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Abstract 1 

Microbiological risks associated with drinking water can be minimized by providing enhanced 2 

integrity monitoring of bacterial removal by water treatment processes. This study aimed to 3 

evaluate the efficacy of real-time bacteriological counters for continuously assessing the 4 

performance of a full-scale sand filter to remove bacteria. Over the course of an 8-day 5 

evaluation, online counting of bacteria was successfully performed, providing continuous 6 

bacterial counts in the sand filter influent and effluent over approximate ranges from 17×104 7 

to 94×104 and from 0.2×104 to 1.3×104 counts/mL, respectively. Periodic variations were 8 

observed with online bacterial counts in the sand filter influent because of the changes in the 9 

performance of flocculation and sedimentation processes. Overall, online removal rates of 10 

bacteria determined during the full-scale test were 95.2–99.3% (i.e., 1.3–2.2-log), indicating 11 

that online bacterial counting can continuously demonstrate over 1.3-log removal in the sand 12 

filter. Real-time bacteriological counting technology can be a useful tool for assessing 13 

variability and detecting bacterial breakthrough. It can be integrated with other online water 14 

quality measurements to evaluate underlying trends and the performance of sand filters for 15 

bacterial removal, which can enhance the safety of drinking water. 16 

Keywords: bacterial count; online monitoring; sand filtration; drinking water.   17 

18 
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1 INTRODUCTION 19 

Management of microbiological risks in drinking water is crucial to ensure the safety of 20 

drinking water for public health protection (Villanueva et al., 2014). Microbiological risks in 21 

drinking water are typically minimized by achieving a sufficient reduction in pathogenic 22 

microorganisms through multiple barriers including drinking water treatment processes (Prest 23 

et al., 2016). In a conventional rapid sand filtration system, the filtration process plays a critical 24 

role in removing protozoa (i.e., Cryptosporidium and Giardia). Therefore, the United States 25 

Environmental Protection Agency (US EPA) has set the Surface Water Treatment Rules 26 

(SWTRs), which requires filtration systems to achieve 2-log removal of Cryptosporidium. 27 

Nonmicrobial surrogates such as turbidity and/or particle counts are generally used to detect 28 

and monitor for waterborne pathogens including Cryptosporidium, because it can be difficult 29 

to sample and analyze protozoa at a frequency that can continuously assess sand filter 30 

performance for pathogen removal. However, online process monitoring can sensitively and 31 

economically detect breakthrough of nonmicrobial surrogates through filtration, this can detect 32 

failures for pathogen breakthrough. 33 

As a surrogate indicator of pathogenic contamination in drinking water, total coliform has been 34 

widely used as a traditional indicator for water quality. Therefore, the Total Coliform Rule by 35 

US EPA sets a drinking water standard (maximum contaminant level goal) for total coliforms 36 

at zero cell/mL. Depending on the concentration of bacteria and inorganic matter, bacteria can 37 

be primarily inactivated through post-chlorination. In addition to disinfection, removal of 38 

bacteria by sand filtration further enhances the final water quality. To date, online analytical 39 

methods have not been fully established with respect to continuous monitoring of sand filter 40 

performance for bacterial removal. For monitoring purposes, conventional counting of total 41 

culturable bacteria is time consuming and uneconomical. Thus, development of new online real 42 
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time screening methods for microbial contaminants is important to continuously ensure sand 43 

filter integrity (Van Nevel et al., 2017; Liu et al., 2018; Sherchan et al., 2018).  44 

New technologies for microbial analysis in drinking water applications include flow cytometry 45 

(FCM) (Vital et al., 2012; Prest et al., 2014; Samendra et al., 2014; Ou et al., 2017). FCM uses 46 

simultaneous light-scattering and fluorescence measurements coupled with dye staining for 47 

microbial counting and analysis; thus, bacterial counting using FCM is highly useful to 48 

measure microbial water quality. It has been validated for detecting variations in both intact 49 

and damaged bacterial cells for drinking water treatment systems and for distribution network 50 

(Props et al., 2018). FCM analysis has recently been automated with robotics for staining cells 51 

(Hammes et al., 2012; Besmer et al., 2014); providing further capabilities for online monitoring 52 

of bacterial counts. However, excessive dye volumes required for staining is a challenge for 53 

continuously monitoring sand filter performance. 54 

Another online bacterial counting technique that has recently emerged is a real-time 55 

bacteriological counting technology, which is also based on simultaneous light-scattering and 56 

autofluorescence measurements (Pepper and Snyder, 2016; Fujioka et al., 2018). This 57 

technology utilizes the combined autofluorescence emitted from riboflavin and nicotinamide 58 

adenine dinucleotide - hydrogen (NADH) in bacterial cells to identify them in water. By using 59 

intrinsic fluorescence, concentrations of bacteria in water can be monitored in real time without 60 

dyes for staining and detecting bacteria in water. Thus, online real time bacteriological counters 61 

may be more practical for physical treatment processes that provide continuous bacterial counts 62 

before and after treatment (Fujioka et al., 2019a; Fujioka et al., 2019b). This technology can 63 

be applied to sand filtration to monitor performance for bacterial removal and detect 64 

breakthrough of bacteria. Nevertheless, the effectiveness of this approach has not been assessed 65 

in drinking water applications. 66 
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This study aimed to assess the efficacy of real-time and online bacteriological counting 67 

technology for continuously monitoring full-scale sand filter performance for bacterial 68 

attenuation and removal. Bacterial counts before and after (i.e., influent and effluent) were 69 

continuously measured to demonstrate the ability of online bacterial counting for tracking 70 

variations in bacterial removal by sand filter to assess the integrity of the full scale sand filter. 71 

The ultimate aim of this study was to monitor the sand filter and ascertain its performance 72 

through online counting of bacteria in the sand filter influent and effluent. Ultimately, online 73 

monitoring has the potential of enhancing the safety of drinking water.  74 

2 MATERIALS AND METHODS 75 

2.1 Drinking water treatment system 76 

This full-scale study was conducted at a drinking water treatment plant in Sasebo (Nagasaki, 77 

Japan). This plant is comprised a water intake basin, two rapid mixing basins, four flocculation 78 

and sedimentation basins equipped with inclined plate separators, and six rapid sand filtration 79 

basins (Fig. 1). Drinking water sources to the plant include both river and lake waters, which 80 

are mixed at the water intake basin. Size of each flocculation basin and sedimentation basin is 81 

9.0 m (L) × 10.2 m (W) × 3.0 m (D) (capacity = 275.4 m3) and 12.0 m (L) × 10.4 m (W) × 3.0 82 

m (D) (capacity = 374.4 m3), respectively. Poly-aluminium chloride (PAC) at an Al 83 

concentration of 10.3 w/w% was supplied by Central Glass Co. (Tokyo, Japan). Each sand 84 

filter comprises dual filter media: 0.3 m depth of anthracite (effective size = 1.2 mm, and 85 

uniformity coefficient = 1.4) and 0.35 m depth of fine sand (effective size = 0.6 mm, and 86 

uniformity coefficient = 1.4), which are supported on four gravel layers. Area of each filtration 87 

basin is 5.6 m (L) × 9.2 m (W), which is equal to the surface area of 51.4 m2. 88 

[Fig. 1] 89 
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2.2 Analytical methods 90 

Real-time bacteriological counters (IMD-WTM, Azbil Co., Tokyo, Japan) were used to monitor 91 

bacterial counts in both the influent and effluent of the sand filter. To count  the number of 92 

bacterial particles, the analyzer detects the intensity of two different lights for particle counting 93 

and bacterial autofluorescence in response to the excitation (Ex) light (wavelength = 405 nm). 94 

The two lights are comprised of (a) scattered light for counting the number and size of particles 95 

in water and (b) two autofluorescence emission (Em) lights (wavelength = 410–450 and 490–96 

530 nm) emitted from riboflavin and NADH in bacteria (and protozoa that is larger than 97 

bacteria). The analyzer has the capacity of detecting particles of >0.3 µm, and requires a sample 98 

flow rate of 10 mL/min and a water pressure of >70 kPa. 99 

Bacterial counting using flow cytometry, epifluorescence microscopy, and plate count was 100 

performed using manually collected samples. Flow cytometric bacterial counts were measured 101 

using a flow cytometer (BD Accuri® C6, BD Biosciences, San Jose, CA, USA). The analytical 102 

instrument was set to irradiate the excitation light (wavelength = 488 nm) and to detect 103 

emission light through an optical filter (533/30 nm). SYBR Green Ⅰ nucleic acid gel stain, 104 

which is generally used with flow cytometry measurements to count both dead and alive 105 

bacteria cells in natural water (Prest et al., 2016), was used for staining bacteria at 1% 106 

concentration with 20 min incubation time. 107 

Epifluorescent bacterial counts were measured using a fluorescence microscope (Rapisco, 108 

Shibasaki, Inc., Chichibu, Japan). Samples were first diluted using pure water. Thereafter, 1 109 

mL of each sample was filtered using a track-etched polycarbonate MF membrane with 0.2 µm 110 

pore size (Meric, Tokyo, Japan). Total number of both viable and nonviable bacteria (total 111 

direct bacterial counts) was measured with 4’-6-diamidino-2-phenylindole (DAPI) dye 112 

solution (Thermo Fisher Scientific, Waltham, MA, USA). Compared to SYBR GREEN 113 
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staining, DAPI will generally provide lower bacterial counts; however both methods show a 114 

high correlation (Shibata et al., 2007). Alive direct bacterial counts were calculated by 115 

subtracting of the dead bacterial cell counts measured using 3,6-Bis(dimethylamino)acridine 116 

hydrochloride solution (Dojindo Laboratories, Kumamoto, Japan) from total bacterial counts.  117 

Viable bacterial counts were also measured using standard plate count agar (PCA) method. 118 

Each sample (1 mL) was added to 15 mL sterile standard plate count agar medium (E-KB07, 119 

Eiken Chemical, Tokyo, Japan) at a temperature of 45°C. They were mixed, transferred into 120 

sterile Petri dishes, and incubated at 20°C for 22–26 hrs, as per the Drinking Water Quality 121 

Standards in Japan. Bacterial counts using PCA methods were expressed as colony-forming 122 

unit (CFU). Heterotrophic plate count (HPC) method was also used to determine the number 123 

of total viable bacteria in water that use organic carbon. The HPC method used R2A medium 124 

(Kanto Chemical, Tokyo, Japan); plates were incubated at 20–25 °C and counted after seven 125 

days. The other conditions were same as the standard PCA method. 126 

2.3 Experimental protocols 127 

Sand filter #3 was evaluated for bacterial removal. Effluent from the sedimentation basin #2 128 

was collected as the sand filter influent, which was denoted as “filter influent” throughout this 129 

study (Fig. 1). Filtrate of the sand filter #3 was referred as “filter effluent”. During the tests, 130 

backwashing of the sand filter #3 was conducted for one hour at 18‒19, 90‒91, and 162‒163 131 

hrs. It is important to note that the frequency of backwashing at the full-scale plant during this 132 

study period was once every three days, however, throughout the year it can vary depending 133 

on the increase in turbidity or the head loss of the filters. To reduce the background interference 134 

from dissolved organics (humic acid-like organic matter) that are not counted but can mask 135 

autofluorescence of bacteria, an online sample dilution method that was previously reported in 136 

literature (Fujioka et al., 2018) was applied. Before analysis, the filter influent and effluent 137 
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underwent 50- and 3-fold dilution using the pure water, respectively (Fig. S1). The pure water 138 

was prepared by treating tap water using a reverse osmosis (RO) membrane system followed 139 

by a microfiltration (MF) filter. Online bacterial counting of the effluent continued over the 140 

course of 184 hrs so that the variations in the bacterial concentration in the raw water matrix 141 

and the filter performance were examined for a sufficient period of time. It is noted that online 142 

analysis of the filter influent was not performed for the first 17 h. Grab samples for manual 143 

water quality analysis were collected once on weekdays (i.e., 17, 41, 65, 89, and 184 hr). 144 

Residual chlorine in the samples (0.3–0.6 mg-Cl2/L in the filter influent) was quenched with 145 

sodium thiosulphate in the sample bottles. Bacterial log removal was calculated as follows: 146 

 𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙 𝑙𝑜𝑔 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 = logଵ଴ ஺஻ 147 

 A and B are values for bacterial counts (counts/mL) in the filter influent and effluent. 148 

3 RESULTS AND DISCUSSION 149 

3.1 Online data 150 

Over the course of an 8-day test, variations in the flow rate of raw intake water (approximately 151 

between 800 and 1,200 m3/h) occurred because of mixing of lake water from midnight to 2–3 152 

pm daily (Fig. 2a). The river water was consistently supplied at approximately 800 m3/h daily, 153 

whereas the lake water was intermittently supplied at approximately 370‒400 m3/h to meet the 154 

increased water demands. According to the intake flow rate, retention time at each flocculation 155 

and sedimentation basin at fixed capacity varied from 55‒83 and 75‒112 min, respectively, 156 

which was expected to influence their treatment performance. Coagulation with PAC was 157 

performed at a constant coagulant dose of 6.3‒8.8 mg-Al/L (Fig. S2a). After the sedimentation 158 

process, the effluent underwent intermediate chlorination with a constant hydrochloric acid 159 

dose of 1.5-1.7 mg-Cl2/L (Fig. S2a). It is noted that the intermediate chlorination process is 160 
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mainly designed to minimize the growth of algae and bacteria in the sand filter basin. The flow 161 

rate at sand filter #3 ranged from 1.7 to 4.8 m3/m2h according to the changes in intake flow rate 162 

and backwashing of the other filtration basins (Fig. S2b). During the testing period, turbidity 163 

before the sand filter varied in the range of 0.3‒1.5 mg/L almost every 12 hrs (Fig. S3a). 164 

Accordingly, turbidity in the filter effluent varied from 0.01 to 0.06 mg/L (Fig. S3b). 165 

[Fig. 2] 166 

During the evaluation, online bacterial counts in the filter influent considerably varied from 167 

17×104 to 94×104 counts/mL (Fig. 2b). This occurred at the same frequency as the variation in 168 

intake flow rate (Fig. 2). The variable intake flow rate can change the retention time of the 169 

water in the flocculation and sedimentation basins, which is directly linked with the efficiency 170 

of floc formation and sedimentation and can vary the bacterial counts in the effluent (i.e., filter 171 

influent). Online bacterial counts in filter effluent were low, ranging from 0.2×104–1.3×104 172 

counts/mL; this was approximately two orders of magnitude lower than those in the filter 173 

influent (Fig. 2b). In general, online bacterial counts in the filter influent showed an underlying 174 

downward trend, whereas those in the filter effluent did not follow the trend. In response to the 175 

periodical changes in intake flow rate, online bacterial counts in both influent and effluent 176 

varied periodically. Additionally, a sudden increase of bacterial counts in the filter effluent was 177 

observed after backwashing of sand filter #3 at 18‒19, 90‒91, and 162‒163 hrs. As previously 178 

reported, a similar increase in residual turbidity in the filter effluent after backwashing can be 179 

found in drinking water applications (Ahmad et al., 1998). Following backwashing, the 180 

breakthrough of bacteria in the sand filters can occur due to direct pass through and release of 181 

bacteria retained on sand particles. Bacteria, which were not removed by backwashing (i.e., 182 

bacteria retained between sand particles), are more likely to pass through the sand filters, 183 

causing the sudden increase in bacterial counts soon after backwashing. Overall, the results 184 
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here showed that online bacterial monitoring can detect variations and track the overall trends 185 

in bacterial counts in the filter influent and effluent. This indicates that online bacterial 186 

monitoring can be used as a sensitive tool for rapidly detecting bacteria-related issues such as 187 

spikes and breakthrough.   188 

3.2 Manual bacterial counts 189 

To assess the variance among bacterial counting techniques and identify the level of microbial 190 

contaminant in the filter effluent, microbial water quality analysis with additional methods (i.e., 191 

epifluorescence microscopy, flow cytometry, PCA, and HPC) was conducted using manually 192 

collected samples at five different sampling events. In the filter influent, the epifluorescent 193 

counts that measure the total bacterial counts (27×104–82×104 counts/mL) and alive bacterial 194 

counts (8×104–26×104 counts/mL) were similar to the online bacterial counts recorded at the 195 

time of sample collection (43×104–89×104 counts/mL) (Table S1). However, a clear 196 

correlation between the two parameters was not established (Fig. 3a). Similarly, flow 197 

cytometric bacterial counts in the filter influent (7×104–16×104 counts/mL) showed no 198 

correlation with the online bacterial counts. Conventional bacterial counting with the PCA and 199 

HPC methods showed lower bacterial counts (22–77 and 650–1,700 CFU/mL, respectively) 200 

than the online bacterial counts in the filter influent. The difference in counts between the 201 

methods is typically found in surface water; the total bacterial community by HPC can be down 202 

to 0.001–8.3% of total direct bacterial counts (Van Nevel et al., 2017). In the filter effluent, the 203 

online bacterial counts (0.6×104–1.3×104 counts/mL) were greatly reduced than the 204 

epifluorescent counts for total bacterial (6.3×104–13.6×104 counts/mL) and alive bacteria 205 

(1.5×104–4.5×104 counts/mL) but similar to flow cytometric bacterial counts (0.2×104–1.0×104 206 

counts/mL) (Table S1). Among the results, online bacterial counts showed a relatively high 207 

correlation with total direct bacterial counts (r = 0.93) and flow cytometric bacterial counts (r 208 
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= 0.85) (Fig. 3b). Results showed that online bacterial counts in the filter influent are generally 209 

not well correlated with those by other conventional and emerging methods. This is likely due 210 

to the fundamental difference in the principle of bacterial counting among these techniques. 211 

Real-time bacteriological counter identifies most bacteria (>0.2 µm) but relies on the 212 

autofluorescence intensity of bacteria. It is not fully established whether all alive bacterial cells 213 

are counted, because autofluorescence of bacteria can be varied for various reasons such as cell 214 

viability. In this study, alive bacterial counts did not show a significant correlation with online 215 

bacterial counts for both filter influent and effluent either. Therefore, for future studies, it is 216 

important to identify what state of bacteria is actually counted by online bacterial counter and 217 

whether there is an algorithm (e.g., the ratio between two autofluorescent metabolites) to 218 

deconvolute the alive and dead cells. 219 

[Fig. 3] 220 

3.3 Variations in bacterial removal rate 221 

Online bacterial counts in both the filter influent and effluent throughout the full-scale test 222 

provided bacterial removal rates over the ranges from 95.2% to 99.3%, which corresponds to 223 

removal rates of 1.3–2.2-log (Fig. 4). Bacterial removal rates showed an underlying downward 224 

trend during filtration. Daily fluctuations in log removal rate appeared to be associated with the 225 

fluctuation in online bacterial counts in the filter influent, however, this was not considerable. 226 

More importantly, despite the remarkable increase in bacterial counts in the filter effluent after 227 

each backwashing event, log removal rate dropped only slightly from 2.16- to 1.95-log, from 228 

1.93- to 1.68-log, and from 1.68- to 1.56-log for the backwashing at 18, 90, and 162 hr, 229 

respectively; indicating backwashing with sufficient drain prior to restart of sand filtration 230 

ensures the filter water quality. Further data analysis indicated that there was a 90% probability 231 

that the bacterial log removal rates range between 1.5–2.0-log (Fig. 5). The performance 232 
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distribution curve was relatively broad with the average and standard deviation of 1.7-log and 233 

0.2-log, respectively. These findings demonstrate that real-time bacteriological counting 234 

technology can be useful for monitoring the sand filter process and its ability to remove 235 

bacterial contaminants. The online monitoring technology has the potential of continuously 236 

demonstrating approximately a 1.5-log removal of bacteria by the sand filtration process. 237 

Additionally, the results demonstrate that continuous monitoring of bacterial counts before and 238 

after sand filtration provides a profile of the variation in the counts and the underlying trends 239 

in bacterial removal by the sand filtration process, which cannot be determined otherwise. 240 

[Fig. 4] 241 

[Fig. 5] 242 

The cause and effect of the variations in bacterial removal rate during the full-scale 243 

performance tests was beyond the scope of this study. The size and shape of bacteria and 244 

biofilm formation on the sands can be an important properties for determining the extent of 245 

their removal during the filtration process (Kristian Stevik et al., 2004; Bai et al., 2016); 246 

bacteria larger than 1 µm size are more likely to be retained by the sand filtration process 247 

(Gannon et al., 1991). Additionally, the community composition of bacterial species can vary 248 

considerably daily and seasonally. In addition, microbiomes in drinking water are very 249 

complex with up to forty eight (48) phyla including predominant Protebacteria (Proctor and 250 

Hammes, 2015). Next-generation DNA sequencing of 16S rRNA (Liu et al., 2018) can help 251 

identify which bacterial species are passing through the sand filter.  252 

3.4 Full-scale implications 253 

Real-time bacteriological counting technology can provide online measurements of bacterial 254 

counts, which can be integrated with conventional online water quality measurements (i.e., 255 
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turbidity) to enhance the safety of drinking water. Collection of online measurements during 256 

individual filter operation establishes operational baselines for bacterial counts in the filter 257 

influent and effluent, and provides a more accurate assessment of bacterial removal rates. The 258 

range and variation in bacterial counts during the earlier stages of the treatment process can 259 

help to detect spikes and unacceptable breakthrough of bacteria in a drinking water treatment 260 

systems during minimal incremental failure. This information can act as an early warning that 261 

necessitates to implement countermeasures such as increasing coagulation and/or disinfection. 262 

Determining the baseline level of bacterial counts at each treatment process provides greater 263 

information to investigate the cause of unexpected events in microbial water quality by 264 

analyzing historical data. In addition, baseline bacterial counts and removal rates can help to 265 

detect failures and changes in the separation performance and integrity of sand filter process. 266 

Compared to turbidity as a classical surrogate indicator for bacterial contamination, bacterial 267 

count is more relevant to microbial quality. Thus, in addition to conventional turbidity 268 

monitoring, online bacterial monitoring for bacterial removal can enhance the safety of 269 

drinking water.   270 

Bacterial removal by sand filter has the potential to be used as a surrogate for controlling sand 271 

filter process for the removal of protozoa (e.g. Cryptosporidium and Giardia). The removal of 272 

bacteria and protozoa by sand filtration is dependent upon size exclusion mechanisms along 273 

with other mechanisms such as adsorption and sedimentation. Thus, the removal of protozoa 274 

(>1 µm in size) can be expected to be greater than bacteria (>0.2 µm in size) because of size. 275 

Because the performance of full-scale media filtration processes for bacterial removal can be 276 

variable depending on the conditions of the filter (e.g., clogging level, backwashing, and 277 

effective media size), the enhanced integrity monitoring for protozoa removal at each filter 278 

basis can improve the safety of drinking water. Further sand filtration studies are needed to 279 
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verify the use of bacterial removal as a surrogate of protozoa removal through long-term full-280 

scale evaluations. 281 

4 Conclusions 282 

This study for the first time assessed the efficacy of real-time bacteriological counters for 283 

continuously and economically measuring bacterial counts in the sand filter influent and 284 

effluent at a full-scale drinking water treatment plant. Bacterial counts in the sand filter influent 285 

and effluent were continuously determined over approximate ranges from 17×104 to 94×104 286 

and from 0.2×104 to 1.3×104 counts/mL, respectively. Online bacterial counts in the filter 287 

influent and effluent varied in response to changes in flow rate and backwashing. Online 288 

removal rates of bacteria determined during the full-scale test were 1.3-2.2 log (i.e., 95.2–289 

99.3%). This indicates that online bacterial counting can continuously demonstrate over 1.3-290 

log removal in sand filter performance. This also suggests that online bacterial monitoring can 291 

be a useful tool to ascertain log removal rates by sand filtration process. Monitoring the 292 

bacterial removal rates can be integrated with conventional online water quality measurements 293 

in sand filter effluent (e.g., turbidity and particle counts) to enhance the safety of drinking water.  294 
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FIGURES 

Fig. 1 – Schematic flow diagram of the drinking water treatment plant. 

Fig. 2 – (a) Flow rate of raw water intake and (b) online bacterial counts in the filter influent 

and effluent (Data recorded for 5 min was averaged and plotted. Backwashing was conducted 

for one hour at 18‒19, 90‒91, and 162‒163 hrs). 

Fig. 3 – Bacterial counts determined by epifluorescent microscopy and flow cytometry as a 

function of online bacterial counts in the (a) filter influent and (b) filter effluent. Error bars 

show standard deviations for analytical triplicates. 

Fig. 4 – Bacterial removal rates as determined by online bacterial counters. Backwashing was 

conducted for one hour at 18‒19, 90‒91, and 162‒163 hrs. 

Fig. 5 – Process performance probability distribution of bacterial removal rates as determined 

by online bacterial counters (Average = 1.7-log, STDEV = 0.2-log). 
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Fig. 3  
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Fig. S1 – Schematic flow diagram of the dilution system for a real-time bacteriological 
counter. 
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Fig. S2 – Water treatment system operating data: (a) chemical dose, and (b) flow rate of sand 
filter #3. 
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(b) Filter effluent
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Fig. S3 – Online-monitored turbidity (plot every one hour) in the (a) filter influent and (b) 
filter effluent. Turbidity is expressed in units of mg/L, as per the turbidity standard in Japan. 
Backwashing was conducted for one hour at 18‒19, 90‒91, and 162‒163 hrs. Turbidity in the 
filter influent and effluent was monitored online using an online surface scattering light 
turbidity analyzer (AN450A, Hitachi High-Tech Solutions Co., Tokyo, Japan) and an online 
laser light turbidity analyzer (AN455A, Hitachi High-Tech Solutions Co., Tokyo, Japan), 
respectively. 
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Table S1 – Manual grab sampling data during the full-scale performance test. 
Time [h]  17 41 65 89 184 
Filter influent       
 Total direct bacterial count  

(epi-fluorescence) 
[×105 counts/mL] 5.2 

±0.1 
2.7 
±0.2 

4.6 
±0.2 

5.0 
±0.4 

8.2 
±0.5 

 Alive direct bacterial count 
(epi-fluorescence)  

[×105 counts/mL] 1.3 0.8 1.1 1.0 2.6 

 Flow cytometry [×105 counts/mL] 0.66 
±0.05 

0.88 
±0.19 

0.97 
±0.08 

0.85 
±0.06 

1.64 
±0.14 

 PCA  [CFU/mL] 29 55 26 20 77 
 HPC  [CFU/mL] N.A. N.A. 1300 650 1700 
 Online bacterial count [×105 counts/mL] 8.9 6.4 4.8 4.3 4.3 
Filter effluent       
 Total direct bacterial count  

(epi-fluorescence) 
[×104 counts/mL] 6.3 

±0.6 
9.2 
±0.5 

8.5 
±0.9 

7.6 
±0.4 

13.6 
±0.9 

 Alive direct bacterial count 
(epi-fluorescence)  

[×104 counts/mL] 2.4 4.5 2.5 4.0 1.5 

 Flow cytometry [×104 counts/mL] 0.40 
±0.03 

0.29 
±0.02 

0.32 
±0.04 

0.21 
±0.06 

1.03 
±0.17 

 PCA  [CFU/mL] 0 0 0 0 0 
 HPC  [CFU/mL] N.A. N.A. 0 0 0 
 Online bacterial count [×104 counts/mL] 0.62 0.92 0.70 0.49 1.26 
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