Bulletin of Japanese Society of Microbial Ecology Vol. 9, No. 3, 125-128, 1994

Short Communication

Environmental Conditions Affecting N_2 Fixation by Chromatium sp. Bloom in Lake Kaiike

MICHIRO MATSUYAMA

Faculty of Fisheries, Nagasaki University Bunkyo-machi 1-14, Nagasaki 852

(Received December 24, 1993—Accepted November 14, 1994)

Key words: Chromatium sp., N₂ fixation, Lake Kaiike

Two kinds of large-sized cell bacteria, Chromatium sp. and Macromonas sp., bloom at an upper boundary of the H_2S layer of Lake Kaiike throughout all seasons (bacterial plate). Maximum cell density of Chromatium sp. observed in Lake Kaiike was on the order of 10^5 – 10^6 cells • ml^{-1} , the highest density exhibited by a member of the Chromatiaceae family in natural unpolluted waters⁴). Two requisites for bacterial photosynthesis, light and H_2S , are met only at the upper boundary of the H_2S layer to cause the bloom of Chromatium sp. Little information has been presented on environmental factors favoring Macromonas bloom.

Chromatium sp. is able to fix N_2 in the presence of light and H_2S , and the N_2 fixation is predominantly controlled by photosynthesis²⁾. Thus, the bacterium can grow well by using N_2 as the sole nitrogen source when light is provided at the saturation level (ca. 2,000 lux). However, in situ measurement of N_2 fixation by the C_2H_2 reduction method at the upper boundary of the H_2S layer of Lake Kaiike revealed very low N_2 fixation activity^{2,3)}, although the level of photosynthesis was measurable. A question arises what factor is responsible for the observed low rate of N_2 fixation. This study was conducted to find an answer to this question.

Figure 1 shows vertical profiles of the cell density of two bacterial species and environmental variables in Lake Kaiike on 15 December 1992. The methods of lake water sampling, chemical analyses and bacterial counting were the same as described in Matsuyama and Shirouzu¹).

Chromatium sp. and Macromonas sp. appeared at 4-5 m depth layers, and reached to the maximum cell density at 6.0-6.5 m depth $(6.7 \times 10^5 \text{ and } 6.2 \times 10^6 \text{ cells} \cdot \text{m} I^{-1}$, respectively), and below that layer their cell density decreased sharply. Below 3 m depth, dessolved O_2 decreased with depth and disappeared at 6.5 m depth. H_2S was detected at 5.5 m depth, reaching 1 mM at 10 m depth. Concentrations of NH_4^+ and PO_4^{3-} were very low in the water above 5 m depth $(<1 \,\mu\text{M})$. Their concentrations increased gradually with depth, reaching $400 \,\mu\text{M} \, (NH_4^+)$ and $90 \,\mu\text{M} \, (PO_4^{3-})$ at 10 m depth.

Figure 2 shows the N_2 fixation rate measured by the C_2H_2 reduction method^{2,3)} of the bacterial plate sample collected from 6 m depth on 15 December 1992. The water samples were filled in a 1-l sterile glass bottle and brought to the laboratory under a cool, dark condition. After inverting the samples several times to disperse the bacterial cells uniformly, each 100 ml of the samples was introduced into a series of 100-ml syringes without exposure to air. A 10 ml aliquot of 10% C_2H_2 in

126 Matsuyama

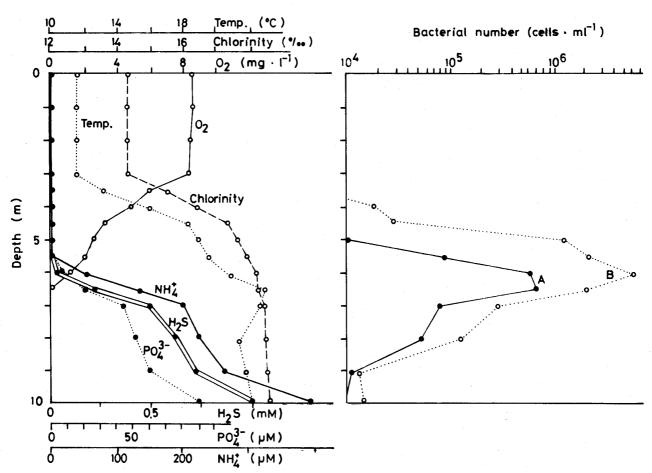


Fig. 1. Vertical profiles of the blooms of *Chromatium* sp. (A) and *Macromonas* sp. (B), and some environmental variables in Lake Kaiike on 15 December 1992.

argon gas was then injected into each syringe, followed by the addition of various amounts of H_2S (as a neutralized Na_2S solution) and NH_4^+ (as NH_4Cl). Within 48 h after collection, they were incubated at 25°C under a continuous light (300 lux) with an incandescent lamp. After 2 days and 5 days incubation, 0.5 ml of the gas phase in each syringe was assayed by C_2H_4 measurement using a semiconductor detector-gaschromatograph (Sensortec Inc. Ltd.).

Without H_2S addition, the bacterial plate sample showed limited formation of C_2H_4 (Fig. 2), indicating a limitation of the N_2 fixation by deficiency of H_2S (50 μ M) (Fig. 1) and probably a more severe limitation by the presence of NH_4^+ (30 μ M) as mentioned later. H_2S addition markedly accelerated N_2 fixation while the simultaneous addition of NH_4^+ depressed it.

Figure 3 shows the change in the C₂H₄ concentration in the pure culture of Chromatium sp. Prior to the culture experiment, the bacterium was grown in the inorganic medium of Pfennig⁵⁾, which contained 6.4 mM NH₄ as a nitrogen source. The bacteria from the exponential growth phase were centrifuged, followed by dispersion in a fresh H₂Sand NH₄⁺-free medium and repeated centrifugation. These treatments were done to get rid of both H₂S and NH₄ from the cell suspension. The bacterial cells were finally resuspended in H₂S- and NH₄-free medium and dispersed into several 100ml syringes. The bacterial suspension was then incubated under a temperature and light condition similar to those employed for the N₂ fixation measurement. During the incubation, a fixed amount of H₂S (0.3 mM) and various amounts of NH_4^+ (0-220 μ M) were added daily. The resul-

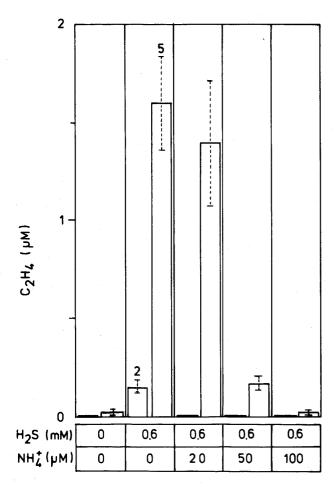


Fig. 2. N₂ fixation rate of the bacterial plate sample of Lake Kaiike added with different amounts of H₂S and NH₄⁺. The samples were collected from 6 m depth on 15 December 1992. Each treatment was performed in duplicate. Vertical bars represent the range of two replicates. Numbers above the columns indicate incubation time (days).

tant H₂S concentration in the suspension was not markedly different from the *in situ* concentration throughout the experiment.

In the absence of NH_4^+ , the N_2 fixation activity of the bacterium was considerably high (Fig. 3). But an addition of NH_4^+ depressed the N_2 fixation, indicating that NH_4^+ was inhibitory for the bacte-

rial N_2 fixation as reported on other N_2 fixing microorganisms⁶⁾. Even a daily addition of 30 μ M NH₄⁺, one-tenth of that of H₂S, was enough to depress the bacterial N_2 fixation completely.

Increased N₂ fixation of the bacterial plate sample at 5 days incubation in which NH₄ was externally added up to $20 \mu M$ (Fig. 2) indicates that an addition of 0.6 mM H₂S was sufficient enough to use up environmental NH₄ up to 50 μ M (initially contained NH₄⁺ plus externally added NH₄⁺), and remained H₂S was turned to the bacterial use for N₂ fixation. While, limited N₂ fixation of the sample added with 0.6 mM H_2S and 100 μ M NH_4^+ was probably due to remaining NH₄ after H₂S consumption. The relative abundance of NH₄ and H₂S in the bacterial surroundings seems to have a decisive effect on the N₂ fixation. For the occurrence of bacterial N₂ fixation, a significant amount of H₂S must be present after NH₄ consumption.

In the water layers below the bacterial plate, H_2S and NH_4^+ occurred at a molar ratio of ΔH_2S : $\Delta NH_4^+=1:0.36$ (Fig. 1), which was close to that reported in an anoxic water column of Lake Nitinat⁸⁾, suggesting these compounds seemed to be formed by sulfate reduction expressed by the following equation⁷⁾:

 $(CH_2O)_{106}(NH_3)_{16}H_3PO_4 + 53SO_4^2 = 106CO_2 + 53S^2 - + 16NH_3 + 106H_2O + H_3PO_4$, where $(CH_2O)_{106}(NH_3)_{16}H_3PO_4$ is the empirical formula of average organic matter to be decomposed. H_2S production which is required for N_2 fixation of *Chromatium* sp. is accompanied by liberation of NH_4^+ as much as one-third of H_2S on a molar basis. Therefore, as sulfate reduction is the principal process of organic matter decomposition below the bacterial plate, *Chromatium* sp. would never depend on the N_2 fixation.

128

MATSUYAMA

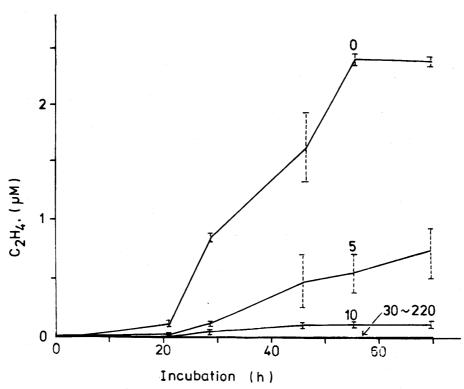


Fig. 3. N_2 fixation rate of the pure culture of *Chromatium* sp. under daily addition of H_2S (0.3 mM) and different amounts of NH_4^+ (0-220 μ M). Numbers in the figure indicate added NH_4^+ concentrations. Bacterial density at the start of the culture was 1.8×10^6 cells • ml^{-1} .

References

- Matsuyama, M. and E. Shirouzu. 1978. Importance of photosynthetic sulfur bacteria, Chromatium sp., as an organic matter producer in Lake Kaiike. Jpn. J. Limnol. 39: 103-111.
- Matsuyama, M. 1986. N₂ fixation of a largephototrophic bacterium isolated from the bacterial plate of Lake Kaiike with some considerations on its *in situ* growth. Jpn. J. Limnol. 47: 369-375.
- Matsuyama, M. 1987. H₂ production by a large phototrophic bacterium isolated from the bacterial plate of Lake Kaiike. Jpn. J. Limnol. 48: 133– 136.
- 4) Matsuyama, M. 1988. Ecology of a large-celled phototrophic bacterium densely populating the upper boundary of H₂S water of Lake Kaiike.

- Bull. Jpn. Soc. Microbiol. 3: 35-46. (in Japanese)
- Pfennig, N. 1965. Anreicherungskulturen für rote und grüne Schwefelbakterien. Zbl. Bakt. 1. Abt. Org. Suppl. 1: 179-189, 503-505.
- 6) Postgate, J. Nitrogen Fixation. Edward Arnold, London, 1978.
- Redfield, A.C., B.H. Ketchum and F.A. Richards. 1963.
 The influence of organisms on the composition of sea-water. in "The Sea", vol. 2. ed. by M.N. Hill, E.D. Goldberg, C.O'D. Iselin and W.H. Munk. Interscience, New York and London, pp. 26-77.
- 8) Richards, F.A., J.D. Cline, W.W. Broenkow and L.P. Atkinson. 1965. Some consequences of the decomposition of organic matter in Lake Nitinat, an anoxic fjord. Limnol. Oceanogr. 10: R185-R201.