failure. Details are shown in Fig.5. 
    In order to compare the experimental 
conclusions, numerical simulations are also carried 
out.  
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     Step 15                 Step 274  

       
     Step 498                 Step 721 

Fig.5 DICM strain contours during the test 
process   

   
4.2 Numerical simulation 
     Numerical methods are currently the most 
popular method used for modeling deformation 
behavior of brittle solids before failure. Even though 
progress of failure has been obtained in numerical 
simulation in brittle materials, there is a lack of 
satisfactory models that can simulate the progressive 
failure of brittle solids in a more visualized way, 
including simulation of the failure process, failure 
induced seismic events and stress redistribution [10]. 
     In this study, Realistic Failure Process Analysis 
code (RFPA2D) is employed. Finite element technique 
is used in this code. The package can handle brittle 
material with heterogeneous material properties, and 
can perform non-liner deformation analysis, which 
includes the occurrence and development of cracks 
and fractures. It is a progressive damage model, 
which can simulate the deformation, stress 
distribution and failure induced stress redistribution, 
furthermore fracture initiation and propagation in 
heterogeneous materials can also be done. The 
consideration of heterogeneity for the elements is 
achieved by assigning the elements random material 
properties based on Weibill’s distribution. Although 
fracture mechanics plays an important role in the 
analysis of defect propagation, the assumption of 
homogeneity adopted in fracture mechanics restricts 
its application in heterogeneous materials. Instead of 
using a fracture mechanics approach where fracture 

propagation is related to a stress intensity factor at 
the secondary crack tips and is controlled by the 
fracture toughness, a failure approach is adopted in 
the code RFPA2D, where micro-fracturing occurs 
when the stress of an element satisfies a certain 
strength criterion. 
     Because of the grain-scale heterogeneity, the 
peak strength for brittle materials especially for 
concrete or rock can vary significantly from a local 
volume to another. To analyze the statistical variation 
of the bulk peak strength in such a heterogeneous 
material, Weibull (1951) adopted the statistics of 
extreme (Gumbel, 1958) to characterize the local 
failure strength by the probability distribution 
function 
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     Meanwhile the cumulative probability function 
was given by 
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Here the assumptions are made that the overall 
failure is primarily controlled by the weaker elements 
and that the strength of the weakest element is 
vanishingly small. As a consequence the statistics of 
failure would involve only two parameters: σ0  and m. 
σ0 is proportional to the mean value of the strength 
distribution, and m is a dimensionless parameter, it 
characterizes the degree of homogeneity in the 
structure. An infinitely high m value corresponds to a 
homogeneous structure with a uniform strength, 
whereas a heterogeneous structure with a broad 
distribution of local strength is associated with a 
relatively low m value [11]. In this numerical 
simulation, this function is applied to solve the 
heterogeneity of concrete, rock and rock-like 
materials.  The value of m for our simulation is 
shown in Table.2.  
     As it is shown in Fig.6, the numerical 
specimens subjected to uniaxial compression. In 
order to determine the relationship between defect 
degree μ and the geometry of the specimen, each 
specimen is set as a mesh that consists of 100×100 
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Fig.6 Schematic diagram of numerical simulation 

elements (Fig. 6). Two kinds of geometry were 
applied in the model whose material properties are as 
shown in Table 2 while the geometry and radius of 
open-holes are as shown in Table 3. 

Table 2: Parameter contained heterogeneity for 
numerical simulation. 

Elastic 
modulus 

Compression 
strength  

(N/mm2) (N/mm2) 

Poisson 
ratio 

Average 40000 80 0.25 
Heterogeneity 13 5 20 

      RFPA2D was then used to simulate the failure 
process by applying a total of 180 load steps. Initially 
a load step of 1kN per step was applied up to 100 
steps. There after a strain controlled load of about 
0.001 mm per step was applied until total failure 
occurred. 
     As to the brittle materials, Mohr-Coulomb 
criterion has a limit on the description of tension 
strength. A modified coulomb failure criterion was 
employed in this numerical simulation. It includes 
tension cutoff and the tension flow rule is well 
associated. For details of this criterion please see, for 
example, Chen and Han [12]. 
  
5. RESULTS AND DISSCUTION 
     In this theoretical analysis and numerical 
simulation, there are two kinds of specimens` 
geometry was used, which are 100×100mm2 and 
150×150mm2. For each of this geometry 11 of the 
specimens with different defect degree are 
established. So in total there are 22 samples are 
tested and calculated. The defect degree which is 
determined by μ = a/t is changed from 0 to 0.2 with 
the step of 0.02. Details are listed in Table 3: 
    By using the modified model, the peak strength 
of same samples are also calculated and compared. 

Fig5.a is the peak strength’s comparison with the 
width of 100mm and Fig5.b is that of 150mm. 
Fracture toughness used for calculating in the 
modified model was obtained, according to the 
numerical test described above. The average value 
employed is 0.83MPam1/2 

 
Table 3: Specimens` geometry 
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 b. Peak strength of specimens  
 with width of 150mm 

 
Fig.7Comparison on peak strength  

Group 1 Group 2 
a/ mm t/ mm μ a/ mm t/ mm μ 

0 50 0.00 0 75 0.00 
1.0 50 0.02 1.5 75 0.02 
2.0 50 0.04 3.0 75 0.04 
3.0 50 0.06 4.5 75 0.06 
4.0 50 0.08 6.0 75 0.08 
5.0 50 0.10 7.5 75 0.10 
6.0 50 0.12 9.0 75 0.12 
7.0 50 0.14 10.5 75 0.14 
8.0 50 0.16 12.0 75 0.16 
9.0 50 0.18 13.5 75 0.18 

10.0 50 0.20 15.0 75 0.20 
σ

 (
M

Pa
) 

σ
 (

M
Pa

) 
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     As it can be seen from Fig.7, both of the model 
and numerical simulation reveal that the peak 
strength reduces while the defect degree μ increasing, 
meanwhile μ =0.05 is the turning point, before that 
the peak strength of brittle specimens with an 
open-hole reduced quickly with the increasing of μ. 
The decrement of the peak strength is almost 40% of 
the perfect one’s. After that, the rate of deceleration    
slows down. Moreover it shows that with the same 
defect degree, the wider the sample is, the weaker it 
becomes. 

found to be caused by the following sequence. At 
first the cracks grow fast, and then, when the tips of 
the cracks near the ends of the specimen, the 
propagation slows down, or sometimes stops, due to 
the boundary effect.  

 

     It is worthwhile to note that this result differs 
from the theoretical prediction for a hole in an 
infinite domain; the theoretical failure follows the 
split failure model. One probable reason for such 
differences may be due to the interaction between the 
growing cracks and boundary conditions, which 
appears to retard the crack growth as the crack is 
approaching the end surfaces. And, thus, the shear 
cracks zones are more likely to develop. That means 
for the brittle specimens, if the shear stress in the 
area between the hole and the free boundary of the 
specimen is high enough, shear failure will occur 
between the hole and the free boundary. 

    The fracture process is shown in Fig.5 as an 
experimental one and Fig.8 as an example of this 
numerical simulation. In which the peak strength is 
50MPa (step151), just after that the sample fractured 
totally. It can be seen buckling occurs when the 
cracks reach the two ends of the specimen, which 
failure by starting a new crack in shear zones around 
the pre-existing open-hole. The failure mode shows 
that the specimen containing the smaller hole fails by 
cracks initiated in a shear zone connecting the hole 
and the surface, due to the proximity of the hole to 
the boundary. This failure is 

 

      

         
 

      
 

      
     

Fig.8 Numerical simulation of failure process  

6. CONCLUSION 
     Based on the results, the following conclusions 
have been obtained: 
     1) The results of numerical simulation agrees 
well with the model especially μ ＞0.05 , which 
means this modified model can be used for 
calculating the peak strength of brittle specimens 
with open-hole defect after the turning point. 
     2) Peak strength is affected by the width of 
sample and defect degree where peak strength 
decreases with the increased diameter of hole and 
increases with the width of sample.    Step 92     Step 0  
     3) For this study μ=0.05 is the turning point, 
the decrement of peak strength is almost 40% up to 
this turning point and after that the rate of 
deceleration slows down. 
     4) During the process simulation, the secondary 
cracks occur from the open-hole which agree with the 
theoretical analysis. However due to the boundary 
effect, they develop in the shear zones till failure. 
Therefore  shear fracture model is obtained in the 
process simulation which can be found both in the 
experimental and numerical investigations. 
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