Two Element Phased Array Dipole Antenna on EBG Ground Plane

Mitsuo Taguchi ${ }^{1}$, ${ }^{\text {\# Shinya Tanaka }}{ }^{2}$
${ }^{1}$ Department of Electrical \& Electronic Engineering, Nagasaki University
${ }^{2}$ Graduate School of Science and Technology, Nagasaki University
1-14 Bunkyo-machi, Nagasaki-shi, 852-8521 JAPAN
${ }^{1}$ mtaguchi@net.nagasaki-u.ac.jp, ${ }^{2}$ d706285f@cc.nagasaki-u.ac.jp

1. Introduction

For the short-range wireless communication, a small antenna with unidirectional radiation characteristics is desired. As the directional antenna composed of wire elements, the Yagi-Uda antenna and the electronically steerable passive array radiators (ESPAR) antenna are well known. These antennas consist of single driven element and some parasitic elements [1], [2]. These antennas are spatially phase controlled antennas. Authors have proposed the two element array dipole antenna with 90° phase difference feed for the directional antenna [3], [4]. By adjusting the length of each element and the distance between the two elements, the front-to-back ratio of 15.3 dB have been obtained at the design frequency of 2.45 GHz .

In this paper, this antenna is located on the electromagnetic bandgap (EBG) ground plane with finite size and numerically analyzed by using the electromagnetic simulator WIPL-D based on the Method of Moment [5], [6].

2. Analytical Model

Fig. 1 shows the structure of the two-element phased array dipole antenna on the EBG ground plane. Each antenna element is fed with 90° phase difference. The distance between two elements is $\mathrm{d}=20.6 \mathrm{~mm}$. The length of two elements are $\mathrm{L} 1=54.6 \mathrm{~mm}$ and $\mathrm{L} 2=50.2 \mathrm{~mm}$. The radius of each element is 1 mm . The structure of phased array dipole antenna is optimized in order to obtain the maximum front-to-back ratio 15.3 dB at the design frequency 2.45 GHz when this antenna is located in free space. This antenna is located $\mathrm{h} 2=3 \mathrm{~mm}$ above the EBG ground plane with length $1 \lambda_{c}$ by $1 \lambda_{c} . \lambda_{c}$ is the wavelength at the design frequency 2.45 GHz . The relative permittivity and the loss tangent of EBG material are 2.6 and 0.0019 , respectively. The

Figure 1: Structure of two-element phased array dipole antenna on EBG substrate. $\mathrm{h} 2=3 \mathrm{~mm}$, relative permittivity of substrate $=2.6-\mathrm{j} 0.00486, \mathrm{~h} 1=4 \mathrm{~mm}$.
thickness of dielectric layer h1 is 4 mm . The number of EBG patches is 9×9. In the numerical analysis by WIPL-D, two dipole elements are excited by the delta-gap generators and the thickness of EBG patches are assumed to be infinitely thin.

3. Results and Discussion

Figures 2, 3, 4 and 5 show the calculated front-to-back ratio for different length of EBG patches and gap width. The size of EBG ground plane is fixed to be $1 \lambda_{c}$ by $1 \lambda_{c}$. As the gap width between EBG patches g becomes larger from $0.005 \lambda_{c}$, the front-to-back ratio becomes larger. When the gap width becomes $0.026 \lambda_{\mathrm{c}}$, the maximum front-to-back ratio of 19.63 dB is obtained at the frequency of 2.35 GHz . When the gap width becomes $0.024 \lambda_{\mathrm{c}}$, the maximum front-to-back ratio of 19.34 dB is obtained at the design frequency of 2.45 GHz .

Figure 6 shows the electric field radiation patterns in xy plane in the case of $g=0.024 \lambda_{c}$ and $0.005 \lambda_{c}$ at the frequency of 2.45 GHz . The front-to-back ratio for $\mathrm{g}=0.024 \lambda_{\mathrm{c}}$ and $0.005 \lambda_{\mathrm{c}}$ are 19.34 dB and 16.37 dB , respectively. In the case of $\mathrm{g}=0.024 \lambda_{\mathrm{c}}$, the directivity of 7.93 dB is obtained.

Figure 7 shows the electric field distribution in the vicinity of EBG ground plane in the case of $g=0.024 \lambda_{c}$ at the design frequency of 2.45 GHz . Figure 8 shows that in the case of $g=$ $0.005 \lambda_{c}$ at the frequency of 2.45 GHz . In the case of $\mathrm{g}=0.024 \lambda_{c}$, the y component of electric field is suppressed at the surface of EBG ground plane. This means that the EBG ground plane works well in this case.

4. Conclusion

Two-element array dipole antenna with 90° phase difference feed, located on the EBG ground plane, has been analyzed numerically. The structure of two-element array dipole antenna is fixed to obtain the maximum front-to-back ratio in free space. The size of EBG ground plane is fixed to be $1 \lambda_{\mathrm{c}}$ by $1 \lambda_{\mathrm{c}}$. The front-to-back ratio of 19.34 dB is obtained at the design frequency 2.45 GHz when the gap width is $\mathrm{g}=0.024 \lambda_{\mathrm{c}}$. By adjusting the size of EBG patches and gap width between patches and the geometry of two-element array dipole antenna, higher front-to-back ratio may be obtained. This antenna is promising as the directional antenna for the base station of the wireless communication system.

References

[1] H. Yagi, "Beam transmission of ultra-short waves," Proc. IRE, vol. 16, p. 715, 1928.
[2] T. Ohira and K. Gyoda, "Electronically steerable passive array radiator antennas for low-cost analog adaptive beam-forming," Proc. IEEE International Conference on Phased Array Systems and Technology, pp. 101-104, May 2000.
[3] M. Taguchi, K. Era, K. Tanaka, "Two element phased array dipole antenna," Proc. of 22th Annual Review of Progress in Applied Computational Electrics, Miami, 15-5, March 2006.
[4] M. Taguchi, K. Era, K. Tanaka, "Two element phased array dipole antenna," ACES Journal, vol. 22, no. 1, pp. 112-116, March 2007.
[5] F. Yang, Y. Rahmat-Samii, "Reflection phase characteristics of the EBG Ground plane for low profile wire antenna applications", IEEE Trans. on Antennas and Propagation, vol. 51, no. 10, pp. 2691-2703, Oct. 2003.
[6] "WIPL-D Pro v5.1 User’s Manual," WIPL Ltd., 2006.

Figure 2: Front-to-back ratio.

$$
\left(\mathrm{g}=0.005 \lambda_{\mathrm{c}}-0.025 \lambda_{\mathrm{c}}\right)
$$

Figure 4: Front-to-back ratio.

$$
\left(\mathrm{g}=0.024 \lambda_{\mathrm{c}}-0.026 \lambda_{\mathrm{c}}\right)
$$

Figure 3: Front-to-back ratio.

$$
\left(\mathrm{g}=0.020 \lambda_{\mathrm{c}}-0.023 \lambda_{\mathrm{c}}\right)
$$

Figure 5: Front-to-back ratio.

$$
\left(\mathrm{g}=0.027 \lambda_{\mathrm{c}}-0.030 \lambda_{\mathrm{c}}\right)
$$

(b) $g=0.005 \lambda_{\mathrm{c}}$

FB ratio $=16.37 \mathrm{~dB}$
FB ratio $=19.34 \mathrm{~dB}$

Figure 6: Electric field radiation patterns in xy plane at 2.45 GHz .

