Diastereoselective arylation of L-proline derivatives at the 5-position

Osamu Onomura, ${ }^{*}$ Peter G. Kirira, Toshimitsu Tanaka, Shinsuke Tsukada, Yoshihiro Matsumura, Yosuke Demizu

Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

Abstract

Diastereoselective introduction of nucleophiles into L-proline derivatives at the 5 -position was achieved with suitable selection of N-protecting group. N-Methoxycarbonylated or benzyloxycarbonylated L-proline derivatives reacted with arene to give cis-arylated products. On the other hand, N-benzoylated L-proline derivative preferentially gave trans-arylated product which could be easily transformed into optically active C_{2}-symmetrical pyrrolidine derivative. Such derivative 5, worked well as an organic activator in the asymmetric reduction of aromatic imines by $\mathrm{Cl}_{3} \mathrm{SiH}$.

Keywords: Diastereoselective; Organocatalysis; Asymmetric reduction of imines; C_{2}-Symmetrical pyrrolidine; Proline derivative

1. Introduction

Optically active 2,5 -disubstituted pyrrolidines are key intermediates for preparation of pharmaceuticals or natural products ${ }^{1}$ as well as organocatalysts for asymmetric reactions. ${ }^{2}$ Electrochemical oxidation of L-proline derivatives $\mathbf{1}$ is a useful tool for their synthesis (Eq. 1). ${ }^{3}$

[^0]

3

Recently, we have reported that cis-5-arylated N-formyl-L-proline 4^{4} worked well as an organic activator in the enantioselective reduction of ketones with $\mathrm{Cl}_{3} \mathrm{SiH}^{5}$ in high enantioselectivities (Eq. 2). However, it was difficult to prepare 4 for practical use because diastereoselectivity in arylation reaction of $\mathbf{2 a}(\mathrm{PG}=\mathrm{CHO})$ was very low. We wish herein to report diastereoselective introduction of nucleophiles into L-proline derivatives at the 5-position. In addition, synthesis of compound 4 and C_{2}-symmetrical pyrrolidine derivative 5 derived from cis- and trans-arylated products, and its application to asymmetric reduction of aromatic imines with $\mathrm{Cl}_{3} \mathrm{SiH}^{6}$ are presented.

4

5

2. Results and discussion

2.1. Diastereoselective introduction of nucleophiles into L-proline derivatives at the 5-position

First, we investigated introduction of trimethylbenzene and triethylbenzene into 5-methoxylated L-proline derivatives $\mathbf{2 a -} \mathbf{d}^{7}$ protected with various N-acyl groups in the presence of Lewis acids (Eq. 3). The results are shown in Table 1. N-Formylated proline 2a gave the corresponding arylated product 3a as a diastereomer mixture (cis/trans $=$ 43/57, entry 1), ${ }^{4}$ while N-methoxycarbonylated $\mathbf{2 b}$ and N-benzyloxycarbonylated 2c gave compounds $\mathbf{3 b}$ and $\mathbf{3 c}$ as a single isomer (cis/trans $=100 / 0$, entries 2 and 3). In the case of N-benzoylated 2d, trans-3d ${ }^{8}$ was mainly obtained along with small amount of cis-3d (cis/trans $=11 / 89$, entry 4). Using SnCl_{4} instead of TiCl_{4} did not affect the diastereoselectivity though the former had relatively poor yield (entry 5). Triethylbenzene as a nucleophile gave similar results to that of trimethylbenzene (entries 6-9), but in the case of N -benzoylated proline 2 d did not afford 5 -arylated product 6d (entry 10).

Table 1. Arylation of proline derivative 2a-d at the 5-position

Entry	PG		Lewis acid	R	Yield (\%)		cis/trans
$\mathbf{1}$	CHO	2a	TiCl_{4}	Me	$\mathbf{3 a}$	61	$43 / 57$
2	$\mathrm{CO}_{2} \mathrm{Me}$	2b	TiCl_{4}	Me	$\mathbf{3 b}$	51	$100 / 0$
3	Cbz	2c	TiCl_{4}	Me	3c	68	$100 / 0$
4	Bz	2d	TiCl_{4}	Me	3d	65	$11 / 89$
5	Bz	2d	SnCl_{4}	Me	$\mathbf{3 d}$	43	$11 / 89$
6	CHO	2a	SnCl_{4}	Et	$\mathbf{6 a}$	71	$52 / 48$
7	$\mathrm{CO}_{2} \mathrm{Me}$	2b	SnCl_{4}	Et	$\mathbf{6 b}$	55	$100 / 0$
8	Cbz^{2}	2c	SnCl_{4}	Et	$\mathbf{6 c}$	36	$100 / 0$
9	Cbz	2c	TiCl_{4}	Et	$\mathbf{6 c}$	31	$100 / 0$
10	Bz	2d	SnCl_{4}	Et	$\mathbf{6 d}$	0	-

Allylation of 5-methoxylated L-proline derivatives $\mathbf{2 b}$ and 2d showed similar tendency to their arylation (Eq. 4). That is, N-methoxycarbonylated 2b mainly gave cis-allylated proline $\mathbf{7 b}$ (cis/trans $=73 / 27),{ }^{7 \mathrm{c}}$ while N-benzoylated proline $\mathbf{2 d}$ preferentially changed into trans-allylated proline $\mathbf{7 d}($ cis/trans $=13 / 87) .{ }^{9}$

Key intermediates in these reactions are carbenium and iminium ions illustrated in Scheme 1. Since the carbonyl group of carbamates $\left(\mathrm{PG}=\mathrm{CO}_{2} \mathrm{Me}\right.$ or Cbz$)$ can coordinate to Lewis acid, carbenium ion will be preferable to iminium ion. On the other hand, carbonyl group of amide ($\mathrm{PG}=\mathrm{Bz}$) might not coordinate to Lewis acid. Therefore, the iminium ion will be predominantly generated. The cis-selectivity in the carbenium ion intermediate is illustrated in Scheme 1 (Carbamate) in which $\mathrm{PG}\left(\mathrm{CO}_{2} \mathrm{Me}\right.$ or Cbz$)$ is oriented in trans position with respect to $2-\mathrm{CO}_{2} \mathrm{Me}$ substituent. Nucleophiles may approach the intermediate preferentially from the trans direction with respect to $\mathrm{PG}^{7 \mathrm{c}}$ The trans-selectivity $(\mathrm{PG}=\mathrm{Bz})$ in the iminium ion intermediate is illustrated in Scheme 1 (Amide) in which Bz and iminium groups exist on the same plane. Nucleophiles can approach the intermediate preferentially from the trans direction with respect to 2- $\mathrm{CO}_{2} \mathrm{Me}$ substituent.

(Amide)

Scheme 1. Plausible stereochemical course.

2.2. Synthesis of an organic activator $\mathbf{4}$ and C_{2}-symmetrical pyrrolidine derivative 5

An organic activator $\mathbf{4}$ for the enantioselective reduction of ketones was synthesized from 6c after hydrogenation, N-formylation followed by alkaline hydrolysis in 58% yield (Eq. 5). ${ }^{10}$

C_{2}-Symmetrical pyrrolidine derivative 5 was prepared from N -benzoylated proline 3d as follows (Scheme 2); Alkaline hydrolysis of 3d followed by recrystallization from $\mathrm{CHCl}_{3} /$ hexane afforded carboxylic acid $\mathbf{8}$ in 54% yield as a single isomer (cis/trans = $0 / 100$). Electrochemical decarboxylative methoxylation ${ }^{11}$ of 8 in methanol afforded methoxylated compound $\mathbf{9}$, which reacted with mesitylene in the presence of TiCl_{4} to
exclusively afford trans-2,5-biarylated pyrrolidine 10 in high yield. By reduction of N-benzoyl group of 10, successive deprotection of N-benzyl group of 11, and N-picolynoylation of $\mathbf{1 2}$, desired pyrrolidine 5 was obtained in enough yield.

2.3. Asymmetric reduction of aromatic imines catalyzed by 5 with $\mathrm{Cl}_{3} \mathrm{SiH}$

Catalytic activation of $\mathrm{Cl}_{3} \mathrm{SiH}$ with compound 5 was applicable to asymmetric reduction of aromatic imines 13a-f (Eq. 6). The results are summarized in Table 2, which also shows the results of asymmetric reduction using $15^{6 c}$ for comparison. In all cases, compound $\mathbf{5}$ could play the role of an activator to afford (S)-amines 14a- \mathbf{f}^{6} with good yield and enantioselectivity just like that of 15 (entries 1-6).

Table 2. Asymmetric reduction of imines 13a-f

Entry	Imine	R^{1}	R^{2}	(S)-Amine	Activator 5		Activator 15	
					Yield (\%)	ee (\%) ${ }^{\text {a }}$	yield (\%)	ee (\%) ${ }^{\text {a }}$
1	13a	H	H	14a	92	77	86	73
2	13b	H	OMe	14b	84	78	90	71
3	13c	OMe	H	14c	87	76	90	75
4	13d	H	Cl	14d	88	73	73	71
5	13 e	H	Ac	14 e	60	64	24	67
6	13 f	H	NO_{2}	14f	74	85	84	73

${ }^{\text {a }}$ Determined by HPLC.

3. Conclusion

We have accomplished diastereoselective introduction of nucleophiles into L-proline derivatives at the 5-position. N-Methoxycarbonylated or N-benzyloxycarbonylated L-proline 2b or 2c were exclusively transformed into cis-arylated products $\mathbf{3 b}, \mathbf{c}$ or $\mathbf{6 b}, \mathbf{c}$, while N-benzoylated L-proline derivative 2d mainly gave trans-arylated product 3d. C_{2}-Symmetrical pyrrolidine derivative 5 derived from 3d worked well as an organic activator in the reduction of aromatic imines to the corresponding optically active amines with high enantioselectivity by $\mathrm{Cl}_{3} \mathrm{SiH}$.

4. Experimental Section

4.1. General

Electrochemical reactions were carried out using DC Power Supply (GP 050-2) of Takasago Seisakusho, Inc. ${ }^{1}$ H NMR spectra were measured on a Varian Gemini 300 and 400 spectrometer with TMS as an internal standard. ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Varian Gemini 400 spectrometer with TMS as an internal standard. IR spectra were obtained on a Shimadzu FTIR-8100A. Mass spectra were obtained on a JEOL JMS-DX 303 instrument. Elemental analyses were performed on Perkin Elmer 2400II.

All reagents and solvents were used as supplied without further purification.

4.2. Methyl N-protected 5-methoxy-L-prolinate 2a-d

N-Protected 5 -methoxy-L-prolinates $\mathbf{2 a},{ }^{7 \mathrm{c}} \mathbf{2 b},{ }^{7 \mathrm{a}} \mathbf{2 c},^{7 \mathrm{~d}}$ and $\mathbf{2 d}{ }^{7 \mathrm{~b}}$ were known compounds.
4.3. General procedure for arylation or allylation of methyl N-protected-5-methoxy-L-prolinate 2a-d

Under an argon atmosphere, $\mathrm{TiCl}_{4}(55 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$ was added dropwise to the solution of $\mathbf{2 a}(109 \mathrm{mg}, 0.5 \mathrm{mmol})$ and 1,3,5-trimethylbenzene ($209 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred for 12 h and allowed to stand until it warmed to room temperature. The solution was poured in ice water $(10 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}\left(10 \mathrm{~mL} \times 3\right.$). The combined organic layer was dried over MgSO_{4} and the solvent removed under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane : $\mathrm{AcOEt}=10: 1$) to afford $\mathbf{3 a}$ as a colorless oil (93 $\mathrm{mg}, 61 \%$). Arylation with 1,3,5-triethylbenzene and allylation with allyltrimethylsilane were carried out according to this same procedure.

4.3.1. Methyl cis-N-formyl-5-(2,4,6-trimethylphenyl)-L-prolinate (cis-3a) ${ }^{4}$

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 2 \mathrm{H}), 5.04$ and $5.06(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.55-1.95(\mathrm{~m}, 13 \mathrm{H})$.

4.3.2. Methyl trans-N-formyl-5-(2,4,6-trimethylphenyl)-L-prolinate (trans-3a) ${ }^{4}$

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 2 \mathrm{H}), 5.37(\mathrm{t}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.42-1.99(\mathrm{~m}, 13 \mathrm{H})$.

4.3.3. Methyl N-methoxycarbonyl-5-(2,4,6-trimethylphenyl)-L-prolinate (3b)

Colorless crystal; mp $48-50^{\circ} \mathrm{C} ;[\alpha]^{27}{ }_{\mathrm{D}}-49.1\left(c=1.0, \mathrm{CHCl}_{3}\right.$); IR (neat) $v=2953$, 1754, 1701, 1612, 1447, 1348, 1198, 1123, 1078, 851, $781 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 6.80(\mathrm{~s}, 2 \mathrm{H}), 5.10(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.51(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}$, 3 H), 2.44-2.07 (m, 13H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 172.5, 157.1, 135.8, 135.6, 133.1, 130.0, 60.4, 52.6, 51.9, 30.2, 27.9, 20.5; HR-EI(+) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4}[\mathrm{M}]^{+}$ 305.1627, found 305.1623.

4.3.4. Methyl N-benzyloxycarbonyl-5-(2,4,6-trimethylphenyl)-L-prolinate (3c)

Colorless oil; $[\alpha]_{\mathrm{D}}{ }^{27}-49.6\left(c=1.0, \mathrm{CHCl}_{3}\right)$; IR (neat) $v=2960,1753,1701,1456$, 1338, 1197, 1174, 1120, 851, $735 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.10(\mathrm{~m}$, $5 \mathrm{H}), 6.79(\mathrm{~s}, 2 \mathrm{H}), 5.15-4.90(\mathrm{~m}, 3 \mathrm{H}), 4.63-4.55(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.05(\mathrm{~m}$, 13 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5,156.4,135.8,135.7,133.2,131.3,130.1$, 129.3, 128.2, 127.9, 127.8, 127.4, 127.2, 67.0, 60.4, 52.0, 30.4, 27.8, 20.6, 20.5; HR-EI(+) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4}[\mathrm{M}]^{+} 381.1940$, found 381.1938.

4.3.5. Methyl trans-N-benzoyl-5-(2,4,6-trimethylphenyl)-L-prolinate (3d)

Colorless crystal; mp 112-114 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{18}-133.5\left(c=1.0, \mathrm{CHCl}_{3}\right)$; IR (neat) $v=2953$, $1755,1745,1659,1641,1632,1580,1444,1414,1279,1202,1175,1127,1028,853$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)($ cis/trans $=11 / 89) \delta 7.50-7.00(\mathrm{~m}, 5 \mathrm{H}), 6.80(\mathrm{br} \mathrm{s}$, $0.11 \mathrm{H}), 6.64(\mathrm{~s}, 0.89 \mathrm{H}), 6.60(\mathrm{br} \mathrm{s}, 0.11 \mathrm{H}), 6.39(\mathrm{~s}, 0.89 \mathrm{H}), 5.64(\mathrm{t}, J=8.7 \mathrm{~Hz}, 0.11 \mathrm{H})$, $5.40(\mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}, 0.89 \mathrm{H}), 4.77(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.76(\mathrm{~m}, 3 \mathrm{H}), 2.58-1.95(\mathrm{~m}$, $13 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8,169.5,134.3,133.3,132.1,129.6,127.2$, 127.0, 125.4, 123.5, 59.3, 58.0, 50.3, 30.4, 26.8, 18.4, 18.3; HR-EI(+) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{3}[\mathrm{M}]^{+}$351.1834, found 351.1832. HPLC: Daicel Chiralcel OJ-H column, n-hexane : isopropanol $=20: 1$, wavelength: 254 nm , flow rate: $1.0 \mathrm{ml} / \mathrm{min}$, retention time: 19.1 min (cis-3d), 23.3 min (trans-3d).
4.3.6. Methyl cis-N-formyl-5-(2,4,6-triethylphenyl)-L-prolinate (cis-6a) ${ }^{4}$

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.10-6.82(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.03$ and $5.01(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.50(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.95-2.05(\mathrm{~m}, 10 \mathrm{H})$, 1.30-1.10 (m, 9H).

4.3.7. Methyl trans-N-formyl-5-(2,4,6-triethylphenyl)-L-prolinate (trans-6a) ${ }^{4}$

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H})$, 5.34 and $5.33(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{q}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 2.65-2.40(\mathrm{~m}, 5 \mathrm{H}), 2.38-2.01(\mathrm{~m}, 3 \mathrm{H}), 1.30-1.10(\mathrm{~m}, 9 \mathrm{H})$.
4.3.8. Methyl trans-N-methoxycarbonyl-5-(2,4,6-triethylphenyl)-L-prolinate (6b)

Colorless oil; $[\alpha]_{\mathrm{D}}{ }^{28}-41.3\left(c=1.1, \mathrm{CHCl}_{3}\right)$; IR (neat) $v=2963,1755,1709,1445$, 1348, 1198, 1150, 1125, 1080, 874, $781 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.86(\mathrm{~m}$,
$2 \mathrm{H}), 5.10(\mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.50(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.50(\mathrm{~m}, 6 \mathrm{H}), 2.80-2.11(\mathrm{~m}, 10 \mathrm{H})$, 1.30-1.10 (m, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (a mixture of rotamers) $\delta 172.8,157.1$, $142.5,142.1,141.9,141.7,132.0,127.0,125.5,60.5,59.8,52.1,51.8,32.6,28.2,28.0$, 26.5, 25.6, 24.9, 24.7, 15.9, 15.5, 15.4, 15.2, 14.8; $\mathrm{HR}-\mathrm{EI}(+) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{4}$ $[\mathrm{M}]^{+}$347.2097, found 347.2081.

4.3.9. Methyl trans-N-benzyloxycarbonyl-5-(2,4,6-triethylphenyl)-L-prolinate (6c)

Colorless oil; $[\alpha]_{\mathrm{D}}{ }^{28}-42.3\left(c=1.0, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $v=2965,1755,1705,1408$, 1339, 1198, 1175, 1080, $696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-6.80(\mathrm{~m}, 7 \mathrm{H})$, 5.20-4.80 (m, 3H), 4.60-4.50 (m, 1H), 3.77 (s, 3H), 3.10-1.95 (m, 10H), 1.32-0.86 (m, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (a mixture of rotamers) $\delta 172.6,156.7,142.4,142.3$, $142.1,135.7,132.3,128.1,127.9,127.7,127.4,126.5,67.0,61.0,60.8,59.9,57.7,52.2$, 52.1, 33.3, 32.7, 28.9, 28.2, 27.8, 27.5, 27.1, 26.3, 25.1, 25.0, 24.8, 15.9, 15.7, 15.4, 15.3, 15.2; $\mathrm{HR}-\mathrm{EI}(+) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{NO}_{4}[\mathrm{M}]^{+} 423.2410$, found 423.2394 .

4.3.10. Methyl N-methoxycarbonyl-5-allyl-L-prolinate (7b) ${ }^{7 \mathrm{c}}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)($ cis/trans $=73 / 27) \delta 5.83-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.03(\mathrm{~m}$, $2 H), 4.40-4.27(\mathrm{~m}, 1 \mathrm{H}), 4.15-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.63(\mathrm{~m}, 6 \mathrm{H}), 2.80-2.42(\mathrm{~m}, 1 \mathrm{H})$, 2.25-1.72 (m, 5H).

4.3.11. Methyl N-benzoyl-5-allyl-L-prolinate (7d)

Colorless oil; $[\alpha]_{\mathrm{D}}{ }^{20}-26.9\left(c=1.0 \mathrm{CHCl}_{3}\right)$; IR (neat) $v=2977,2953,1750,1644$, 1603, 1446, 1410, 1277, 1203, 1174, $1076 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (cis/trans $=13 / 87) \delta 7.53-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.97-5.80(\mathrm{~m}, 0.5 \mathrm{H}), 5.55-5.38(\mathrm{~m}, 0.5 \mathrm{H}), 5.16-4.72(\mathrm{~m}$,
$2 \mathrm{H}), 4.44-4.17(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{br} \mathrm{s}, 0.5 \mathrm{H}), 3.77-3.60(\mathrm{~m}, 3 \mathrm{H}), 3.06(\mathrm{br} \mathrm{s}, 0.5 \mathrm{H})$, 2.23-1.18 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (cis/trans $=13 / 87$, a mixture of rotamers) $\delta 173.0,171.5,134.7,133.5,129.7,128.3,128.2,126.7,126.5,118.1,117.6$, 62.1, 59.6, 59.3, 58.9, 52.2, 39.1, 38.4, 37.7, 28.9, 28.5, 26.8; HR-FAB(+) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 274.1443$ found 274.1444.

4.4. Synthesis of cis-N-formyl-5-(2,4,6-triethylphenyl)-L-proline (4)

$5 \% \mathrm{Pd}-\mathrm{C}(30 \mathrm{mg})$ was added to the solution of $\mathbf{6 c}(2.0 \mathrm{mmol}, 847 \mathrm{mg})$ and triethylamine $(279 \mu \mathrm{~L}, 2.0 \mathrm{mmol})$ in $\mathrm{MeOH}(5.0 \mathrm{~mL})$. The mixture was then stirred under 1 atm of H_{2} for 12 h . Upon completion of reaction the mixture was then filtered through celite and solvent removed in vacuo to obtain methyl cis-5-(2,4,6-triethylphenyl)-L-prolinate which was used for next reaction without further purification. Colorless oil; $[\alpha]^{28}{ }_{\mathrm{D}}+13.4\left(c=1.1, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $v=3350,2963,1734$, $1458,1210,874,669 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.89(\mathrm{~s}, 2 \mathrm{H}), 4.57(\mathrm{t}, \mathrm{J}=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.87$ (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (s, 3H), 2.90-2.50 (m, 6H), 2.35-2.00 (m, 4H), 1.78 (br s, 1H), $1.23(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 9 \mathrm{H})$; $\mathrm{HR}-\mathrm{EI}(+) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{2}[\mathrm{M}]^{+}$ 289.2042, found 289.2027.

Under an argon atmosphere, acetic anhydride (2.0 mL) was added dropwise to a solution of methyl cis-5-(2,4,6-triethylphenyl)-L-prolinate in formic acid (6.0 mL) and stirred at room temperature for 9 h . Upon completion of reaction the solvent was removed under reduced pressure, then the residue was purified by silica gel column chromatography (n-hexane : AcOEt = 3 : 1) to afford methyl cis- N -formyl-5-(2,4,6-triethylphenyl)-L-prolinate ${ }^{4}$ as a colorless crystal (372 mg, 58% for 2 steps). Then, aqueous $1 \mathrm{M} \mathrm{NaOH}(2.0 \mathrm{~mL})$ was added to the stirred solution of
methyl cis- N -formyl-5-(2,4,6-triethylphenyl)-L-prolinate ($1.0 \mathrm{mmol}, 317 \mathrm{mg}$) in MeOH $(4.0 \mathrm{~mL})$, and the solution was stirred at room temperature for 12 h . The solution was neutralized with 3% aqueous HCl , and then MeOH was evaporated. The residue was diluted with brine, extracted with AcOEt, and dried over MgSO_{4}. Removal of the solvent afforded compound 4^{4} (303 mg , quant.) as colorless crystals. Mp $132-133{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{25}-135.5\left(c=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H})$, $6.89(\mathrm{~s}, 1 \mathrm{H}), 5.21$ and $5.19(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{q}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.90$ and 2.88 (d, $J=10 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.05(\mathrm{~m}, 9 \mathrm{H}), 1.30-1.10(\mathrm{~m}, 9 \mathrm{H})$.

4.5. Synthesis of N-picolinoyl (2S,5S)-[2,5-bis-(2,4,6-trimethylphenyl)]pyrrolidine (5)

4.5.1. trans-N-Benzoyl-5-(2,4,6-trimethylphenyl)-L-proline (8)

$\mathrm{NaOH}(12.9 \mathrm{mmol}, 516 \mathrm{mg})$ was added to the stirred solution of $\mathbf{3 d}(6.5 \mathrm{mmol}, 2.27$ g) in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}=1: 1(60 \mathrm{~mL})$, and the solution was stirred at room temperature for 4 h . The solution was then neutralized with 10% aqueous HCl , and extracted with AcOEt ($150 \mathrm{~mL} x \mathrm{3}$), and dried over MgSO_{4}. After removal of the solvent and recrystallization from $\mathrm{CHCl}_{3} /$ hexane, compound $\mathbf{8}$ was obtained as colorless crystals ($1.27 \mathrm{~g}, 58 \%$). Mp $204-207^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{19}-82.3\left(c=0.3, \mathrm{CHCl}_{3}\right)$, IR (neat) $v=3640,1727,1642,1620,1445$, $1354,1123 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20-7.00(\mathrm{~m}, 5 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~s}$, $1 \mathrm{H}), 5.38(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.58-1.90(\mathrm{~m}$, $13 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (a mixture of rotamers) δ 176.1, 171.4, 136.2, 136.0, 135.7, 135.1, 134.5, 134.1, 134.0, 131.2, 130.2, 129.2, 128.9, 128.1, 127.6, 127.4, 125.6, 63.1, 61.4, 60.3, 59.4, 32.3, 31.0, 29.9, 28.6, 20.6, 20.4, 20.3; EA calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3}$: C $74.75, \mathrm{H} 6.87, \mathrm{~N} 4.15$: found C $74.41, \mathrm{H} 6.92$, N 3.93 ; $\mathrm{HR}-\mathrm{EI}(+) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3}[\mathrm{M}]^{+}$337.1678, found 337.1674.

4.5.2. N-Benzoyl-2-methoxy-(5S)-(2,4,6-trimethylphenyl)pyrrolidine (9)

Anodic oxidation of $\mathbf{8}$ was carried out using graphite cathode ($10 \mathrm{~cm} \times 5 \mathrm{~cm}$) and platinum anode ($12 \mathrm{~cm} \times 5 \mathrm{~cm}$) in an undivided beaker-type cell. 8 ($29.4 \mathrm{mmol}, 9.9 \mathrm{~g}$), and 2,6-lutidine ($38.2 \mathrm{mmol}, 4.5 \mathrm{~mL}$) were added into $\mathrm{MeOH}(200 \mathrm{~mL})$. After passing through 2.0 $\mathrm{F} / \mathrm{mol}$ of electricity at constant voltage $(18 \mathrm{~V})$ at $0^{\circ} \mathrm{C}, \mathrm{MeOH}$ was evaporated, then the residue was poured in water and extracted with AcOEt ($200 \mathrm{~mL} x$ 3). The combined organic layer was dried over MgSO_{4} and solvent removed under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane : $\mathrm{AcOEt}=3: 1$) to afford $9\left(6.9 \mathrm{~g}, 73 \%\right.$ yield) as colorless oil. $[\alpha]_{\mathrm{D}}{ }^{24}+17.8$ $\left(c=1.0, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $v=2732,1765,1727,1692,1642,1613,1582,1547,1503$, $1468 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.37(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 6.77(\mathrm{~s}, 2 \mathrm{H})$, $5.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.60-2.03(\mathrm{~m}, 13 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) (a mixture of diastereomers and rotamers) δ 171.3, 169.2, 135.8, 133.8, 133.4, 132.6, 132.0, 130.7, 129.7, 129.5, 127.8, 126.5, 125.9, 125.6, 125.2, 123.2, 92.7, 90.0, 60.2, 58.1, 54.5, 31.5, 31.1, 30.6, 28.6, 20.6, 20.5; HR-EI(+) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2}$ $[\mathrm{M}]^{+} 323.1885$, found 323.1866 .

4.5.3. N-Benzoyl-(2S,5S)-[2,5-bis-(2,4,6-trimethylphenyl)]pyrrolidine (10)

Under an argon atmosphere, $\mathrm{TiCl}_{4}(140 \mu \mathrm{~L}, 1.0 \mathrm{mmol})$ was added dropwise to the solution of $\mathbf{9}(313 \mathrm{mg}, 0.97 \mathrm{mmol})$ and 1,3,5-trimethylbenzene ($400 \mu \mathrm{~L}, 2.9 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred for 24 h and allowed to stand until it warmed to room temperature. The solution was poured in ice water (10 $\mathrm{mL})$ and extracted with $\mathrm{CHCl}_{3}(10 \mathrm{~mL} x 3)$. The combined organic layer was dried over
MgSO_{4} and the solvent removed under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane : $\mathrm{AcOEt}=10: 1$) to afford $\mathbf{1 0}(351 \mathrm{mg}$, 88%) as colorless crystals. Mp $184-187^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}+24.9\left(c=0.5, \mathrm{CHCl}_{3}\right)$; IR (neat) $v=$ 2963, 1738, 1632, 1580, 1483, 1408, 1348, 1240, 1102, 849, $795 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.20-7.00 (m, 5H), $6.85(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H})$, 5.65-5.59 (m, 2H), 2.61-2.20 (m, 22H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (a mixture of rotamers) $\delta 169.7,137.3,136.8,136.0,135.8,134.9,134.6,134.5,133.6,131.2,131.0$, 129.3, 129.2, 128.8, 127.1, 126.2, 60.3, 60.0, 32.4, 30.2, 21.2, 20.7, 20.6, 20.4, 20.1; EA calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{NO}$: C 84.63, H 8.08, N 3.40: found C 84.43, H 8.15, N 3.02; HR-EI(+) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{NO}[\mathrm{M}]^{+} 411.2562$, found 411.2560. HPLC: Daicel Chiralcel OD-H column, n-hexane : ethanol $=30: 1$, wavelength: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $8.9 \mathbf{m i n}$ for $(2 R, 5 R)-\mathbf{1 0}, 11.9 \mathrm{~min}$ for $(2 S, 5 S)-\mathbf{1 0}$.

4.5.4. N-Benzyl-(2S,5S)-[2,5-bis-(2,4,6-trimethylphenyl)]pyrrolidine (11)

$1.03 \mathrm{M} \mathrm{BH}_{3}$-THF ($17.4 \mathrm{~mL}, 18.0 \mathrm{mmol}$) was added to the solution of $\mathbf{1 0}(3.6 \mathrm{~g}, 8.7$ mmol) in THF (70 mL), and refluxed at $80^{\circ} \mathrm{C}$ for 17 h . The solution was poured in water (100 mL) and extracted with $\operatorname{AcOEt}(100 \mathrm{~mL} x 3)$. The combined organic layer was dried over MgSO_{4} and solvent removed in vacuo to obtain 11 (3.45 g , quant.), which was used for next reaction without further purification. Colorless crystal; mp $109-110^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}-124.5\left(c=1.0, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $v=2947,1611,1480,1372,1312$, $1213,1188,1165,1105,1075,1028,851,741,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}) δ 7.00-6.89 (m, 3H), $6.78(\mathrm{~s}, 2 \mathrm{H}), 6.63(\mathrm{~s}, 2 \mathrm{H}), 6.38(\mathrm{dd}, J=2.1,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.95(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{q}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.41-2.11(\mathrm{~m}, 22 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 140.9,138.8,136.9,136.3,135.8,131.2,129.5,129.2,127.3,125.9,60.9$,
51.7, 31.0, 21.5, 20.9; HR-EI(+) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}[\mathrm{M}]^{+} 397.2769$, found 397.2766.

4.5.5. (2S,5S)-[2,5-Bis-(2,4,6-trimethylphenyl)]pyrrolidine (12)

$20 \% \mathrm{Pd}(\mathrm{OH})_{2}(80 \mathrm{mg}, 0.12 \mathrm{mmol})$ was added to the solution of $11(228 \mathrm{mg}, 0.57$ $\mathrm{mmol})$ and 3 drops of concentrated aqueous HCl in $\mathrm{MeOH}(5.0 \mathrm{~mL})$. The mixture was then stirred under 1 atm of H_{2} for 3 h . Upon completion of reaction the mixture was then filtered through celite and solvent removed in vacuo. The residue was poured into saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(20 \mathrm{~mL} x \mathrm{3})$. The combined organic layer was dried over MgSO_{4} and solvent removed in vacuo to afford 12 ($142 \mathrm{mg}, 81 \%$ from 10), which was used for next reaction without further purification. Colorless oil; $[\alpha]_{D}{ }^{22}-107.1\left(c=0.5, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $v=2951,1611,1462$, 1084, $849 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.81(\mathrm{~s}, 4 \mathrm{H}), 5.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.46(\mathrm{~s}, 12 \mathrm{H}), 2.23(\mathrm{~s}, 6 \mathrm{H}), 2.13-2.08(\mathrm{~m}, 4 \mathrm{H}), 1.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 134.8,134.2,133.5,128.2,56.4,31.0,18.7,18.6 ; \mathrm{HR}-\mathrm{EI}(+) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}[\mathrm{M}]^{+}$307.2300, found 307.2281.

4.5.6. N-Picolinoyl-(2S,5S)-[2,5-bis-(2,4,6-trimethylphenyl)]pyrrolidine (5)

A solution of picolinic acid ($68.9 \mathrm{mg}, 0.55 \mathrm{mmol}$) and CDI ($122 \mathrm{mg}, 0.75 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ was stirred at $0^{\circ} \mathrm{C}$ for 30 min . Then, a solution of $12(153 \mathrm{mg}, 0.50$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 24 h . The solution was poured into saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with AcOEt ($20 \mathrm{~mL} \times 3$). The combined organic layer was dried over MgSO_{4} and solvent removed under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane : $\operatorname{AcOEt}=5: 1$) to afford $5(192 \mathrm{mg}, 93 \%$ yield $)$
as colorless crystals. $\mathrm{Mp} 73-74{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}+6.8\left(c=0.3, \mathrm{CHCl}_{3}\right)$, IR (neat) 2963, 1738, $1639,1503,1443,1408,1356,1287,1242,1183,1107,851 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}) 6.91(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}$, $1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.63-2.02(\mathrm{~m}, 22 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (a mixture of rotamers) $\delta 167.1$, 154.4, 146.7, 136.1, 135.9, 135.7, 135.5, 135.4, 134.6, 134.5, 133.9, 131.1, 130.7, 129.0, 128.6, 123.7, 122.5, 60.0, 59.8, 32.2, 29.9, 21.0, 20.6, 20.5, 20.3, 19.9; EA calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C} 81.51$, H 7.82, N 6.79: found C 81.21, H 7.84, N 6.54; HR-EI(+) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}]^{+} 412.2515$, found 412.2506 .

4.6. General procedure for asymmetric reduction of imines 13a-f

$\mathrm{Cl}_{3} \mathrm{SiH}(0.45 \mathrm{mmol})$ was added into a solution of imines $13 \mathrm{a}(0.3 \mathrm{mmol})$ and compound $5(0.03 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$, and the mixture was stirred at room temperature for 4 h . The mixture was then poured into saturated aqueous NaHCO_{3} (10 mL) and extracted with $\mathrm{CHCl}_{3}(10 \mathrm{~mL} \times 3)$. The combined organic layer was dried over MgSO_{4} and solvent removed under reduced pressure. The residue was purified by silica gel column chromatography to afford amine $\mathbf{1 4 a}$ ($159 \mathrm{mg}, 77 \%$ yield).

4.6.1. (S)-N-Phenyl-N-(1-phenylethyl)amine (14a) ${ }^{6 b}$

HPLC: Daicel Chiralcel OD-H column, n-hexane : isopropanol : diethylamine $=10$: $1: 0.01$, wavelength: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: 7.2 min for $(S)-\mathbf{1 4 a}$, 8.6 min for (R) - $\mathbf{1 4 a}$.
4.6.2. (S)-N-[1-(4-Methoxylphenyl)ethyl-N-phenylamine (14b) ${ }^{6 \mathrm{~b}}$

HPLC: Daicel Chiralcel OD-H column, n-hexane : isopropanol $=99: 1$, wavelength: 254 nm , flow rate: $0.7 \mathrm{~mL} / \mathrm{min}$, retention time: 13.1 min for $(S) \mathbf{- 1 4 b}, 14.4$ \min for $(R) \mathbf{- 1 4 b}$.
4.6.3. (14c) (S)-N-(4-Methoxylphenyl)-N-(1-phenylethyl)amine (14c) ${ }^{6 \mathrm{~b}}$

HPLC: Daicel Chiralcel OD-H column, n-hexane : isopropanol = 99 : 1, wavelength: 254 nm , flow rate: $0.7 \mathrm{~mL} / \mathrm{min}$, retention time: 17.5 min for (S)-12c, 19.3 \min for $(R) \mathbf{- 1 4 c}$.

4.6.4. (S)-N-[1-(4-Chlorophenyl)ethyl]-N-phenylamine (14d) ${ }^{6 \mathrm{c}}$

HPLC: Daicel Chiralcel OD-H column, n-hexane : isopropanol = 95 : 5, wavelength: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: 9.0 min for (S)-12d, 10.8 \min for $(R) \mathbf{- 1 4 d}$.

4.6.5. (S)-N-[1-(4-Acetylphenyl)ethyl]-N-phenylamine (14e)

Pale yellow oil; $[\alpha]_{\mathrm{D}}{ }^{27}-18.8\left(c=0.7, \mathrm{CHCl}_{3}\right)$, IR (neat) 3390, 3054, 2980, 2926, $2869,1678,1603,1506,1429,1360,1320,1269,1210,1181,1144,1015,1015,959$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.08(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.53(\mathrm{q}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 197.7, 151.0, 146.8, 136.0, 129.2, 129.1, 128.9, 126.0, 113.2, 53.4, 26.6, 24.9; $\operatorname{HR}-\mathrm{EI}(+) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}]^{+}$239.1310, found 239.1287. HPLC: Daicel Chiralcel OD-H column, n-hexane : isopropanol = 5: 1, wavelength: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: 11.1 min for $(S) \mathbf{- 1 4 e}, 13.2 \mathrm{~min}$ for $(R) \mathbf{- 1 4 e}$.

4.6.6. (S)-N-[1-(4-Nitrophenyl)ethyl]-N-phenylamine (14f) ${ }^{6 \mathrm{~b}}$

HPLC: Daicel Chiralcel OD-H column, n-hexane : isopropanol = $95: 5$, wavelength: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: 33.5 min for (S)-14f, 38.0 \min for $(R) \mathbf{- 1 4 f}$.

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (C) (19550109) from Japan Society for the Promotion of Science, and a Grant-in-Aid for Young Scientists (B) (19790017) from the Ministry of Education, Science, Sports and Culture, Japan.

References and notes

1. (a) Pichon, M.; Figadère, B. Tetrahedron: Asymmetry 1996, 7, 927-964. (b) Brenneman, J. B.; Machauer, R.; Martin, S. F. Tetrahedron 2004, 60, 7301-7314. (c) Esseveldt, B. C. J.; Vervoort, P. W. H.; van Delft, F. L.; Rutjes, P. J. T. J. Org. Chem. 2005, 70, 1791-1795. (d) Davis, F. A.; Song, M.; Augustine, A. J. Org. Chem. 2005, 71, 2779-2786.
2. (a) Halland, N.; Braunton, A.; Bachmann, S.; Marigo, M.; Jørgensen, K. A. J. Am. Chem. Soc. 2004, 126, 4790-4791. (b) Simonini, V.; Benaglia, M.; Pignataro, L.; Guizzetti, S.; Celentano, G. Synlett 2008, 1061-1065.
3. (a) Shono, T.; Matsumura, Y.; Tsubata, K. J. Am. Chem. Soc. 1981, 103, 1172-1176. (b) Shono, T.; Matsumura, Y.; Tsubata, K.; Uchida, K. J. Org. Chem. 1986, 51, 2590-2592. (c) Dhimane, H.; Vanucci-Bacqué, C.; Hamon, L.; Lhommet,
G. Eur. J. Org. Chem. 1998, 9, 1955-1963. (d) Kim, S.; Hayashi, K.; Kitano, Y.; Tada, M.; Chiba, K. Org. Lett. 2002, 4, 3735-3737. e) Onomura, O.; Ishida, Y.; Maki, T.; Minato, D.; Demizu, Y.; Matsumura, Y. Electrochemistry 2006, 74, 645-648.
4. Matsumura, Y.; Ogura, K.; Kouchi, Y.; Iwasaki, F.; Onomura, O. Org. Lett. 2006, 8, 3789-3792.
5. Iwasaki, F.; Onomura, O.; Mishima, K.; Maki, T.; Matsumura, Y. Tetrahedron Lett. 1999, 40, 7507-7511.
6. (a) Iwasaki, F.; Onomura, O.; Mishima, K.; Kanematsu, T.; Maki, T.; Matsumura, Y. Tetrahedron Lett. 2001, 42, 2525-2527. (b) Malkov, A. V.; Mariani, A.; MacDougall, K. N.; Kočovský, P. Org. Lett. 2004, 6, 2253-2266. (c) Onomura, O.; Kouchi, Y.; Iwasaki, F.; Matsumura, Y. Tetrahedron Lett. 2006, 47, 3751-3754. (d) Malkov, A. V.; Stewart Liddon, A. J. P.; Ramírez-López, P.; Bendová, L.; Haigh, D.; Kočovský, P. Angew. Chem. Int. Ed. 2006, 45, 1432-1435. (e) Wang, Z.; Wei, S.; Wang, C.; Sun, J. Tetrahedron: Asymmetry 2007, 18, 705-709.
7. (a) Shono, T.; Matsumura, Y.; Tsubata, K.; Sugihara, Y.; Yamane, S.; Kanazawa, T.; Aoki, T.; J. Am. Chem. Soc. 1982, 104, 6697-6703. (b) Shono, T.; Matsumura, Y.; Kanazawa, T.; Habuka, M.; Uchida, K.; Toyoda, K. J. Chem. Res. (S). 1984, 320-321; J. Chem. Res. (M). 1984, 2873-2889. (c) Shono, T.; Fujita, T.; Matsumura, Y. Chem. Lett. 1991, 81-84. (d) Célimène, C.; Dhimane, H.; Lhommet, G. Tetrahedron 1998, 54, 10457-10468.
8. Stereoconfiguration of trans-3d was determined by the X-ray analysis. Crystallographic data for this structure have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 686483.

Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK; fax: $+44(0) 1223336033$ or e-mail: deposit@ccdc.cam.ac.uk.
9. After hydrogenation of 7d, its stereoconfiguration was determined by comparison with authentic sample, see: Cossy, J.; Cécile, D.; Pardo, D. G.; Synlett 1997, 905-906.
10. Deprotection of $\mathbf{6 b}$ with $\mathrm{Me}_{3} \mathrm{SiI}$ led to epimerization at the 5-position.
11. (a) Iwasaki, T. ; Horikawa, H.; Matsumoto, K.; Miyoshi, M. J. Org. Chem. 1979, 44, 1552-1554. (b) Matsumura, Y.; Wanyoike, G. N.; Onomura, O.; Maki, T. Electrochim. Acta 2003, 48, 2957-2966.

[^0]: *Corresponding author, Tel +81-95-819-2429, Fax +81-95-819-2476, E-mail: onomura@nagasaki-u.ac.jp

