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1. Introduction

In the analysis of a microstrip antenna (MSA) by the method of moment in

the spectral domain (SD-MoM)[1], the patch conductor is assumed to be infinitely

thin, and the total electric currents on the upper and lower sides of the patch

conductor are derived.

In this paper, the electric currents on the upper and lower sides of the patch

conductor are derived by SD-MoM with consideration of the thickness of the

patch conductor. Integral equations are derived from the boundary condition

that the total tangential electric field vanishes on the upper and lower sides of

patch conductor. The total electric field is derived by using Green’s functions

in the spectral domain produced by the electric dipoles on the upper and lower

sides of the patch conductor.

In order to clarify the effects of the currents on the upper and lower sides

of the patch to the antenna, the input impedances due to those currents are

calculated.

2. Theory

Fig. 1 shows the geometry of a circular MSA and its coordinate system. The

radius and thickness of the circular patch conductor are a0 and δz, respectively.

The relative dielectric constant and thickness of the dielectric substrate are εr
and h, respectively. The antenna is excited at r = d0, φ = 0

◦ by a coaxial feeder
through the dielectric substrate.

The electric currents on the upper and lower sides of the patch conductor are

denoted by JU and JL, respectively. Fig. 2 shows an analytical model. The

patch conductor is expressed by two infinitely thin conducting sheets. JU and

JL are assumed to flow on the upper and lower sheets. The currents on the patch

conductor follow closely the behavior of the corresponding eigenmode within the

cavity bounded above and below by the conducting plates and on the side by the

admittance wall[2]. Therefore, JU and JL are expressed as

J i = J ir(r,φ)ir + J
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In eqns (1) the polynomials under the square root are included to fulfill the edge

condition requirements. Tn(r/a0) and Un(r/a0) are Chebyshev polynomials of the

first and second kind, respectively. {Aimn} and {Bimn} are unknown coefficients.
The electric fields on the upper and lower sides of the patch conductor pro-

duced by J i are denoted by EU (J i) and EL(J i), respectively. The excitation

fields due to the feed current Je given by the delta function are denoted by

EUe (J
e) and ELe (J

e). The boundary conditions on the upper and lower sides of

the patch conductor are expressed as

{EU (JU ) +EU (JL) +EUe (Je)} × iz = 0 : z = h+ δz (2)

{EL(JU ) +EL(JL) +ELe (Je)} × (−iz) = 0 : z = h. (3)

In the derivation of Ej(J i) (j = U,L, i = U,L), the local coordinate system

(X,Y, Z) with the origin located at the point (r0,φ0, 0) in the cylindrical coordi-
nate system is applied for the circular MSA. Fig. 3 shows the local coordinate

system. The positive X direction is defined by the tangential φ0 direction. Ej(J i)
is expressed by using the vector potential Aj(J i) and the scalar potential φje(J

i);

Ej(J i) = −jωAj(J i)−∇φje(J i) (4)

Aj(J i) =

Z
patch

½
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XX
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¾
dS0 (5)
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i) = − 1
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where GSTA is S component of Green’s function for the vector potential due to

a T - directed electric dipole and GU is Green’s function for the scalar potential.

∇ and ∇0 are the derivative operators at the observation and source points.
Substituting eqns. (4)—(6) into eqns. (2) and (3), the integral equations are

obtained. By applying the method of moment to the integral equations, {Aimn}
and {Bimn} are determined. When δz=0, the integral equations obtained from

eqns. (2) and (3) are equal to that of reference [1], where the unknowns are the

total currents on the upper and lower sides of the patch conductor.

Green’s functions in the spectral domain are obtained by applying the solu-

tions of the wave equations in the spectral domain to the boundary conditions at

the interfaces between the free space, the dielectric and the ground plane and the

radiation condition. Green’s functions in the spatial domain are derived by ap-

plying the inverse Fourier transform to Green’s functions in the spectral domain

[1].

3. Results and Discussion

Figs. 4 and 5 show the calculated JUr , J
L
r and J

U
φ , J

L
φ at the resonant fre-

quency (6.22GHz), respectively. The intensity of JUr is bigger than J
L
r . However,

the intensity of JUφ is smaller than JLφ . The phase of the J
U
r is nearly equal to

that of JLr . Although the phase of J
L
φ is constant, JUφ has the phase difference

180◦ in the r direction.
Fig. 6 shows the calculated input impedances. JU doesn’t contribute to the

input impedance. This is due to the phase difference of JUφ in the r direction.
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4. Conclusion

The electric currents on the upper and lower sides of the patch have been

calculated by SD-MoM. Green’s functions produced by the electric dipoles on

the upper and lower sides of the patch are derived by the boundary conditions

at the interfaces between the free space, the dielectric and the ground plane

and the radiation condition. In order to clarify the effects of those currents to

the antenna, the input impedances by those currents have been compared. The

input impedance of the MSA depends on the current on the lower side of the

patch conductor.
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Fig. 1 Circular MSA

Fig. 2 Analytical model
(cross section)

Fig. 3 Local coordinate system
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(a) Intensity (b) Phase

Fig. 4 r component of electric currents (φ = 0◦)
(a0=9.06mm, d0=6.0mm, h=0.764mm, εr=2.15, δz=0.018mm, M=N=3)

(a) Intensity (b) Phase

Fig. 5 φ component of electric currents (φ = 90◦)
(a0=9.06mm, d0=6.0mm, h=0.764mm, εr=2.15, δz=0.018mm, M=N=3)

Fig. 6 Input impedances

(a0=9.06mm, d0=6.0mm, h=0.764mm, εr=2.15, δz=0.018mm, M=N=3)
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