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Rheological Parameter Estimation for the Prediction of 
Long-term Deformations in Conventional Tunnelling 

 

Abstract: The long-term deformations of mountain tunnels, which attract more and more attentions, are closely related to 

the time-dependent features of the surrounding rock mass. However, it is not easy to determine an appropriate rheological 

model and its corresponding parameters for a certain engineering instance. This paper presents a rheological parameter 

estimation technique by using error backpropagation neural network (BN) and genetic algorithm (GA). The application of 

the proposed technique to an engineering instance, Ureshino Tunnel Line I on Nagasaki Expressway, is expatiated in 

detailed. The stochastic nature of the proposed technique is also discussed through case studies. It is proved that the 

proposed technique can provide the engineer with an optimal estimation of the rheological parameters, which can help the 

prediction of long-term deformations of mountain tunnels in the future. 

Keywords: Rheology, Parameter Estimation, BN, GA. 

 

 

1 Introduction 

The long-term deformations of mountain tunnels, which attract more and more attentions, are closely 

related to the time-dependent features of the surrounding rock mass. These time-dependent features, 

named rheology in general, have been studied carefully through a great deal of specified creep, relaxation 

and quasistatic compression tests (Maranini and Brignol, 1999; Nawrocki et al., 1999; Li and Xia, 2000; 

Shin et al., 2005; Fabre and Pellet, 2006). According to the results from laboratory (or in-situ) tests and 

the experience from engineering practice, many rheological models have been proposed to account for 

the time-dependent features of rock mass from manifolds (Hudson and Harrison, 1997; Jin and Cristescu, 

1998; Pellet et al., 2005; Shao et al., 2006; Guan et al., 2008). For a certain engineering instance, 

however, it is not easy to determine an appropriate rheological model and its corresponding rheological 

parameters due to the high cost and the long duration of rheological tests. 

On the other hand, parameter estimation technique by using artificial neural network and genetic 

algorithm developed rapidly during last decade in the field of rock mechanics and rock engineering. It 

has been applied successfully to generalize the basic properties of rock mass from laboratory experiment 

data (Meulenkamp and Grima, 1999; Sonmez et al., 2006), to determine the model parameters from 

numerical simulations and monitoring data (Feng et al., 2000; Pichler et al., 2003), to help the design and 

maintenance of tunnels, embankments, slopes etc. (Cai et al., 1998; Mayoraz and Vulliet, 2002; Pichler et 

al., 2003; Rangel et al., 2005). The attractiveness of artificial neural network comes from its remarkable 

information processing capability pertinent to nonlinearity, high parallelism, fault and noise tolerance, 

self-learning and generalization. Therefore, it is feasible to explore the artificial neural network to 

estimate the rheological parameters that are commonly difficult to determine, according to in-situ 

 



 

monitoring data when they are available. This paper represents this kind of application with regard to an 

engineering instance, the Ureshino Tunnel Line I on Nagasaki Expressway. 

Section 2 presents an introduction to the Ureshino Tunnel Line I on Nagasaki Expressway, including 

the in-situ conditions, the monitoring data etc. Section 3 presents the philosophy of the proposed 

rheological parameter estimation technique. The basic concepts of the multilayer error backpropagation 

neural network (abbreviated as BN hereafter) and the genetic algorithm (abbreviated as GA hereafter) are 

also introduced briefly in this section. Section 4 presents the application details of the proposed technique 

to that engineering instance and some discussions on the stochastic nature of the proposed technique. 

 

 

2 The Outline of Ureshino Tunnel Line I 

The Ureshino Tunnel Line I on Nagasaki Expressway, which had a total length of 683 m, was 

constructed from May 1990 and completed until Nov. 1992 (JPHC, 2000). The geological profile of the 

tunnel is schematically illustrated in Fig. 1. The cross section of STA 211+90, where the cover was about 

250 m, is mainly concerned in this paper. The cross section dimensions and the convergence monitoring 

positions (mainly including the convergence at the crown uc, at the springline us and at the invert ui) are 

schematically illustrated in Fig. 2. In the longitudinal direction as illustrated in Fig. 3, the span of each 

excavation cycle was 1.0 m; rock bolts and shotcrete lining were installed immediately after each 

excavation cycle completed; then second lining was cast in place after two or three months when tunnel 

face advanced away. 

However, the tunnel experienced continuous convergence during its first five years’ service life (JPHC, 

2000). Taking the section of STA 211+90 for example, the delayed deformations from Nov. 1992 when 

the tunnel Line I was completed to Nov. 1997 when the tunnel Line II commenced working are depicted 

in Fig. 4. They are measured by the total station; uc and ui are the absolute crown settlement and invert 

upheaval leveled from a datum mark outside the tunnel; us is half of the relative convergence between 

two wall sides at the springline. For convenience, uc, us and ui at 12th, 24th, 36th, 48th month are defined as 

key convergences ukey here, on which more concerns are focused throughout this paper.  

To avoid further deformations of this tunnel, in fact, ground reinforcement on Ureshino Tunnel Line I 

(including the backfill grouting beneath the invert and the additional bolting at the foot) was performed 

after the Ureshino Tunnel Line II was completed in 2000. From a long-term perspective, however, the 

long-term deformation mechanism for this mountain tunnel should be clarified. Through numerical 

simulations, Guan et al. (2008) proved that these delayed deformations are closely related to the 

time-dependent features of the surrounding rock mass, and the Burger-MC deterioration rheological 

model (see details in Appendix A) is more suitable than others to account for these delayed deformations 

that occurred during the tunnel’s service life. Because the deformation characteristics of the Burger-MC 

deterioration rheological model agree more qualitatively with those in the monitoring data, where the 

 



 

developments of uc, us and ui are characterized by the exponential, linear and stair-typed increasing 

statuses respectively. 

However, another problem arises that how to estimate the rheological parameters involved in this 

model more realistically and quantitatively. Therefore, a rheological parameter estimation technique by 

using BN and GA jointly is proposed in this paper, to estimate the six rheological parameters (GK, ηK, ηM, 

ωc, ωφ, Rthr) involved in this model in a more realistic way. 

 

 

3 Rheological Parameter Estimation Technique 

The basic concepts about the multilayer error backpropagation neural network (BN) and the genetic 

algorithm (GA), which are two main tools used in the proposed technique, are first introduced. It is 

followed by a brief and literal introduction to the proposed rheological parameter estimation technique. 

The application and implement details of the proposed technique are expatiated in section 4. 

 

3.1 Multilayer error backpropagation neural network 

There are many types of artificial neural network according to the different network architecture and 

different learning algorithm, among which BN is the most mature and popular one. The basic concepts 

and learning algorithm about BN are introduced briefly in this section, which are based on Schalkoff 

(1997) and Haykin (1999). 

The neuron is the basic processing element that sums up the input signals by synaptic weights and 

converts them into the output signal through a transfer function. The artificial neural network is 

considered as a computing system composed of a number of neurons that are interconnected by a 

particular topology. Specifically, the BN consists of an input layer corresponding to the independent 

variables of the problem, an output layer corresponding to the dependent variables of the problem and 

one (or more) hidden layer(s) according to the nonlinearity of the problem. The architecture of a 

fully-connected BN is schematically illustrated in Fig. 5. Hereafter, the symbol of BN(N0, N1, N2, N3) is 

used to represent this kind of network consisting of an input layer with N0 input signals, an output layer 

with N4 neurons and two hidden layers with N2 and N3 hidden neurons in each layer.  

Consider a neuron nk fed by a set of input signals yj produced by its former (left) layer neurons, the 

output signal yk of this neuron is computed by the following. 
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In the above equations, Nl is the total number of input signals fed to neuron nk, and wkj is the synaptic 

weight connecting neuron nj to neuron nk (wk0 is the synaptic weight connecting an fixed unit bias input 

signal to neuron nk). vk is the weighted sum of all the input signals. χk is the transfer function of neuron nk 

 



 

that transfers the weighted sum to the output signal yk. It may be a threshold, sigmoid or linear transfer 

function depending on the problem. 

When neuron nk is an output neuron, comparing its output signal to the desired output dk, the error 

signal of this output neuron nk is defined as: 

 kkk yde −=   (for an output neuron nk) (2) 

For a pair of input signals to desired output signals (named a dataset hereafter), the sum-square-error for 

this dataset is defined as Eq. (3-1). Similarly, the average sum-square-error for the entire datasets is 

defined as Eq. (3-2). 
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where Nl is the total number of output neurons; NT is the total number of datasets.  

The synaptic weights are adjusted iteratively to minimize the error function (sse or sseav) by the means 

of error backpropagation learning algorithm. Therefore, there are two sweeps in each iteration: forward 

activation to map the input signals into the output ones, and error backpropagation to adjust the synaptic 

weights to minimize the error function. There are many algorithms to adjust the synaptic weights, among 

which the gradient descent method is the most straightforward one.  

For a neuron nk being an output neuron, the weights correction in the nth iteration, Δwkj(n), are defined 

by the delta rule. 
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(for an output neuron nk) 

 with '
kk

k

k

k

k

kk

k

kk
k e

v
y

y
e

e
sse

v
y

y
sse

v
sse χδ =

∂
∂

∂
∂

∂
∂

−=
∂
∂

∂
∂

−=
∂
∂

−=  (4-2) 

In the above equations, η is the learning rate and μ is the momentum coefficient. δk is the local gradient 

of the output neuron nk and χk’ is the first order differential of the transfer function with respect to vk. 

For a neuron nj being a hidden neuron, the weights correction in the nth iteration, Δwji(n), are similarly 

defined by the delta rule. 
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(for an hidden neuron nj) 
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where δj is the local gradient of the hidden neuron nj and χj’ is the first order differential of the transfer 

function with respect to vj. 

The training mode presented above, where the synaptic weights are updated immediately after the 

presentation of one training dataset, is called the sequential mode. In contrast, the batch mode uses sseav 

as the error function, and updates the synaptic weights in an averaged means after the entire training 

datasets has been presented. In general, the sequential mode needs a smaller local storage and has a better 

stochastic search ability to prevent entrapment in local minima. The batch mode has a better estimation 

of the error gradient and a more representative measurement of the required weight correction. 

A high learning rate will accelerate training process by changing the synaptic weights significantly 

with a large step, but increase the risk of overshooting a near-optimal solution or oscillating on the error 

surface. A small learning rate drives the search steadily in the direction of the global minimum, though 

slowly. Similarly, a high momentum coefficient will reduce the risk of being stuck in local minima, but 

increase the risk of overshooting the solution as a high learning rate does. Commonly, the adaptive 

technique of varying these two parameters in relation to the error gradient information is a better solution 

for this issue (Schalkoff, 1997; Haykin, 1999). 

 

3.2 Genetic algorithm 

The genetic algorithm imitates the evolution of a generation of individuals following Darwin’s 

principle of the survival of the fittest. The basic idea is introduced in the following, which is based on 

Goldberg (1989).  

The basic idea is to maintain a generation of individuals (representing candidate solutions to a given 

problem) that evolves over time through a process of natural competition and controlled variation. As 

schematically illustrated in Fig. 6, it starts with a generation of randomly generated individuals, and 

advances towards better generations by applying the following three genetic operations iteratively. 

Reproduction: Firstly, the fitness of each individual to the given problem is examined by a 

well-devised fitness function. Then individuals are selected into a so-call mating pool probabilistically. 

The probability to be selected is higher for the individuals characterized by an above-average fitness, so 

that they may appear two or more times in mating pool. In contrast, the individuals characterized by a 

below-average fitness may not be selected and then die out. Reproduction is stopped when the number of 

individuals in the mating pool is equal to the number of individuals in a generation.  

Crossover and mutation: Individuals in mating pool are arranged randomly in couples, so-called 

parents. Each couple is designated to yield two offspring from randomly exchanging one of their parental 

parameter. During the crossover operation, the parameters in the offspring can be randomly mutated (i.e. 

 



 

modified) with a very small probability. This mutation operation is used to protect the generations from 

losing some potentially useful genetic material. 

After genetic operations, the individuals in the next generation are generally characterized by an 

increased average fitness. This iteration is terminated after several generations when some conditions or 

criteria are reached (e.g. the improvement on the average fitness converges). Then the individual that 

appears most frequently in the latest generation is regarded as a solution to the given problem. 

 

3.3 Philosophy of the proposed technique 

The proposed technique consists of four steps, as schematically illustrated in Fig. 7. In step one, a 

numerical model (codes: FLAC3D) is set up to simulate the tunnel excavating process according to the 

in-situ conditions. Then the aforementioned numerical model proceeds to rheological calculation when a 

set of rheological parameter pFL is applied to the surrounding rock mass. The key convergences 

computed from the numerical simulations are recorded as uFL 
key. This kind of input-output pair provided by 

numerical simulations is called one dataset. Similarly, a certain number (fifty for example) of datasets 

can be obtained, by applying fifty sets of randomly generated rheological parameter to the same 

numerical simulations. 

In step two, these fifty datasets are scaled into their dimensionless (within 0 and 1) counterparts pBN 

and uBN 
key, and employed to train the BN. Feeding a set of scaled rheological parameter pBN to the BN, and 

comparing the output oBN with the scaled key convergences uBN 
key, the synaptic weights of BN are adjusted 

via error backpropagation learning algorithm. After a certain number of training iterations, the 

post-trained network is expected to approximate the aforementioned numerical simulations in the sense 

of statistics.  

In step three, the post-trained network is employed to find out an estimation for the rheological 

parameter set via genetic algorithm. Firstly, the key convergences measured in site uMO 
key  should also be 

scaled into its dimensionless counterpart uGA 
key , which serves as the desired output for the post-trained 

network aforementioned. An individual pGA represents a set of rheological parameter in this context. 

Then a generation of randomly initiated individuals (three hundred individuals for example) is fed to the 

post-trained network, and the fitness of each individual is defined as the sum-square-error between the 

network output oGA and the desired output uGA 
key . Then this generation of individuals undergoes evolution 

via the genetic operations. This evolution is terminated after several generations when some conditions or 

criteria are reached, and the individual appearing most frequently in the latest generation is regarded as 

an estimation for the rheological parameter set. All these works presented in step two and step three are 

implemented in Matlab (Mathworks, 2006). 

In step four, the rheological parameter set estimated by BN and GA should be reversely scaled (from 

the dimensionless numbers to their real values) and then revalidated by the identical numerical 

simulations aforementioned. This estimation is considered a reliable one, if the key convergences 

 



 

computed from numerical simulations agree with those measured in-situ. The implement details of the 

proposed technique to the Ureshino Tunnel Line I and some discussions on the stochastic nature of the 

proposed technique are expatiated in section 4. 

 

 

4 Implementation details and Discussions 

4.1 Dataset preparation 

The training datasets are provided by numerical simulations (codes: FLAC3D). According to the 

geological conditions and tunnel dimensions presented in section 2, a full 3D model including thirty 

excavation cycles from STA 212+00 to STA 211+70 in longitudinal direction (y axis) is set up firstly. The 

surrounding rock mass is basically hornblende andesite lava with a cover about 250 m, whereas the 

simulation regions in the cross section are only five times and three times of tunnel diameter in vertical 

direction (z axis) and horizontal direction (x axis). The surrounding rock mass is assumed as a 

Mohr-Coulomb material at this stage, with its mechanical properties listed in Table 1 (JPHC, 2000).  

Then according to the construction cycles presented in section 2, the tunnel face advances and the rock 

bolts and shotcrete lining are modeled gradually. The second lining is modeled after all these thirty 

exaction cycles are completed. The mechanical properties of shotcrete lining and the second lining are 

listed in Table 2 (JPHC, 2000).  

After the construction process completed, the Burger-MC deterioration rheological model is applied to 

the surrounding rock mass, and the aforementioned numerical simulations proceed to rheological 

calculation focusing on the first five years during the tunnel’s service life. The numerical model consists 

of 35898 gridponits, 33450 zones and 2100 structure elements. The computing time for the rheological 

calculation is nearly 10 hours per case, under the configuration of AMD Athlon (tm) 3800+ and 1.0 GB 

memory. 

The rheological parameters applied to the numerical simulations are initiated in such a random way. 

Fifty sets of random number (within 0 and 1) are initiated first, so that the rheological parameters applied 

to the numerical simulations can be scaled from them by the following equation. 

  (6) BNlowerupperlowerFL ppppp ×−+= )(
In the above equation, pBN is a 6×1 vector recording the random numbers within 0 and 1 that are fed to 

the BN as the input signals; pFL is the counterpart vector recording the six rheological parameters that are 

applied to the numerical simulations. plower and pupper are two 6×1 vectors recording the lower and upper 

limits for the six rheological parameters, which can take reference to the literatures (Hudson and Harrison, 

1997; Li and Xia, 2000; Shin et al., 2005; Fabre and Pellet, 2006). The informations for these fifty cases 

are partly listed in Table 3. 

Then the twelve key convergences (i.e. uc, us and ui at 12th, 24th, 36th, 48th month respectively) 

 



 

computed from the numerical simulations are recorded and then scaled into dimensionless number within 

0 and 1 by the following equation. 
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In the above equation, uFL 
key is a 12×1 vector recording the key convergences that are computed from the 

numerical simulations; and uBN 
key  is its counterpart vector recording the scaled key convergences that serve 

as the desired outputs for BN training. umin 
key  and umax 

key  are two 12×1 vectors recording the minimum and 

maximum key convergences amongst these fifty cases of numerical simulations. 

The normalization for pBN and uBN 
key  is very important for the training process due to these two reasons: 

it can prevent the large input (output) components from overriding the small ones; and the sigmoid 

transfer function that is commonly used in the hidden neuron is sensitive to the value within -1 and 1. 

 

4.2 Network training 

4.2.1 Network architecture 

It is no doubt that the input layer includes six input signals corresponding to the six rheological 

parameters under consideration, and the output layer includes twelve output neurons corresponding to the 

twelve key convergences. Although the output layer, theoretically, can include as many output neurons as 

the monitoring data available, increasing the number of output neurons excessively is neither economic 

nor accurate due to the following reason (Schalkoff, 1997; Haykin, 1999). The number of datasets 

required to train a BN well (i.e. having a good generalization ability) is closely related to the number of 

synaptic weights involved in the network. When the training datasets are very limited, increasing the 

number of output neurons would increase the number of synaptic weights greatly and consequently 

increase the risk of overfitting significantly.  

The transfer function employed in the output neurons is linear function, as described in the following. 

 vv =)(χ  (8-1) 

Determining the numbers of hidden layers and hidden neurons are more complicated. Generally 

speaking, the number of hidden layers and hidden neurons are highly dependent on the nonlinearity and 

multimodality of the problem under consideration. More hidden layers and neurons are able to detect 

more hidden features in the training datasets, but increase the risk of overfitting at the same time 

(Schalkoff, 1997; Haykin, 1999). However, one knows nothing about the relationship between the 

network architecture and the problem under consideration prior to some attempts. Therefore, four types 

of network architecture with different hidden neurons and hidden layers are tried, with more detail 

discussions expatiated in section 4.5. 

The transfer function employed in the hidden neurons is log-sigmoid function, as described in the 

following. 
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4.2.2 Leave-n-out corotation strategy 

The available datasets should be divided into two subsets (training subset and validating subset) by a 

certain proportion. Generally, the learning curve (i.e. error function plot) for the training subset decreases 

monotonically with the increasing of training epoch. In contrast, the learning curve for the validating 

subset decreases monotonically to minimum and then starts to increase as the training epoch continues, 

as schematically illustrated in Fig. 8 (Schalkoff, 1997; Haykin, 1999). This heuristic suggests that the 

point of minimum on the validation learning curve can be used as a stopping criterion to prevent 

excessive training. 

However, the subset partitioning is an intractable issue, since the available datasets are very limited. 

Herein, a leave-n-out corotational strategy is employed to deal with this issue (Basheer and Hajmeer, 

2000; Abraham, 2004). Ten datasets are randomly selected for validation and the other forty datasets for 

training. Then train the network until the stopping criterion is met. Repeat this iteration and train the 

network continuously, until each dataset appeared at least once in both validating subset and training 

subset. 

 

4.2.3 Random initial weights 

The initialization of synaptic weights has an effect not only on the network convergence speed, but 

also on the network’s generalization ability. Herein, a random initial weights strategy is employed to deal 

with this issue (Basheer and Hajmeer, 2000; Abraham, 2004). The synaptic weights are initiated 

randomly within the intervals of (-3Nl 
1/2, 3Nl 

1/2), where Nl is the number of neurons in lth layer. The 

network is then trained by the leave-n-out corotation process as presented above. After that, all the fifty 

datasets are fed to the network entirely and the network performance (i.e. the error function sseave) is 

recorded.  

This kind of iteration of random initializing and corotative training is repeated dozens of times, and the 

network with best performance (i.e. minimum sseave) is considered as a post-trained network that can 

approximate the numerical simulations aforementioned in the sense of statistics. 

 

4.3 Genetic searching 

The aforementioned post-trained network together with genetic algorithm is employed to estimate the 

six rheological parameters according to the monitoring data. The key convergences measured in site uMO 
key  

should be scaled into its dimensionless counterpart uGA 
key  by the following equation, and serve as the 

desired output for the post-trained network aforementioned. 
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Three hundred individuals pGA (each individual represents a set of scaled rheological parameters 

within 0 and 1) are initiated randomly and fed to the post-trained network. Comparing the network output 

oGA with the desired output uGA 
key , the error function sse is defined as the fitness for each individual. Then a 

reproduction indicator ω is devised to select these individuals into the mating pool probabilistically, as 

formulated in the following. 

 ),0()()( αω gauss
sse

ssessesse
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In the above equation, sseav is the average error function for the whole generation, gauss(0, α) is a 

Gaussian distributed random number generator with a mean of zero and a variance of α. An individual is 

selected into the mating pool when its reproduction indicator is greater than zero, or is prohibited on the 

inverse condition. 

Individuals in mating pool are arranged randomly in couples, and yield their offspring from randomly 

exchanging one of their parental parameter. With a small probability, the parameters in their offspring can 

be randomly mutated (i.e. modified). Some other random number generators are also employed in the 

crossover and mutation processes (although not explained in details here), to ensure the generation 

undergoes evolution in a natural form. 

The evolution is terminated after 8~10 generations, when the improvement on the average fitness 

converges. Then the individual that appears most frequently in the latest generation is regarded as a 

solution to the given problem. 

 

4.4 Revalidation by numerical simulations 

The rheological parameter estimation technique presented above is stochastic in nature, therefore, the 

estimation provided by the BN and GA should be revalidated again by the identical numerical 

simulations. Trying the estimation into the identical numerical simulations and comparing the results to 

the monitoring data, the error of crown convergence between them, euc, is defined as: 
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where uMO 
c  is the crown convergence measured in-situ, and uFL 

c  is the counterpart that is computed from 

numerical simulations. ･･is the denotation of vector norm calculation. The errors of springline 

convergence and invert convergence, eus and eui, can also be defined by the similar means. 

For example, a network with the architecture of BN(6,9,12) (i.e. six input neurons in the input layer, 

nine hidden neurons in a hidden layer and twelve output neurons in the output layer) is trained by the 

 



 

strategy and the datasets presented above, then the post-trained network is employed to search for a 

parameter set estimation via GA. This estimation is revalidated by the identical numerical simulations 

again, with the results depicted in Fig. 9. The results from numerical simulations agree well with the 

monitoring data, with the three errors being 4.0%, 12.1% and 9.3%, respectively. It implies that this 

estimation for the rheological parameter set is rather reliable. 

However, it is expected that there exist numerous estimations due to the stochastic nature of the 

genetic operations and the training process, and there is no guarantee that all these estimations are always 

reliable. The section 4.5 presents more discussions on this issue. 

 

4.5 Discussions 

4.5.1 Stochastic nature 

The rheological parameter estimation technique presented above is stochastic in nature. Some 

repetitive trials are performed to examine the randomness of the proposed technique. For a certain 

network architecture, the same training process is repeated five times to yield five post-trained networks 

(named T1~T5). For a certain post-trained network, the same genetic searching process is repeated five 

times to provide five estimations (named A1~A5).  

In the genetic searching process, the individual initialization and the genetic operations are random. 

However, the randomness is relatively small, when the number of individuals in each generation is large 

enough. Taking the post-trained network BN(6,9,12)_T3 for example, five parameter set estimations 

provided by the genetic searching are listed in Table 4. The difference between these five estimations is 

relatively small, and the medium one between them is selected as the possible estimation for the 

post-trained network BN(6,9,12)_T3. The similar tendency can be observed for other post-trained 

networks. Therefore, it can be concluded that the possible estimation provided by the genetic searching is 

generally determinate for a particular post-trained network, when the number of individuals in each 

generation is large enough. 

On the other hand, the randomness in network training is comparatively large, especially when the 

available datasets are limited. The BN is expected to approximate the numerical simulations in the sense 

of statistics, after it has been well trained by the datasets provided by the numerical simulations. 

Therefore, the number of datasets required to train a BN well is closely related to the number of synaptic 

weights and the desired goal of error function. It is expected to be a very large number (Schalkoff, 1997; 

Haykin 1999). Therefore, merely fifty datasets are insufficient on this occasion. Taking another 

post-trained network BN(6,9,12)_T2 for example, the estimation provided by this post-trained network is 

proved a bad one when revalidated by the numerical simulations. The simulation results are depicted in 

Fig. 10, with the three errors being 8.6%, 14.3% and 34.1% respectively. Table 5 summarizes five 

possible estimations provided by those post-trained networks (T1~T5) sharing the same architecture of 

BN(6,9,12). These five estimations are quite different from each other, which implies that the 

 



 

randomness in training process is comparatively large. Herein, the estimation with the minimum errors is 

selected as the optimal one for the network architecture of BN(6,9,12). Theoretically, increasing the 

number of datasets can reduce the randomness in training process and increase the accuracy of estimation. 

In practice however, trying and validating seems to be a more realistic solution for this issue. 

 

4.5.2 Hidden neurons and hidden layers 

To discuss the influence of hidden neurons and hidden layers on network’s learning and generalization 

ability, another three different network architectures are tried by the similar means presented above. 

Taking the architecture of BN(6,6,12,12) for example, Table 6 summarizes five possible estimations 

provided by those post-trained networks sharing the same architecture. After revalidating, the possible 

estimation provided by the network T1 has a minimum average error and is selected as the optimal 

estimation for BN(6,6,12,12), The revalidating simulation results are depicted in Fig. 11, with the three 

errors being 8.1%, 13.2% and 6.0% respectively.  

Table 7 summarizes the four optimal estimations for different network architectures. In fact, all these 

four estimations are rather good, since the average errors of them are below 10%. However, one cannot 

tell easily that which architecture is more proper for this problem, because the estimation is stochastic in 

nature and no statistical characteristic can be found through such few attempts. On the precondition that 

the errors are acceptable (for example, the average error is below 10%), it is the author’s opinion that the 

networks with less hidden neurons are preferred.  

 

4.5.3 Characteristic of the long-term deformations 

As far as Ureshino Tunnel Line I is concerned, twenty possible estimations (five estimations for each 

four network architectures) are provided by the proposed technique presented above. Based on the 

revalidating results (although not totally listed in this paper), it can be concluded that the strength 

deterioration parameters (ωc, ωφ and Rthr) would influence ui more significantly, and the viscoelastic 

parameters (GK, ηK and ηM) would influence both uc and ui to some extend. However, it is difficult (or 

impossible) to find out an estimation whose simulation results could agree well with the monitoring data 

of uc, ui and us simultaneously, since there are no numerical simulations that can take a comprehensive 

account of the in-situ conditions and the rock mass behaviors. Therefore, it is up to the engineer to select 

a best estimation according to his/her judgment. For example, the 1st estimation in Table 7 is preferred, 

since it has a minimum average error.  

In fact, ground reinforcement on Ureshino Tunnel Line I was conducted after the Ureshino Tunnel 

Line II was completed in 2000. The reinforcement mainly included the backfill grouting beneath the 

invert and the additional bolting at the foot, which proved to have a good effect on controlling the tunnel 

convergence at the invert. Although the in-site conditions have changed, the rheological parameters 

estimated by the proposed method are still useful to predict the tunnel’s long-term deformations in the 

 



 

future. 

 

 

5 Conclusions 

The long-term deformations of mountain tunnels, which attract more and more attentions, are closely 

related to the time-dependent features of the surrounding rock mass. Although many rheological models 

have been proposed to account for the time-dependent features of rock mass from manifolds, for a certain 

engineering instance however, it is difficult to estimate the rheological parameters due to the high cost 

and long duration of rheological tests. Therefore, the rheological parameter estimation technique by using 

BN and GA is proposed in this paper, and applied to an engineering instance the Ureshino Tunnel Line I 

on Nagasaki Expressway.  

The Burger-MC deterioration rheological model is applied to the surrounding rock mass to account for 

the mechanism of delayed deformations that occurred during the tunnel’s service life. The six rheological 

parameters involved in this model are estimated via such four steps: 1) numerical simulations are utilized 

first to generate a certain number of datasets for BN training; 2) the BN is trained with those datasets to 

approximate the numerical simulations in the sense of statistics; 3) the post-trained network combined 

with the genetic algorithm is employed to provide an optimal estimation for the rheological parameter set 

according to the in-situ monitoring data; 4) this optimal estimation should be revalidated by the identical 

numerical simulations aforementioned. 

The stochastic nature of the proposed technique is discussed. The randomness in the genetic searching 

is relatively small, when the number of individuals in each generation is large enough. In contrast, the 

randomness of in network training is comparatively large, because the available datasets are insufficient 

comparing with the required dataset to train the network well. Therefore, it is suggested that the network 

with less hidden neurons are preferred, on the precondition that the errors between the revalidating 

simulation results and monitoring data are acceptable.  

The characteristic of long-term deformations for the Burger-MC deterioration rheological model is 

also summarized in the paper. It is difficult (or impossible) to find out an estimation whose simulation 

results could agree well with all the monitoring data simultaneously. Therefore, it is up to the engineer to 

select a best estimation from those ones provided by the BN and GA, according to his/her judgment.  

 

 

Appendix A: Burger-MC deterioration rheological model 

The constitutive laws of Burger-MC deterioration rheological model are introduced briefly in this 

appendix, which is based on Guan et al. (2008). The deviatoric behavior can be schematically illustrated 

in Fig. A1, where a Kelvin unit, a Maxwell unit and a MC plastic unit are connected in series and 

 



 

subjected to some certain deviatoric stresses jointly. The constitutive laws for the Kelvin and Maxwell 

units are formulated by Eq. (A1) and Eq. (A2). 
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For the plastic unit, a Mohr-Coulomb failure criterion f is first defined as Eq. (A3). After the failure 

criterion being reached, the deviatoric behavior of the plastic unit is specified by flow rule and plastic 

potential g, as shown in Eq. (A4) and Eq. (A5). 
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In the above equations, eij and sij are the deviatoric strain and stress tensors; εkk and σkk are the volumetric 

strain and stress. σ1, σ2 and σ3 are the three principle stresses. GK and  ηK are the shear modulus and the 

viscosity of Kelvin unit. GM and  ηM are the shear modulus and the viscosity of Maxwell unit. c, φ and ψ 

are the cohesion, the friction angle and the dilation angle of the MC plastic unit. λ is a multiplier that can 

be eliminated in the calculation afterwards. The variables denoted by a dot mark refer to their first-order 

derivatives with respect to rheological time. The superscripts K, M and P denote the Kelvin, the Maxwell 

and the MC plastic partitions for corresponding variables. 

In addition, the Burger-MC deterioration rheological model assume that the cohesion c and the friction 

angle φ will decrease with rheological time, regardless of whether the loss of strength is caused by cyclic 

loading fatigue, by clay mineral hydration or by some other reasons. It is assumed that the loss of 

strength is controlled by its current stress state. Furthermore, there exists a threshold (i.e. Rthr) to initiate 

this kind of strength deterioration and two lower limits (i.e. cres and φres) to circumscribe the strength 

deterioration. 
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In the above equations, the parameter R is named stress coefficient in this paper and indicates the 

“distance” from the current stress state to the MC failure envelope. When the stress coefficient is greater 

than a certain threshold Rthr, the rock strength initiates to deteriorate. The multipliers ωc and ωφ are two 

deterioration ratios that control the deteriorating of the cohesion and friction angle by some certain rates. 

cres and φres are residual cohesion and residual friction angle that can be estimated from conventional 

triaxial tests.  

The proposed rheological model can be implemented in the numerical codes FLAC3D, although it is 

not included directly in the FLAC3D library of constitutive laws. The programming language FISH can 

help implement the proposed model under the framework of classic Burger-MC rheological model in 

such an indirect way (Itasca Consulting Group): reevaluate the cohesion and the friction angle for every 

rock zone according to Eqs. (A6)~(A8), after a certain rheological period being computed. 

Commonly, the shear modulus of Maxwell unit GM is considered the same as the ordinary shear 

modulus G. Therefore, this model includes six rheological parameters (GK, ηK, ηM, ωc, ωφ and Rthr) that 

should be estimated by using BN and GA according to the in-situ monitoring data. 
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Fig. 1. Schematic representation of the geological profile of Ureshino Tunnel Line I (JPHC, 2000). 
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Fig. 2. The cross section dimensions and the convergence monitoring positions (JPHC, 2000). 
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Fig. 3. Schematic representation of the excavation cycling in longitudinal direction (JPHC, 2000). 
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Fig. 4. The delayed deformations of Ureshino Tunnel Line I (STA 211+90) during its first five years 

of service life (JPHC, 2000). 
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Fig. 5. A fully-connected BN with the architecture of BN(N0, N1, N2, N3). 
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Fig. 6. Schematic illustration for the genetic algorithm. 
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Fig. 7. The philosophy of the proposed rheological parameter estimation technique. 



Training subset
V

alidating subset

Er
ro

r f
un

ct
io

n 
(e

.g
. s

se
)

Training epoch

Stopping point

 

Fig. 8. Schematic illustration of early stopping criterion (after Haykin, 1999). 
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Fig. 9. Comparison of the in-situ monitoring data to the numerical simulation results and the 

network training results (for BN(6,9,12)_T3). 
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Fig. 10. Comparison of the in-situ monitoring data to the numerical simulation results and the 

network training results (for BN(6,9,12)_T2). 
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Fig. 11. Comparison of the in-situ monitoring data to the numerical simulation results and the 

network training results (for BN(6,6,12,12)_T1). 
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Fig. A1. Schematic representation of the deviatoric behavior of the Burger-MC deterioration 

rheological model (after Guan et al, 2008). 

 



 

Table 1. Properties of the rock masses employed in numerical simulations (JPHC, 2000). 

Properties Value Properties Value 
Bulk modulus K (MPa) 833 Density ρ (kg/m3) 2500 
Shear modulus G (MPa) 385 Residual cohesion cres (MPa) 0.310 
Cohesion c (MPa) 0.577 Residual friction angle  φres (o) 25.5 
Friction angle φ (o) 30.0 In-situ σzz (MPa) 8.0 
Dilation angle ψ (o)  5.1 In-situ σxx (MPa) 8.0 

 

Table 2. Properties of the linings employed in numerical simulations (JPHC, 2000). 

 shotcrete lining second lining 
Young’s Moduls E (MPa) 1.0e4 2.0e4 
Poisson ratio μ 0.25 0.25 
UCS σc (MPa) 15 30 
Friction angle φ (o) 35 40 
Dilation angle ψ (o) 3.0 3.0 
Thickness of lining tc (m) 0.15 0.35 

 

Table 3. Parameter informations of 50 randomly generated cases. 

Case No. GK ηK ηM ωc ωφ Rthr 
01 0.527  0.729  0.468 0.516 0.650 0.650 
02 0.791  0.250  0.138 0.461 0.525 0.613 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

49 0.412 0.556  0.444 0.111 0.125 0.750 
50 0.333  0.667  0.345 0.778 0.550 0.163 
 Lower and upper limits for each parameter 
 GK: 1e8 ~ 1e9 Pa ηK: 1e16 ~ 1e17 Pa・s ηM: 1e17 ~ 1e18 Pa・s 
 ωc: 1e4 ~ 1e5 Pa/year ωφ: 0.5 ~ 4.5 o/year Rthr: 0.2 ~ 1.0 

 

Table 4. Five estimations for the rheological parameter set (for BN(6,9,12)_T3). 

Algorithm No. GK (Pa) ηK (Pa・s) ηM (Pa・s) ωc (Pa/y) ωφ (o/y) Rthr 

A1 6.55E+08 3.74E+16 3.59E+17 3.56E+04 2.56 0.42 
A2 5.95E+08 3.54E+16 3.71E+17 4.62E+04 2.79 0.43 
A3 5.63E+08 4.20E+16 4.12E+17 4.35E+04 2.56 0.44 

A4 (✔) 6.04E+08 4.04E+16 3.83E+17 3.88E+04 2.84 0.49 
A5 6.35E+08 3.94E+16 4.01E+17 3.96E+04 2.56 0.51 

(✔): The medium one is selected as the possible estimation 

 

 

 



 

Table 5. Five possible estimations for the rheological parameter set (for BN(6,9,12)). 

Train No. GK (Pa) ηK (Pa・s) ηM (Pa・s) ωc (Pa/y) ωφ (o/y) Rthr euc (%) eus (%) eui (%)

T1 5.96E+08 4.38E+16 2.63E+17 4.69E+04 2.70 0.61 6.9 20.1 11.3 
T2 5.28E+08 4.49E+16 6.24E+17 2.25E+04 2.65 0.71 8.6 14.3 34.1 

T3 (✔) 6.04E+08 4.04E+16 3.83E+17 3.88E+04 2.84 0.49 4.0 12.1 9.3 
T4 5.63E+08 4.20E+16 5.05E+17 4.49E+04 2.46 0.44 6.2 25.7 8.2 
T5 7.35E+08 4.45E+16 2.27E+17 3.91E+04 3.61 0.62 5.1 19.4 7.6 

(✔): The one with minimum errors is selected as the optimal estimation 

 

Table 6. Five possible estimations for the rheological parameter set (for BN(6,6,12,12)). 

Train No. GK (Pa) ηK (Pa・s) ηM (Pa・s) ωc (Pa/y) ωφ (o/y) Rthr euc (%) eus (%) eui (%)

T1 (✔) 6.87E+08 3.48E+16 4.21E+17 5.08E+04 3.14 0.61 8.1 13.2 6.0 
T2 9.03E+08 3.12E+16 1.22E+17 5.34E+04 2.94 0.53 24.4 57.1 24.6 
T3 6.87E+08 3.48E+16 5.92E+17 6.02E+04 3.14 0.61 14.1 18.7 8.5 
T4 5.36E+08 4.11E+16 4.47E+17 4.31E+04 1.50 0.79 5.6 21.5 7.9 
T5 7.07E+08 3.32E+16 4.93E+17 2.89E+04 3.44 0.65 13.0 21.7 16.7 

(✔): The one with minimum errors is selected as the optimal estimation 

 

Table 7. Four optimal estimations for the rheological parameter set (for BNs with different 

architectures). 

Architecture GK (Pa) ηK (Pa・s) ηM (Pa・s) ωc (Pa/y) ωφ (o/y) Rthr euc (%) eus (%) eui (%)

BN(6,9,12) 6.04E+08 4.04E+16 3.83E+17 3.88E+04 2.84 0.49 4.0 12.1 9.3 
BN(6,16,12) 6.11E+08 3.82E+16 3.28E+17 4.94E+04 2.55 0.61 3.1 15.3 12.4 

BN(6,6,12,12) 6.87E+08 3.48E+16 4.21E+17 5.08E+04 3.14 0.61 8.1 13.2 6.0 
BN(6,8,10,12) 7.10E+08 3.99E+16 2.97E+17 5.45E+04 2.71 0.65 3.5 12.1 12.0 
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