AN OPTIMIZATION METHOD OF DMA TRANSFER
FOR A GENERAL PURPOSE RECONFIGURABLE MACHINE

Sayaka Shida, Yuichiro Shibata, Kiyoshi Oguri

Dept. of Computer and Information Sciences,
Nagasaki University, Japan
{shida,shibata,oguri} @pca.cis.nagasaki-u.ac.jp

ABSTRACT

DMA transfer between a CPU and an FPGA often becomes
a bottleneck of current reconfigurable machines. The DMA
transfer of the machines like SRC-6 supports streaming pro-
cessing with on-board memory interleaving, but as a pre-
processing of the interleaving, the CPU must reorder the
data for applications with severe FPGA resource constraints.
This paper empirically evaluates this overhead to reveal the
trade-off point. The results show that a speedup is achieved
by interleaved streaming DMA when 150KB or lower data
strings are transferred.

1. INTRODUCTION

The rapid progress in speed and integration density of field
programmable gate arrays (FPGAs) has made FPGA-based
high-performance general computing systems possible. Many
commercial high-end machines equipped with a high-speed
CPU and FPGAs are now available and have been used in

performance-centric application fields including scientific sim-

ulation and cryptography[1][2][3].

While vast flexibility of FPGAs provides opportunities
of efficient application processing, there are also pitfalls that
may lead to inefficient results since performance of reconfig-
urable machines tends to depend strongly on skills of appli-
cation developers[4]. In many cases, a performance bottle-
neck for these machines seem to be DMA transfer between
a CPU and FPGAs[5][6]. To mitigate this problem, vari-
ous architectural techniques to reduce and hide the transfer
overhead are utilized, but another performance concern is
memory access between FPGAs and their local memory.

To cope with this problem, we propose to reorder the
data on the main memory using a CPU in advance of DMA
transfer, so that the FPGAs take advantage of data paral-
lelism on the local memory banks. Although the reordering
of the data is obviously a waste of the CPU time, it will pay
if enough parallelism is extracted on the FPGAs. In this pa-
per, we empirically evaluate this idea on the SRC-6[7] and
analyze a trade-off point.

2. SRC-6 ARCHITECTURE

2.1. System Organization

As Fig. 1 shows, the SRC-6 is composed of Xeon 2.8 GHz
microprocessors with 1 MB 1.2 cache, reconfigurable pro-

978-1-4244-1961-6/08/$25.00 ©2008 IEEE.

Duncan A. Buell

Dept. of Computer Science and Engineering,
University of South Caroline, USA
buell @cse.sc.edu

‘ Hi-Bar Switch |

))

Common
Memory Memory WP MAP Memory
Xeon w s .| Xeon 4
processor processor SRC-6
A
PCI-X PCI-X (Controter]

On Board Memory [6 banks]

Bridge Port
FPGA1 FPGA2

Fig. 1. Structure of the SRC-6 and MAP.

cessors called MAP, and Common Memory. They are con-
nected each other with a crossbar switching fabric called Hi-
Bar Switch. The MAP is composed of three Xilinx Virtex IT
XC2V6000 FPGAs. Among the three FPGAs in the MAP,
one is dedicated to controller and the others (FPGA1 and
FPGA2) are used for applications. The MAP has six banks
of 4MB On Board Memory (OBM), where data operated
by FPGAs are stored. An FPGA can access multiple banks
at the same time because they are connected with individ-
ual interactive ports. OBM is shared by the two FPGAs and
a DMA controller and is used for data exchange between
them. Arbitration of access to the OBM can be explicitly
controlled by users.

The SRC-6 has a unique compiler which generates a re-
locatable object file from C and FORTRAN source files. The
compiler translates the loops specified by users into hard-
ware circuits to be configured on FPGAs. The compiler
automatically analyzes structure of the loops and generates
hardware that processes the repetition in a pipelined manner.

2.2. Streaming DMA

SRC-6 supports two styles of DMA transfer; regular DMA
and streaming DMA. In the regular DMA, FPGAs have to
wait for the completion of the transfer before starting the
operation. On the other hand, transfer and operation can
be parallelized with the streaming DMA. In addition, the
streaming DMA has two modes; single streaming DMA and
dual streaming DMA.

647

Do j=jb, je
Do i=ib, ie
call get_stream...

Call stream_dma_cpu...
~_

Section 1 Section 2

Fig. 2. Single streaming DMA.

Q- O O O
0. OBM Buffer
LO e Yexe

Fig. 3. Dual streaming DMA.

Do j=jb, je
Do i=ib, ie
call get_stream...
call get_stream...

Fig. 2 shows the concept of the inbound single stream-
ing DMA. In SRC-6, a pair of system functions is available
for streaming DMA. These functions create separated sec-
tions, which are operated in parallel with independent con-
trol on the FPGA. In Section 1, data is continuously trans-
ferred through an OBM bank. In Section 2, data are fetched
from the stream and used for calculation. Thus, the OBM
bank is used as a buffer that absorbs a speed gap between
the DMA transfer and the FPGA operation.

In the dual streaming DMA transfer, two banks of the
OBM are used as buffers as shown in Fig. 3. A contiguous
series of data on the main memory is alternately transferred
to the specified two OBM banks, so that the FPGA can fetch
two elements of the transferred data at the same time. This
automatically interleaved transfer facility effectively enables
the FPGA to extract more data parallelism in applications.

3. DMA OPTIMIZATION STRATEGIES

Fig. 4 conceptually shows how execution time of a func-
tion implemented on an FPGA is changed by DMA transfer
methods. Here, we assume the function needs N inbound
data strings and one outbound data string to be transferred.
For the sake of simplicity, we will only focus on a DMA
method for the inbound data transfer.

The most basic and simplest strategy is to use regular
DMA only as shown in Fig. 4 (a). The execution on the
FPGA starts after N strings of inbound data are transferred.
Then, the outbound data can be transferred after the execu-
tion is completed. By using the single streaming DMA for
the last inbound data string, the total time can be reduced as
shown in Fig. 4 (b). Since the time required to transfer the
last data string is overlapped with the FPGA execution, the
FPGA can start execution after (N — 1) data strings are trans-
ferred. Note that the SRC-6 DMA controller does not allow
to initiate multiple DMA transfer at the same time, since
only one port is provided between the CPU and the FPGA.
That is, streaming DMA transfer can not be overlapped with
other DMA transfer.

Using the dual streaming DMA makes an impact on the

I Regular DMA
[1 data string]

Execution

Regular DMA [N data strings]

| Regular DMA

Execution [1 data string]

| Single Streaming DMA
[1 data string]

Regular DMA [(N-1) data strings]

time

Regular DMA

Execution [1 data string]

Execution

Dual Streaming DMA
[1 data string]

Regular DMA [(N-1) data strings]

Regular DMA
Execution [1 data string]

Dual Streaming DMA
[2 data strings]

(d)

Regular DMA [(N-2) data strings]
Reorder [2 data strings

time

Fig. 4. DMA optimization strategies.

FPGA execution time as shown in Fig. 4 (c). Since the DMA
controller interleaves the last data string between two OBM
banks, the FPGA can boost the operation by dual fetch of
the data. The time that the FPGA must wait before launch-
ing operation remains to be (N — 1)-times transfer time. This
method is obviously effective to improve total performance,
but the circuit size on the FPGA is also increased so as to
extract data parallelism. Therefore, this method is often
difficult to adopt for functions that require relatively large
amount of hardware.

Our proposed method shown in Fig. 4 (d) is able to re-
duce the DMA transfer time even under a sever FPGA re-
source constraint. The basic idea is to transfer two individ-
ual data string to two OBM banks respectively using dual
streaming DMA in stead of interleaving a single data string
into the two banks. Thus, the circuit required for the FPGA
operation is almost the same as that for Fig. 4 (b). More-
over, the FPGA can start the operation after (N —2) data
strings are transferred, since the last two inbound strings are
transferred overlapped with the FPGA operation. However,
unlike ordinary dual streaming DMA, the two data strings
must be interleaved on the main memory before the transfer.
Therefore, the CPU have to reorder the two strings in ad-
vance and this could be a considerable overhead especially
when the string size is large. We call this method “dual
streaming DMA with reordering” in the following.

Here, we explain the methods, taking the barotropic op-
erator function in an ocean circulation model called the Par-
allel Ocean Program (POP) as an example. The main al-

648

Initial values AX(:,:,bid) = 0.0_8
do j=jb, je
do i=ib, ie

AX(i,j,bid) = A0 (G ,j ,bid) * X(,j ,bid) + &
AN (i, ,bid) * X(i ,j+1,bid) + &
AN (i ,j-1,bid) * X ,j-1,bid) + &
AE (i ,j ,bid) * X(Gi+1,j ,bid) + &
AE (i-1,j ,bid) * X(i-1,7 ,bid) + &
ANEG ,j ,bid) * X(i+l,j+1,bid) + &
ANEGT ,3-1,bid) * X(i+1,j-1,bid) + &
ANE(i-1,7 ,bid) * X(i-1,j+1,bid) + &
ANE(i-1,3j-1,bid) * X(i-1,j-1,bid)

end do
end do

Fig. 5. Algorithm of the barotropic operator function.

gorithm of the function is shown in Fig. 5. This function
requires a total of five inbound arrays (A0, AN, AE, ANE,
and X), and one outbound array (AX). Our previous work
has revealed that the function requires more than 60% of the
FPGA slices and thus use of simple interleaved streaming
DMA is infeasible due to the resource constraint. One op-
timization strategy for inbound DMA transfer is to use the
single streaming DMA for the array AO. The other strat-
egy is to use the dual streaming DMA with reordering for
the arrays AO and AE. Before transferring them, the CPU
alternates them on the main memory to form a double sized
single array. Then transferring the double size array with the
dual streaming DMA isolates again AQ and AE in individual
two OBM banks. Since use of streaming DMA hardly affect
the FPGA operation time, an essential trade-off will arise
between the following two strategies; (1) use of the regular
DMA and the single streaming DMA, and (2) use of the dual
streaming DMA after reordering on the CPU.

4. EVALUATION
4.1. Streaming DMA and reordering

Fig. 6 shows the execution time of the regular DMA and re-
ordering on SRC-6, and Fig. 7 gives a closeup view of Fig. 6.
Here, we changed the string size from 1 Byte to 4 MB, which
is the size of the OBM bank. The time required for the regu-
lar DMA is almost proportional to the amount of data trans-
ferred. On the other hand, the time required for reordering is
not proportional until the string size reaches around 500 KB.
This is attributed to the fact that the two strings of data to be
reordered can not be stored in the 1 MB L2 cache when the
string size exceeds 512 KB.

As Fig. 7 shows, the streaming DMA with reordering is
superior to the regular DMA when the string size is smaller
than 150 KB. In many scientific applications including POP,
users can chose desired computation granularity of function
calls, that is, how much data is processed by a single call of
the function. Although this does not make a large impact on
execution time on ordinary computers, choosing the string
size of 150 KB or smaller would bring about a positive effect
of the dual streaming DMA with reordering on SRC-6.

12’4‘ ¥-Reordering B Regular DMA ’7
10 »
8
m
£
O 6
£ / .
4
/ m
2
w
a
0 T T T T T T T T 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500
size (KB)
Fig. 6. DMA transfer and reordering (1).
700 ’4‘ “¥Reordering & Regular DMA ’7
600 /
500
m ///
2 400
(0]
E o

300 ///
200 ///;//

‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300
size (KB)

Fig. 7. DMA transfer and reordering (2).

100 &

4.2. Barotropic operator function

Based on the results of Sec. 4.1, we implemented the barotropic

operator function using dual streaming DMA with reorder-
ing. The six implementation patterns summarized in Table 1
were compared to evaluate the effect of the DMA methods.
The measured values of execution time on SRC-6 and soft-
ware execution time on a 2.8 GHz Xeon processor are pre-
sented in Fig. 8. The figure also shows a breakdown of the
execution time on SRC-6. Note that the overlapped time
of FPGA execution and DMA transfer is counted as “exe-
cution time” in this breakdown. The evaluation results show
that Arch. 5 and Arch. 6, which use the dual streaming DMA
with reordering, effectively reduced the DMA transfer time
and boosted the total execution time. Arch. 6, which uses
the dual streaming with reordering for both inbound and out-
bound transfer, marked the best performance, achieving 1.37
times performance improvement compared to the Xeon pro-
cessor. The time required to reorder strings accounted for
only 2.23 % of the total execution time.

4.3. Grad function

Next we evaluated streaming DMA with the grad function in
POP, which calculates the gradient of an energy field at each

649

1000

900 [JReordering | —
[DMA time

800 [X Execution time | —

700

600

Time[us]

500

400

300

2001

100

0 T T T T T T
Xeon Arch.l1 Arch.2 Arch.3 Arch.4 Arch.5 Arch.6

Fig. 8. Performance results of using Dual streaming DMA.

Table 1. Evaluated patterns.

Streaming DMA
Internal . Dual with
Singl
MEM fngie reordering
Inbound | Outbound Inbound”
Arch. 1 | notused | notused | notused not used
Arch. 2 used notused | not used not used
Arch. 3 | not used used not used not used
Arch. 4 used used not used not used
Arch. 5 used not used | not used used
Arch. 6 used not used used used

time step. In this implementation, two inbound arrays are
transferred with streaming DMA while the others are trans-
ferred with regular DMA. The grad function mainly consists
of three loops of processing and the SRC compiler converts
each loop description into individual pipelined arithmetic
hardware circuits. The streaming DMA was used for the
second loop. Unlike the barotropic operator mentioned in
the previous section, the grad function uses only one FPGA
since the required hardware amount is not so large.

Fig. 9 shows the execution results of the grad function
on the SRC-6 and the Xeon processor. While the grad func-
tion utilizes some 32-bit integer arrays, SRC-6 only supports
64-bit data transfer for DMA. Therefore, we implemented
data conversion function on the CPU which extends 32-bit
integer data to 64 bits in advance of DMA transfer. Fig. 9
also shows this process as “extension” in the breakdown,
but the actual time was less than a microsecond and was
almost negligible. Also, the data reordering accounted for
only up to 1.82 % of the total execution time. Compared to
software execution on the Xeon, the regular DMA imple-
mentation, the single streaming DMA implementation, and
the dual streaming DMA with reordering implementation
achieve 1.31, 1.37, and 1.46 times speedup, respectively.
Focusing only on FPGA execution time, slight degradation
arose as the traffic of the streaming DMA was increased.
However, the effect of the streaming DMA overcame this
overhead, resulting in the performance improvement.

Since the implementation in Fig. 9 uses the streaming
DMA only for inbound transfer, the performance would be
further improved by using streaming DMA for outbound

1200,

1000.0

800.00 +—

600.00 T—

Time [us]

O Reordering
400,001 O Extention

B DMA time

B Execution time

200.00 +—

Xeon Regular Single Dual
DMA streaming streaming
DMA DMA with
reordering

Design
Fig. 9. Performance results of the grad function.

transfer as it was in the barotropic operator function. More-
over, this implementation utilized approximately only 50 %
slices of single FPGA. Therefore another resource-consuming
techniques such as circuit parallelization and use of more
FPGA internal memory could also be applied to reduce the
number of OBM access.

5. CONCLUSION AND FUTURE WORK

Aiming at making the best use of the interleaving streaming
DMA facility even under a rigid FPGA resource constraint,
we proposed to make the CPU reorder the data strings to be
transferred on the main memory and empirically evaluated
the overhead using two functions in the POP. The evalua-
tion results showed the proposed method was superior to sin-
gle streaming DMA when the size of transferred data string
does not exceed approximately 150 KB. As our future work,
we will try to lay an automatic optimization framework for
DMA transfer. Scheduling of DMA traffic and communica-
tion between the two FPGAs is also our challenging task.

6. REFERENCES

[1] T. El-Ghazawi, E. El-Araby, M. Huang, K. Gaj, V. Kin-
dratenko, and D. Buell, “The promise of high-performance re-
configurable computing,” IEEE Computer, vol. 41, no. 2, pp.
69-76, Feb. 2008.

[2] R. Scrofano, M. Gokhale, F. Trouw, and V. K. Prasanna, “A
hardware/software approach to molecular dynamics on recon-
figurable computers,” Proc. FCCM, pp. 23-34, 2006.

[3] M. C. Smith, J. S. Vetter, and S. R. Alam, “Scientific comput-
ing beyond CPUs: FPGA implementations of common scien-
tific kernels,” Proc. MAPLD, 2005.

[4] O.Mencer, “Computing with FPGAs,” Proc. COOL Chips, pp.
327-343, 2006.

[5] M. B. Gokhale, C. D. Rickett, J. L. Tripp, and C. H. Hsu,
“Promises and pitfalls of reconfigurable supercomputing,”
Proc. ERSA, pp. 11-20, June 2006.

[6] S. Shida, Y. Shibata, K. Oguri, and D. A. Buell, “Implemen-
tation of a barotropic operator for ocean model simulation us
ing a reconfigurable machine,” Proc. FPL, pp. 589-592, Aug.
2007.

[71 SRC Computers, Inc., MAPstation, 2005.

650

