- **1** Short Communication (Note)
- $\mathbf{2}$
- 3 Title
- 4 Detection of extended-spectrum β-lactamase (ESBL)-producing *Enterobacteriaceae*
- 5 using the MALDI Biotyper Selective Testing of Antibiotic Resistance–β-Lactamase
- 6 (MBT STAR-BL) assay
- $\mathbf{7}$

```
8 Authors
```

- 9 Yasuhide Kawamoto^a
- 10 Kosuke Kosai^{a,*}
- 11 Hiromi Yamakawa^a
- 12 Norihito Kaku^a
- 13 Naoki Uno^b
- 14 Yoshitomo Morinaga^b
- 15 Hiroo Hasegawa^a
- 16 Katsunori Yanagihara^{a, b}
- 17

18 Affiliation

- ¹⁹ ^a Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
- ²⁰ ^b Department of Laboratory Medicine, Nagasaki University Graduate School of
- 21 Biomedical Sciences, Nagasaki, Japan
- 22

23 *Correspondence

- 24 Kosuke Kosai, MD, PhD
- 25 Department of Laboratory Medicine, Nagasaki University Hospital
- 26 1-7-1 Sakamoto, Nagasaki, Nagasaki 852-8501, Japan
- 27 Tel: +81-95-819-7574; Fax: +81-95-819-7422
- 28 E-mail: k-kosai@nagasaki-u.ac.jp
- 29

30 Running title

31 Accurate detection of ESBL by MBT STAR-BL

32 Abstract

- 33 The MALDI Biotyper Selective Testing of Antibiotic Resistance–β-Lactamase (MBT
- 34 STAR-BL) assay, which analyzes bacterial induced hydrolysis of cefotaxime using
- 35 MALDI-TOF MS, correctly identified 100.0% of extended-spectrum β -lactamase
- 36 (ESBL)-producing *Enterobacteriaceae* as positive and 94.7% of non-ESBL producers
- as negative in 80 strains tested.
- 38
- 39 Key words: MALDI-TOF MS, ESBL, Antibiotic resistance

Text

41	Extended-spectrum β -lactamase (ESBL)-producing <i>Enterobacteriaceae</i> represent a
42	significant public health concern. A previous study from Japan reported that ESBL-
43	producing Escherichia coli and Klebsiella pneumoniae are spreading, accounting for
44	23.0% of E. coli and 10.7% of K. pneumoniae infections in 2014-2015 (Takesue et al.,
45	2017).
46	We recently reported the reliable performance of the MALDI Biotyper Selective
47	Testing of Antibiotic Resistance– β -Lactamase (MBT STAR-BL) assay, which analyzes
48	bacterial induced hydrolysis of β -lactam antibiotics using matrix-assisted laser
49	desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS), for
50	detecting IMP metallo-β-lactamase (MBL) activity in <i>Enterobacteriaceae</i> (Kawamoto et
51	al., 2018). In the present study, we also investigated the utility of the MBT STAR-BL
52	assay for the detection of ESBL activity in Enterobacteriaceae.
53	We used Enterobacteriaceae (E. coli and K. pneumoniae) clinically isolated at the
54	Nagasaki University Hospital between January 2011 and May 2016. MICs were
55	determined using a BD Phoenix Automated Microbiology System (BD Diagnostics).
56	ESBL production was also detected using the BD Phoenix system (Leverstein-van Hall
57	et al., 2002; Sanguinetti et al., 2003). The presence of ESBL genes was evaluated by

58	PCR. PCR amplification of ESBL genes (variants of CTX-M-group 1, including CTX-
59	M-1, CTX-M-3, and CTX-M-15; variants of CTX-M–group 2, including CTX-M-2;
60	variants of CTX-M-group 9, including CTX-M-9 and CTX-M-14; TEM variants,
61	including TEM-1 and TEM-2; and SHV variants, including SHV-1) was performed
62	using previously described primers (Dallenne et al., 2010) under the following
63	conditions: 10 min at 95°C, 30 cycles consisting of 40 s at 95°C, 40 s at 60°C, 1 min at
64	72°C, and 7 min at 72°C for the final extension for ESBL genes, as described previously
65	(Higashino et al., 2017). Analysis of cefotaxime hydrolysis using the MBT STAR-BL
66	assay (including calibration) was performed according to the manufacturer's
67	instructions, as described previously (Kawamoto et al., 2018). Three to five individual
68	bacterial colonies were randomly collected using a $1-\mu L$ inoculation loop, suspended in
69	50 μL of solution (10 mM NH4CO3, 10 $\mu g/mL$ ZnCl2 [pH 8]) containing 0.5 mg/mL of
70	cefotaxime, and incubated at 37°C for 2 h according to the manufacturer's instructions.
71	Signal peak intensity was used to calculate the logRQ value (a measure of
72	hydrolysis efficiency), which was the logarithm of the ratio of the summed intensity of
73	the hydrolyzed form (molecular peaks of $[M_{hydrolyzed/deacetyl} + H]^+$ at 414 m/z and
74	$[M_{hydrolyzed/decarboxylated/deacetyl} + H]^+$ at 370 m/z) to the summed intensity of the non-
75	hydrolyzed form (peaks of $[M + H]^+$ at 456 m/z , the sodium adducts $[M + Na]^+$ at 478

76	m/z and $[M + 2Na]^+$ at 500 m/z , and $[M_{deacetyl} + H]^+$ at 396 m/z). Higher logRQ values
77	indicated a higher degree of antibiotic hydrolysis (Kawamoto et al., 2018; Oviano and
78	Bou, 2017). The 95% confidence intervals (CIs) for sensitivity and specificity were
79	calculated using R statistical software (https://cran.ism.ac.jp/) (Kosai et al., 2017;
80	Yamakawa et al., 2018). Dot plots were generated using EZR
81	(http://www.jichi.ac.jp/saitama-sct/SaitamaHP.files/statmedEN.html).
82	A total of 80 strains (42 E. coli and 38 K. pneumoniae) were used for the
83	cefotaxime hydrolysis assay, and the characteristics of these strains are presented in
84	Table 1. Of the 80 strains, 42 (22 E. coli and 20 K. pneumoniae) harbored ESBL genes
85	that were not detected in the remaining 38 strains. The most prevalent ESBL genotype
86	was the CTX-M type, and 23 strains harbored multiple ESBL genes. The results of
87	ESBL production assays using the BD Phoenix system were consistent with the
88	presence or absence of ESBL genes in all 80 strains. ESBL producers and non-
89	producers were defined as strains positive for both ESBL genes and ESBL production
90	and as strains negative for both ESBL genes and ESBL production, respectively.
91	Representative spectra of the cefotaxime hydrolysis assay analyzed using the MBT
92	STAR-BL assay are presented in Figure 1. The distribution of normalized logRQ values
93	of the strains examined is shown in Figure 2. All 42 ESBL producers were accurately

94	identified as positive. With respect to the 38 non-ESBL producers, 36 were correctly
95	identified as negative, whereas 1 strain was indeterminate and 1 strain was identified as
96	positive. The sensitivity and specificity of the cefotaxime hydrolysis assay for the
97	detection of ESBL activity were 100.0% (95% CI, 91.6–100.0) and 94.7% (95% CI,
98	82.3–99.4), respectively.
99	Our results indicate that the MBT STAR-BL assay exhibits excellent performance,
100	with high sensitivity and specificity. The results of previous studies using similar
101	detection systems were consistent with our present results, suggesting that the assay is
102	reliable for the detection of ESBL-producing strains (Oviano et al., 2014; Oviano et al.,
103	2017). The resistance of the two non-ESBL producers identified as indeterminate or
104	positive by the cefotaxime hydrolysis assay could be associated with plasmid-mediated
105	inducible β -lactamases not evaluated in this study (Empel et al., 2010; Jacoby, 2009;
106	Yong et al., 2005).
107	There are some limitations to the present study. First, we examined only cefotaxime
108	under a single condition (concentration, 0.5 mg/mL; incubation time, 2 h). However, it
109	should be recognized that differences in bacterial concentration, antibiotic, drug
110	concentration, and incubation time could affect the results of this assay (Mirande et al.,
111	2015; Monteferrante et al., 2016). In addition, we used strains isolated at a single

113differences could have affected the results, further studies using strains isolated in oth114regions and including a variety of genotypes will be necessary in order to confirm the115assay performance.116In conclusion, this study demonstrated that the MBT STAR-BL assay enables117detection of ESBL-producing <i>Enterobacteriaceae</i> with high accuracy, thereby makin,118suitable for screening ESBL producers.119Reagents, instrumentation, and funding were provided by Bruker Daltonics K.K.120This study was partially supported by Health and Labour Sciences Research Grants121from the Ministry of Health, Labour and Welfare, Japan (H28-Shinkou-Ippan-003) at122a grant for research and development of diagnostic methods and therapies for123antimicrobial-resistant bacteria from the Japan Agency for Medical Research and124Development (AMED) (JP18fk0108052).125This work was presented at the 28 th European Congress of Clinical Microbiology in126Infectious Diseases (ECCMID) and at the 17 th Asia-Pacific Congress of Clinical Microbiology in	112	institution, and CTX-M was the major genotype of these strains. Because epidemiologic
 regions and including a variety of genotypes will be necessary in order to confirm the assay performance. In conclusion, this study demonstrated that the MBT STAR-BL assay enables detection of ESBL-producing <i>Enterobacteriaceae</i> with high accuracy, thereby making suitable for screening ESBL producers. Reagents, instrumentation, and funding were provided by Bruker Daltonics K.K. This study was partially supported by Health and Labour Sciences Research Grants from the Ministry of Health, Labour and Welfare, Japan (H28-Shinkou-Ippan-003) ar a grant for research and development of diagnostic methods and therapies for antimicrobial-resistant bacteria from the Japan Agency for Medical Research and Development (AMED) (JP18fk0108052). This work was presented at the 28th European Congress of Clinical Microbiology in Infectious Diseases (ECCMID) and at the 17th Asia-Pacific Congress of Clinical 	113	differences could have affected the results, further studies using strains isolated in other
 assay performance. In conclusion, this study demonstrated that the MBT STAR-BL assay enables detection of ESBL-producing <i>Enterobacteriaceae</i> with high accuracy, thereby makin, suitable for screening ESBL producers. Reagents, instrumentation, and funding were provided by Bruker Daltonics K.K. This study was partially supported by Health and Labour Sciences Research Grants from the Ministry of Health, Labour and Welfare, Japan (H28-Shinkou-Ippan-003) at a grant for research and development of diagnostic methods and therapies for antimicrobial-resistant bacteria from the Japan Agency for Medical Research and Development (AMED) (JP18fk0108052). This work was presented at the 28th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID) and at the 17th Asia-Pacific Congress of Clinical 	114	regions and including a variety of genotypes will be necessary in order to confirm the
116In conclusion, this study demonstrated that the MBT STAR-BL assay enables117detection of ESBL-producing <i>Enterobacteriaceae</i> with high accuracy, thereby makin,118suitable for screening ESBL producers.119Reagents, instrumentation, and funding were provided by Bruker Daltonics K.K.120This study was partially supported by Health and Labour Sciences Research Grants121from the Ministry of Health, Labour and Welfare, Japan (H28-Shinkou-Ippan-003) at122a grant for research and development of diagnostic methods and therapies for123antimicrobial-resistant bacteria from the Japan Agency for Medical Research and124Development (AMED) (JP18fk0108052).125This work was presented at the 28 th European Congress of Clinical Microbiology and126Infectious Diseases (ECCMID) and at the 17 th Asia-Pacific Congress of Clinical Microbiology and	115	assay performance.
 detection of ESBL-producing <i>Enterobacteriaceae</i> with high accuracy, thereby makin suitable for screening ESBL producers. Reagents, instrumentation, and funding were provided by Bruker Daltonics K.K. This study was partially supported by Health and Labour Sciences Research Grants from the Ministry of Health, Labour and Welfare, Japan (H28-Shinkou-Ippan-003) ar a grant for research and development of diagnostic methods and therapies for antimicrobial-resistant bacteria from the Japan Agency for Medical Research and Development (AMED) (JP18fk0108052). This work was presented at the 28th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID) and at the 17th Asia-Pacific Congress of Clinical 	116	In conclusion, this study demonstrated that the MBT STAR-BL assay enables
 suitable for screening ESBL producers. Reagents, instrumentation, and funding were provided by Bruker Daltonics K.K. This study was partially supported by Health and Labour Sciences Research Grants from the Ministry of Health, Labour and Welfare, Japan (H28-Shinkou-Ippan-003) at a grant for research and development of diagnostic methods and therapies for antimicrobial-resistant bacteria from the Japan Agency for Medical Research and Development (AMED) (JP18fk0108052). This work was presented at the 28th European Congress of Clinical Microbiology in Infectious Diseases (ECCMID) and at the 17th Asia-Pacific Congress of Clinical 	117	detection of ESBL-producing Enterobacteriaceae with high accuracy, thereby making it
 Reagents, instrumentation, and funding were provided by Bruker Daltonics K.K. This study was partially supported by Health and Labour Sciences Research Grants from the Ministry of Health, Labour and Welfare, Japan (H28-Shinkou-Ippan-003) at a grant for research and development of diagnostic methods and therapies for antimicrobial-resistant bacteria from the Japan Agency for Medical Research and Development (AMED) (JP18fk0108052). This work was presented at the 28th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID) and at the 17th Asia-Pacific Congress of Clinical 	118	suitable for screening ESBL producers.
 This study was partially supported by Health and Labour Sciences Research Grants from the Ministry of Health, Labour and Welfare, Japan (H28-Shinkou-Ippan-003) at a grant for research and development of diagnostic methods and therapies for antimicrobial-resistant bacteria from the Japan Agency for Medical Research and Development (AMED) (JP18fk0108052). This work was presented at the 28th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID) and at the 17th Asia-Pacific Congress of Clinical 	119	Reagents, instrumentation, and funding were provided by Bruker Daltonics K.K.
 from the Ministry of Health, Labour and Welfare, Japan (H28-Shinkou-Ippan-003) at a grant for research and development of diagnostic methods and therapies for antimicrobial-resistant bacteria from the Japan Agency for Medical Research and Development (AMED) (JP18fk0108052). This work was presented at the 28th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID) and at the 17th Asia-Pacific Congress of Clinical 	120	This study was partially supported by Health and Labour Sciences Research Grants
 a grant for research and development of diagnostic methods and therapies for antimicrobial-resistant bacteria from the Japan Agency for Medical Research and Development (AMED) (JP18fk0108052). This work was presented at the 28th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID) and at the 17th Asia-Pacific Congress of Clinical 	121	from the Ministry of Health, Labour and Welfare, Japan (H28-Shinkou-Ippan-003) and
 antimicrobial-resistant bacteria from the Japan Agency for Medical Research and Development (AMED) (JP18fk0108052). This work was presented at the 28th European Congress of Clinical Microbiology and at the 17th Asia-Pacific Congress of Clinical Microbiology and at the 18th Asia-Pacific Congress of Clinical Microbiology and Asia Asia Asia Asia Asia Asia Asia Asia	122	a grant for research and development of diagnostic methods and therapies for
 Development (AMED) (JP18fk0108052). This work was presented at the 28th European Congress of Clinical Microbiology Infectious Diseases (ECCMID) and at the 17th Asia-Pacific Congress of Clinical 	123	antimicrobial-resistant bacteria from the Japan Agency for Medical Research and
125 This work was presented at the 28 th European Congress of Clinical Microbiology 126 Infectious Diseases (ECCMID) and at the 17 th Asia-Pacific Congress of Clinic	124	Development (AMED) (JP18fk0108052).
126 Infectious Diseases (ECCMID) and at the 17 th Asia-Pacific Congress of Clin	125	This work was presented at the 28th European Congress of Clinical Microbiology and
	126	Infectious Diseases (ECCMID) and at the 17th Asia-Pacific Congress of Clinical

127 Microbiology and Infection (APCCMI).

128 **References**

- 129
- Dallenne C, Da Costa A, Decre D, Favier C, Arlet, G. Development of a set of multiplex
 PCR assays for the detection of genes encoding important β-lactamases in
 Enterobacteriaceae. J Antimicrob Chemother 2010;65:490-5.
- Empel J, Hrabák J, Kozińska A, Bergerová T, Urbášková P, Kern-Zdanowicz I, et al.
 DHA-1-producing *Klebsiella pneumoniae* in a teaching hospital in the Czech
 Republic. Microb Drug Resist 2010;16:291-5.
- Higashino M, Murata M, Morinaga Y, Akamatsu N, Matsuda J, Takeda K, et al.
 Fluoroquinolone resistance in extended-spectrum β-lactamase-producing
 Klebsiella pneumoniae in a Japanese tertiary hospital: silent shifting to CTX-M 15-producing *K. pneumoniae*. J Med Microbiol 2017;66:1476-82.
- 140 Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev 2009;22:161-82.
- Kawamoto Y, Kosai K, Yamakawa H, Kaku N, Uno N, Morinaga Y, et al. Performance
 evaluation of the MALDI Biotyper Selective Testing of Antibiotic Resistancebeta-Lactamase (MBT STAR-BL) assay for the detection of IMP metallo-βlactamase activity in *Enterobacteriaceae*. Diagn Microbiol Infect Dis
 2018;92:275-8.
- Kosai K, Iwanaga Y, Akamatsu N, Okada Y, Kaku N, Uno, N, et al. Performance
 evaluation of the Verigene[®] *Clostridium difficile* nucleic acid test, an automated
 multiplex molecular testing system for detection of *C. difficile* toxin. J Infect
 Chemother 2017;23:674-7.
- Leverstein-van Hall MA, Fluit AC, Paauw A, Box ATA, Brisse S, Verhoef J. Evaluation
 of the Etest ESBL and the BD Phoenix, VITEK 1, and VITEK 2 automated
 instruments for detection of extended-spectrum beta-lactamases in multiresistant
 Escherichia coli and *Klebsiella* spp. J Clin Microbiol 2002;40:3703-11.
- Mirande C, Canard I, Buffet Croix Blanche S, Charrier JP, van Belkum A, Welker M et
 al. Rapid detection of carbapenemase activity: benefits and weaknesses of
 MALDI-TOF MS. Eur J Clin Microbiol Iinfect Dis 2015;34:2225-34.
- Monteferrante CG, Sultan S, Ten Kate MT, Dekker LJ, Sparbier K, Peer M, et al.
 Evaluation of different pretreatment protocols to detect accurately clinical
 carbapenemase-producing Enterobacteriaceae by MALDI-TOF. J Antimicrob
 Chemother 2016;71:2856-67.
- Oviano M, Bou G. Imipenem-avibactam: a novel combination for the rapid detection of
 carbapenemase activity in *Enterobacteriaceae* and *Acinetobacter baumannii* by
 matrix-assisted laser desorption ionization-time of flight mass spectrometry.

- 164 Diagn Microbiol Infect Dis 2017;87:129-32.
- Oviano M, Fernandez B, Fernandez A, Barba MJ, Mourino C, Bou G. Rapid detection of
 enterobacteriaceae producing extended spectrum beta-lactamases directly from
 positive blood cultures by matrix-assisted laser desorption ionization-time of
 flight mass spectrometry. Clin Microbiol Infect 2014;20:1146-57.
- Oviano M, Gomara M, Barba MJ, Revillo MJ, Barbeyto LP, Bou G. Towards the early
 detection of β-lactamase-producing Enterobacteriaceae by MALDI-TOF MS
 analysis. J Antimicrob Chemother 2017;72:2259-62.
- Sanguinetti M, Posteraro B, Spanu T, Ciccaglione D, Romano L, Fiori B, et al.
 Characterization of clinical isolates of *Enterobacteriaceae* from Italy by the BD
 Phoenix extended-spectrum β-lactamase detection Method. J Clin Microbiol
 2003;41:1463-8.
- Takesue Y, Kusachi S, Mikamo H, Sato J, Watanabe A, Kiyota H, et al. Antimicrobial
 susceptibility of pathogens isolated from surgical site infections in Japan:
 Comparison of data from nationwide surveillance studies conducted in 2010 and
 2014-2015. J Infect Chemother 2017;23:339-48.
- Yamakawa H, Kosai K, Kawamoto Y, Akamatsu N, Matsuda J, Kaku N, et al.
 Performance evaluation of BD Phoenix, an automated microbiology system, for
 the screening of IMP-producing *Enterobacteriaceae*. J Microbiol Methods
 2018;145:47-9.
- Yong D, Lim Y, Song W, Choi YS, Park DY, Lee H, et al. Plasmid-mediated, inducible
 AmpC beta-lactamase (DHA-1)-producing Enterobacteriaceae at a Korean
 hospital: wide dissemination in *Klebsiella pneumoniae* and *Klebsiella oxytoca* and
 emergence in *Proteus mirabilis*. Diagn Microbiol Infect Dis 2005;53:65-70.
- 188

189 Figure legends

- 190 Figure 1. Representative spectra of the cefotaxime hydrolysis assay analyzed using the
- 191 MBT STAR-BL assay. Non-ESBL producers exhibited peaks at 456, 478, and 396 *m/z*,
- 192 corresponding to the non-hydrolyzed form of cefotaxime. Hydrolysis of cefotaxime by
- 193 ESBL producers was characterized by disappearance of the non-hydrolyzed form of
- 194 cefotaxime. ESBL, extended-spectrum β -lactamase.

- 196 Figure 2. Distributions of normalized logRQ values for strains tested using the
- 197 cefotaxime hydrolysis assay. Normalized logRQ values >0.4 or <0.2 indicate positive or
- 198 negative results, respectively. Values between 0.2 and 0.4 were considered
- 199 indeterminate. ESBL, extended-spectrum β-lactamase; MIC, minimum inhibitory
- 200 concentration.

Bacterial species	ESBL genotype	ESBL production	MIC for cefotaxime (µg/mL)	n
Escherichia coli	CTX-M group 1	Positive	>32	2
	CTX-M group 9	Positive	>32	12
	CTX-M group 1, TEM	Positive	>32	1
	CTX-M group 9, TEM	Positive	>32	7
	Negative	Negative	≤1	20
Klebsiella pneumoniae	CTX-M group 9	Positive	>32	1
	SHV	Positive	>32	1
	SHV	Positive	≤1	3
	CTX-M group 1, SHV	Positive	>32	6
	CTM-M group 2, SHV	Positive	>32	3
	CTM-M group 9, TEM	Positive	>32	2
	TEM, SHV	Positive	≤1	1
	CTX-M group 1, TEM	Positive	>32	1
	CTX-M group 1, TEM, SHV	Positive	>32	2
	Negative	Negative	≤1	18
Total				80

Table 1. Characteristics of *Enterobacteriaceae* evaluated in this study.

ESBL, extended-spectrum β -lactamase; MIC, minimum inhibitory concentration.

Intensity ($\times 10^4$ a.u.)

Figure 1. Representative spectra of the cefotaxime hydrolysis assay analyzed using the MBT STAR-BL assay. Non-ESBL producers exhibited peaks at 456, 478, and 396 m/z, corresponding to the non-hydrolyzed form of cefotaxime. Hydrolysis of cefotaxime by ESBL producers was characterized by disappearance of the non-hydrolyzed form of cefotaxime. ESBL, extended-spectrum β -lactamase.

Figure 2. Distributions of normalized logRQ values for strains tested using the cefotaxime hydrolysis assay. Normalized logRQ values >0.4 or <0.2 indicate positive or negative results, respectively. Values between 0.2 and 0.4 were considered indeterminate. ESBL, extended-spectrum β -lactamase; MIC, minimum inhibitory concentration.