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Abstract 32 

The MALDI Biotyper Selective Testing of Antibiotic Resistance–β-Lactamase (MBT 33 

STAR-BL) assay, which analyzes bacterial induced hydrolysis of cefotaxime using 34 

MALDI-TOF MS, correctly identified 100.0% of extended-spectrum β-lactamase 35 

(ESBL)-producing Enterobacteriaceae as positive and 94.7% of non-ESBL producers 36 

as negative in 80 strains tested. 37 
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Text 40 

Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae represent a 41 

significant public health concern. A previous study from Japan reported that ESBL-42 

producing Escherichia coli and Klebsiella pneumoniae are spreading, accounting for 43 

23.0% of E. coli and 10.7% of K. pneumoniae infections in 2014-2015 (Takesue et al., 44 

2017). 45 

We recently reported the reliable performance of the MALDI Biotyper Selective 46 

Testing of Antibiotic Resistance–β-Lactamase (MBT STAR-BL) assay, which analyzes 47 

bacterial induced hydrolysis of β-lactam antibiotics using matrix-assisted laser 48 

desorption ionization–time-of-flight mass spectrometry (MALDI-TOF MS), for 49 

detecting IMP metallo-β-lactamase (MBL) activity in Enterobacteriaceae (Kawamoto et 50 

al., 2018). In the present study, we also investigated the utility of the MBT STAR-BL 51 

assay for the detection of ESBL activity in Enterobacteriaceae. 52 

We used Enterobacteriaceae (E. coli and K. pneumoniae) clinically isolated at the 53 

Nagasaki University Hospital between January 2011 and May 2016. MICs were 54 

determined using a BD Phoenix Automated Microbiology System (BD Diagnostics). 55 

ESBL production was also detected using the BD Phoenix system (Leverstein-van Hall 56 

et al., 2002; Sanguinetti et al., 2003). The presence of ESBL genes was evaluated by 57 
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PCR. PCR amplification of ESBL genes (variants of CTX-M–group 1, including CTX-58 

M-1, CTX-M-3, and CTX-M-15; variants of CTX-M–group 2, including CTX-M-2; 59 

variants of CTX-M–group 9, including CTX-M-9 and CTX-M-14; TEM variants, 60 

including TEM-1 and TEM-2; and SHV variants, including SHV-1) was performed 61 

using previously described primers (Dallenne et al., 2010) under the following 62 

conditions: 10 min at 95°C, 30 cycles consisting of 40 s at 95°C, 40 s at 60°C, 1 min at 63 

72°C, and 7 min at 72°C for the final extension for ESBL genes, as described previously 64 

(Higashino et al., 2017). Analysis of cefotaxime hydrolysis using the MBT STAR-BL 65 

assay (including calibration) was performed according to the manufacturer’s 66 

instructions, as described previously (Kawamoto et al., 2018). Three to five individual 67 

bacterial colonies were randomly collected using a 1-µL inoculation loop, suspended in 68 

50 μL of solution (10 mM NH4CO3, 10 μg/mL ZnCl2 [pH 8]) containing 0.5 mg/mL of 69 

cefotaxime, and incubated at 37°C for 2 h according to the manufacturer’s instructions. 70 

Signal peak intensity was used to calculate the logRQ value (a measure of 71 

hydrolysis efficiency), which was the logarithm of the ratio of the summed intensity of 72 

the hydrolyzed form (molecular peaks of [Mhydrolyzed/deacetyl + H]+ at 414 m/z and 73 

[Mhydrolyzed/decarboxylated/deacetyl + H]+ at 370 m/z) to the summed intensity of the non-74 

hydrolyzed form (peaks of [M + H]+ at 456 m/z, the sodium adducts [M + Na]+ at 478 75 
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m/z and [M + 2Na]+ at 500 m/z, and [Mdeacetyl + H]+ at 396 m/z). Higher logRQ values 76 

indicated a higher degree of antibiotic hydrolysis (Kawamoto et al., 2018; Oviano and 77 

Bou, 2017). The 95% confidence intervals (CIs) for sensitivity and specificity were 78 

calculated using R statistical software (https://cran.ism.ac.jp/) (Kosai et al., 2017; 79 

Yamakawa et al., 2018). Dot plots were generated using EZR 80 

(http://www.jichi.ac.jp/saitama-sct/SaitamaHP.files/statmedEN.html). 81 

A total of 80 strains (42 E. coli and 38 K. pneumoniae) were used for the 82 

cefotaxime hydrolysis assay, and the characteristics of these strains are presented in 83 

Table 1. Of the 80 strains, 42 (22 E. coli and 20 K. pneumoniae) harbored ESBL genes 84 

that were not detected in the remaining 38 strains. The most prevalent ESBL genotype 85 

was the CTX-M type, and 23 strains harbored multiple ESBL genes. The results of 86 

ESBL production assays using the BD Phoenix system were consistent with the 87 

presence or absence of ESBL genes in all 80 strains. ESBL producers and non-88 

producers were defined as strains positive for both ESBL genes and ESBL production 89 

and as strains negative for both ESBL genes and ESBL production, respectively. 90 

Representative spectra of the cefotaxime hydrolysis assay analyzed using the MBT 91 

STAR-BL assay are presented in Figure 1. The distribution of normalized logRQ values 92 

of the strains examined is shown in Figure 2. All 42 ESBL producers were accurately 93 
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identified as positive. With respect to the 38 non-ESBL producers, 36 were correctly 94 

identified as negative, whereas 1 strain was indeterminate and 1 strain was identified as 95 

positive. The sensitivity and specificity of the cefotaxime hydrolysis assay for the 96 

detection of ESBL activity were 100.0% (95% CI, 91.6–100.0) and 94.7% (95% CI, 97 

82.3–99.4), respectively. 98 

Our results indicate that the MBT STAR-BL assay exhibits excellent performance, 99 

with high sensitivity and specificity. The results of previous studies using similar 100 

detection systems were consistent with our present results, suggesting that the assay is 101 

reliable for the detection of ESBL-producing strains (Oviano et al., 2014; Oviano et al., 102 

2017). The resistance of the two non-ESBL producers identified as indeterminate or 103 

positive by the cefotaxime hydrolysis assay could be associated with plasmid-mediated 104 

inducible β-lactamases not evaluated in this study (Empel et al., 2010; Jacoby, 2009; 105 

Yong et al., 2005). 106 

There are some limitations to the present study. First, we examined only cefotaxime 107 

under a single condition (concentration, 0.5 mg/mL; incubation time, 2 h). However, it 108 

should be recognized that differences in bacterial concentration, antibiotic, drug 109 

concentration, and incubation time could affect the results of this assay (Mirande et al., 110 

2015; Monteferrante et al., 2016). In addition, we used strains isolated at a single 111 
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institution, and CTX-M was the major genotype of these strains. Because epidemiologic 112 

differences could have affected the results, further studies using strains isolated in other 113 

regions and including a variety of genotypes will be necessary in order to confirm the 114 

assay performance. 115 

In conclusion, this study demonstrated that the MBT STAR-BL assay enables 116 

detection of ESBL-producing Enterobacteriaceae with high accuracy, thereby making it 117 

suitable for screening ESBL producers. 118 
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Development (AMED) (JP18fk0108052). 124 
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Figure legends 189 

Figure 1. Representative spectra of the cefotaxime hydrolysis assay analyzed using the 190 

MBT STAR-BL assay. Non-ESBL producers exhibited peaks at 456, 478, and 396 m/z, 191 

corresponding to the non-hydrolyzed form of cefotaxime. Hydrolysis of cefotaxime by 192 

ESBL producers was characterized by disappearance of the non-hydrolyzed form of 193 

cefotaxime. ESBL, extended-spectrum β-lactamase. 194 

 195 

Figure 2. Distributions of normalized logRQ values for strains tested using the 196 

cefotaxime hydrolysis assay. Normalized logRQ values >0.4 or <0.2 indicate positive or 197 

negative results, respectively. Values between 0.2 and 0.4 were considered 198 

indeterminate. ESBL, extended-spectrum β-lactamase; MIC, minimum inhibitory 199 

concentration. 200 



 

Table 1. Characteristics of Enterobacteriaceae evaluated in this study. 

Bacterial species ESBL genotype ESBL production MIC for cefotaxime (μg/mL) n 
Escherichia coli CTX-M group 1 Positive >32 2 
 CTX-M group 9 Positive >32 12 
 CTX-M group 1, TEM Positive >32 1 
 CTX-M group 9, TEM Positive >32 7 
 Negative Negative ≤1 20 
Klebsiella pneumoniae CTX-M group 9 Positive >32 1 
 SHV Positive >32 1 
 SHV Positive ≤1 3 
 CTX-M group 1, SHV Positive >32 6 
 CTM-M group 2, SHV Positive >32 3 
 CTM-M group 9, TEM Positive >32 2 
 TEM, SHV Positive ≤1 1 
 CTX-M group 1, TEM Positive >32 1 
 CTX-M group 1, TEM, SHV Positive >32 2 
 Negative Negative ≤1 18 
Total    80 

ESBL, extended-spectrum β-lactamase; MIC, minimum inhibitory concentration. 



Figure 1. Representative spectra of the cefotaxime hydrolysis assay analyzed using the MBT STAR-BL 
assay. Non-ESBL producers exhibited peaks at 456, 478, and 396 m/z, corresponding to the non-
hydrolyzed form of cefotaxime. Hydrolysis of cefotaxime by ESBL producers was characterized by 
disappearance of the non-hydrolyzed form of cefotaxime. ESBL, extended-spectrum β-lactamase.
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Figure 2. Distributions of normalized logRQ values for strains tested using the cefotaxime 
hydrolysis assay. Normalized logRQ values >0.4 or <0.2 indicate positive or negative results, 
respectively. Values between 0.2 and 0.4 were considered indeterminate. ESBL, extended-
spectrum β-lactamase; MIC, minimum inhibitory concentration.
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