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Background. Rotifers are among the most common non-arthropod animals and are the most experimentally tractable
members of the basal assemblage of metazoan phyla known as Gnathifera. The monogonont rotifer Brachionus plicatilis is
a developing model system for ecotoxicology, aquatic ecology, cryptic speciation, and the evolution of sex, and is an important
food source for finfish aquaculture. However, basic knowledge of the genome and transcriptome of any rotifer species has
been lacking. Methodology/Principal Findings. We generated and partially sequenced a cDNA library from B. plicatilis and
constructed a database of over 2300 expressed sequence tags corresponding to more than 450 transcripts. About 20% of the
transcripts had no significant similarity to database sequences by BLAST; most of these contained open reading frames of
significant length but few had recognized Pfam motifs. Sixteen transcripts accounted for 25% of the ESTs; four of these had no
significant similarity to BLAST or Pfam databases. Putative up- and downstream untranslated regions are relatively short and
AT rich. In contrast to bdelloid rotifers, there was no evidence of a conserved trans-spliced leader sequence among the
transcripts and most genes were single-copy. Conclusions/Significance. Despite the small size of this EST project it revealed
several important features of the rotifer transcriptome and of individual monogonont genes. Because there is little genomic
data for Gnathifera, the transcripts we found with no known function may represent genes that are species-, class-, phylum- or
even superphylum-specific; the fact that some are among the most highly expressed indicates their importance. The absence
of trans-spliced leader exons in this monogonont species contrasts with their abundance in bdelloid rotifers and indicates that
the presence of this phenomenon can vary at the subphylum level. Our EST database provides a relatively large quantity of
transcript-level data for B. plicatilis, and more generally of rotifers and other gnathiferan phyla, and can be browsed and
searched at gmod.mbl.edu.
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INTRODUCTION
Rotifera is one of the largest microinvertebrate phyla, in terms of

both biomass and number of species. Its members are major

components of freshwater and coastal marine ecosystems through-

out the world, and are the chief non-arthropod component of most

freshwater pelagic communities [1]. Most rotifers are smaller than

1 mm, but have ganglia; muscles; photo-, chemo-, and tactile

sensory organs; structures for crawling, feeding, and swimming;

digestive and secretory organs; and ovaries. The two major rotifer

groups, Monogononta and Bdelloidea, are each significant for

their unusual reproductive modes: bdelloids appear to be

obligately asexual, reproducing only through mitotic division of

germ cells; monogonont rotifers are facultatively sexual, generally

reproducing through mitotic division of germ cells but entering

a meiotic sexual phase in response to environmental cues [2].

The phylum is allied with other microinvertebrate groups such

as Acanthocephala, Gnathostomulida, Micrognathozoa, and

Cycliophora in the superphylum Gnathifera, a sister- or basal

group to the Lophotrochozoa [3,4]. Unlike other gnathiferan

fauna, many rotifer species can easily be cultured in axenic

conditions in quantities suitable for large-scale biochemical and

molecular genetic studies, making rotifers the optimal model

system for studying this basal animal assemblage. Among rotifers,

the most well-studied are the euryhaline rotifers of the Brachionus

plicatilis species complex. Their widespread distribution and ease of

culturing make this group a useful model system for studies of

population dynamics [5–9], speciation [10–14], the evolution of

sexual reproduction [15,16], and ecotoxicology [17–20]. The

complex is also an important live food for the initial stage of larval

rearing of marine fishes [21,22]. However, while the biology,

ecology, and culture conditions of many rotifer species have been

studied, molecular and genetic studies are scarce and there are few

genomic resources [10,23]. Only genes used for phylogenetic

analysis, such as those encoding ribosomal RNAs, cytochrome

oxidase subunit I, and the 82kD heat shock protein have been

widely sampled in Rotifera [11–14,24,25], and only a few others,

such as those for the 70kD heat shock protein, a Mn-superoxide

dismutase, and a ubiquitin-conjugating enzyme [26,27], have been

reported for B. plicatilis.

To increase the amount of genetic information available and to

develop tools for further genomic research of rotifers, we

constructed an unnormalized cDNA library from a mixed (asexual

females, sexual females, and males) culture of B. plicatilis. We

partially sequenced over 2300 clones and acquired data on the
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relative abundance, probable function, and sequence character-

istics of more than 450 transcripts.

RESULTS
A rotifer culture is a complex microcosm of bacteria, protozoa,

algae, fungi, and rotifers. A single rotifer may harbor as many as

108 bacterial colony forming units (cfu) and a culture typically

contains 103–106 bacterial cfu/ml [28]. The fungal species

Atkinsiella parasitica was isolated from eggs and body of B. plicatilis

[29], and PCR with primers to small subunit ribosomal RNA

(SSU rRNA) demonstrated the presence of bacteria including

Afipia, Bosea, and Delftia, protozoa including Hartmannella, and fungi

including Catenaria in seemingly axenic cultures (DMW, un-

published). To create a cDNA library with minimal xenic

contamination we established an axenic rotifer culture method

(KS, unpublished). The food source, the algae Chlorella vulgaris, was

cultured axenically. To minimize contamination of the library

from Chlorella mRNA, rotifer culture at log phase growth was

harvested aseptically, kept in sterilize seawater to allow the rotifers

to consume remaining Chlorella and excrete all the food in their

gut, and then washed several times with sterilize sea water. This

procedure appears to have produced a cDNA library largely free

of xenic contamination: none of the clones we sequenced had a top

BLAST score to a fungus, and the gene encoding ribulose

bisphosphatecarboxylase/oxygenase, one of the most expressed

genes in plants [30–32], was absent.

After removing sequences that were vector-only, low quality, or

polyA-only reads, 2362 ESTs were recovered with an average read

length of 770 bases. Clones corresponding to 166 of the ESTs were

subsequently sequenced in the opposite direction. Assembly output

consisted of 534 contigs and 473 potential transcripts (Table 1).

Ninety-nine of the contigs contained forward and reverse reads,

122 represented 61 supercontig scaffolds of transcripts sequenced

in both directions with sequencing gaps, and 313 contigs

represented transcripts sequenced in one direction only, of which

236 were composed of a single EST. Rank-abundance and

rarefaction curves are shown in Figure 1. The redundancy of the

library, calculated as 2362 ESTs/473 potential transcripts, was

4.99. The total number of transcripts present in the library was

estimated to be about 800 using the Chao1 nonparametric

estimator of total species richness [33], calculated as Stotal =

Sobs+(S1
2/2*S2) where S1 and S2 are the number of transcripts

represented by 1 or 2 ESTs, respectively. Consensus contig

sequences were deposited in DDBJ/EMBL/GenBank with

accession numbers BJ979485 to BJ979996 and BJ999204 to

BJ999251; individual ESTs were deposited in the dbEST division

of GenBank with accession numbers ES466901-ES469274.

Transcript function and abundance
Contigs were compared to nucleotide and amino acid sequences in

GenBank and to Pfam whole domain and fragment HMM

databases. Of the 473 transcripts comprising the 534 contigs, 371

had matches to BLAST databases with E values ,1.06e24. Of the

103 transcripts that did not have significant similarity to BLAST

databases, 53 had open reading frames of at least 300 bases and 22

had ORFs of at least 600 bases. However, only 12 had annotated

Pfam motifs (as judged by an estwisedb bit score .25). The most

abundant transcript was an SSU rRNA not eliminated in the

mRNA purification (EST BpA0300); other transcripts with more

than 1% of the total ESTs are listed in Table 2. In addition to

ribosomal proteins, tubulin, and DNA binding proteins, these

include transcripts encoding proteins similar to the cysteine

protease Cathepsin L, a glutathione S-transferase, acyl-CoA

oxidase, and a sphingolipid activator protein (saposin). Contigs

representing four of the most abundant transcripts, each

accounting for more than 1% of ESTs, have no significant

BLAST or Pfam matches. The most abundant such transcript

(BpA0604) is more than 1700 nt in length but lacks an ORF of

significant length; it includes a tandem array of ten 68 nt repeats

with an average pairwise identity of 95%. Another abundant

Figure 1. Transcript Abundance. a) Transcript abundance by EST
abundance; the most abundant transcript (BpA0300 with 139 ESTs) is
SSU rRNA and is not shown. (b) Rarefaction curve of transcripts
predicted by number of ESTs.
doi:10.1371/journal.pone.0000671.g001

Table 1. cDNA Library and EST Database Properties
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mean insert size in kbSD (n = 40) 2.01.1

Recombinant efficiency 83%

Total reads 2678

ESTs after quality screening 2362

Total contigs 534

contigs with forward and reverse reads 99

contigs with forward reads only 435

supercontig scaffolds 61

contigs with one EST 236

supercontigs with 2 ESTs 19

Total inferred transcripts 473

rRNA transcrips 4

incompletely spliced transcripts 1

Total inferred coding genes surveyed 468

coding genes with 1 EST 232

coding genes with 2 ESTs 84

doi:10.1371/journal.pone.0000671.t001..
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transcript (BpA0292), composed of an ORF of at least 591 bases

before a short 39 UTR and a polyA tail, has no BLAST or Pfam

similarity to database sequences, and is composed largely of serine-

threonine repeats (none of the clones composing this contig

contained an in-frame ATG near the 59 end so the contig is

probably an incomplete sample of the transcript).

Supplemental Table S1 lists all contigs in our EST database, the

number of ESTs per contig, contig length, best BLAST hit, and the

predicted functional category of the gene product when BLASTX to

the nr database produced a match with a score .90 and E-value

,1.06e213. In addition to the SSU rRNA gene sampled in

BpA0300, single-EST contigs BpA0430 and BpA0435 contained

different regions of 28S ribosomal gene(s) and single-EST contig

BpA0464 contained a region of a 5S ribosomal gene. As shown in

Figure 2, the categories with the greatest abundance of ESTs were

gene/protein expression (25.1%), metabolism (18.9%), unclassified

(13.3%), and cell signalling/cell communication (10.6%).

Intragenomic comparisons
Every contig was compared to every other contig using BLASTN.

One single pass read (BpA0008) was completely identical to

another (BpA0417) except for a 351 base insertion. BpA0417

contains a complete ORF identified as ribosomal protein L11;

BpA0008 has strong similarity to L11 by BLASTN, except for the

351 base insertion, which has no significant matches in BLAST or

Pfam databases and does not contain an ORF of significant length.

A genewise comparison of BpA0008 to the L11 protein of Danio

rerio predicts an intron involving the insertion but not with exactly

the same coordinates. The insertion begins with a GpT but does

Table 2. Highly abundant (.1%) non-SSU transcripts and their putative function. When two contigs make up a transcript scaffold
both are listed; Score and E value are BLASTX to the nr database except for BpA0295 which is hmmpfam to Pfam_ls.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

No. of ESTs (%) Contig(s) Acc. No.(s) Gene product name or probable function Score E value

56 (2.5) BpA0602 BJ999206 cathepsin L 406 8.00E-112

49 (2.2) BpA0299 BJ979768 Peritrophin-A domain containing 53.6 5.90E-13

47 (2.1) BpA0294 BJ979763 saposin-like 166 3.00E-39

45 (1.9) BpA0604 BJ999208 no significant BLAST or Pfam similarities — —

39 (1.8) BpA0276, BpA0288 BJ979746, BJ979757 DNA binding, R3H domain containing 96 1.00E-18

39 (1.8) BpA0297 BJ979766 ribosomal protein L23 219 3.00E-56

38 (1.7) BpA0296 BJ979765 Tubulin, beta, 2 493 0

34 (1.5) BpA0295 BJ979764 no significant BLAST or Pfam similarities — —

30 (1.3) BpA0284 BJ979753 no significant BLAST or Pfam similarities — —

30 (1.3) BpA0285 BJ979754 Glutathione S-transferase 133 3.00E-30

29 (1.3) BpA0601, BpA0610 BJ999205, BJ999214 DNA binding, similar to DEK oncogene 73.2 2.00E-22

28 (1.2) BpA0292 BJ979761 no significant BLAST or Pfam similarities — —

25 (1.1) BpA0291 BJ979760 acyl-CoA oxidase 221 4.00E-56

25 (1.1) BpA0290 BJ979759 high-molecular-weight glutenin y-type subunit 55.8 1.00E-06

doi:10.1371/journal.pone.0000671.t002..
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Figure 2. Transcript Abundance by Functional Class of Predicted Protein Product
doi:10.1371/journal.pone.0000671.g002
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not end in an ApG and may represent an incorrectly spliced gene

product. The only other contigs with significant similarity to each

other were examined to confirm that they were assembled

correctly; comparison of BLASTN hits showed these to be

transcripts of different genes belonging to known gene families

such as alpha- and beta- tubulins and low molecular weight heat

shock proteins.

Untranslated regions
The distribution of untranslated region (UTR) length and %AT is

shown in Figure 3. The average length of the putative 59 and 39

UTRs was 52 bases (SD 35) and 94 bases (SD 74.5), respectively.

The length of the putative 59 UTR was not negatively correlated

with overall transcript length, suggesting that the estimate of 59 UTR

length was not biased by incomplete first strand synthesis of the

cDNA library (not shown). The 59 UTR was examined for the

presence of trans-spliced leader (TSL) exons [34] by cluster analysis,

multiple sequence alignment, and all-to-all BLASTN comparisons.

No sequence conservation indicative of a TSL exon was found.

The average %AT of the putative 59 and 39 UTRs was 68.7%

(SD 10.3%) and 83.4% (SD 6.3%). The %AT of both UTRs is

significantly greater than the overall %AT of the transcripts from

which they were extracted (59.7% and 63.6%, respectively, by

Student’s T-test, p%0.01). While there is great variation in the

length of the putative 39 UTRs, there is little variation in %AT.

The 19 transcripts with putative 39 UTRs greater than 200 bases

in length have an average %AT of 81.1%, indicating that their base

composition is similar to shorter 39 UTRs and unlike the rest of the

transcript, suggesting that they have been properly identified.

DISCUSSION
We obtained 2220 non-rRNA ESTs from our B. plicatilis cDNA

library, which assembled into 530 unique contigs, 98 of which

contained reads in forward and reverse orientation. A limited

amount of bidirectional sequencing allowed us to determine that

122 contigs were forward and reverse pairs from a total of 61

transcripts. Some fraction of the remaining 310 contigs may also

be forward and reverse pairs, particularly those containing a large

and similar number of ESTs, but we have conservatively treated

each as a separate transcript (with the exception of Bp0008, which

we interpret as an incompletely spliced product of the same gene

as Bp0417). The redundancy of the library (which decreases to 4.7

without the rRNA transcripts and incompletely spliced EST), is

higher than libraries of other invertebrate metazoans, such as the

copepod Tigriopus japonicus (2.62 [35]), the cladoceran Daphnia

magna (2.44 [36]), the cnidarian Cyanea capillata (2.11[37]), and the

nematode Nippostrongylus brasiliensis (1.66[38]). The reason for such

high redundancy is unclear; however, we hypothesize that the

expression of many genes may have been depressed during

starvation. This is supported by the low estimation of total transcript

diversity in the library estimated by rarefaction and by the Chao1

nonparametric estimator of total species richness, which both predict

a total diversity of fewer than 1000 transcripts (Figure 1).

About 20% of the transcripts have no significant similarity to

database sequences by BLAST, a lower fraction than in many

EST studies, perhaps due to the starvation regime. Most of these

transcripts contain identifiable ORFs but no recognized Pfam

motifs, and represent genes of unknown function. Because there is

little genomic data for Gnathifera the transcripts we found with no

known function may represent genes that are species-, class-,

phylum- or even superphylum-specific. These genes include four

of the most abundant transcripts, which combined account for

nearly 6% of the sequenced ESTs. Further study of these genes, of

obvious importance to rotifers, will no doubt greatly expand our

understanding of the biology and evolution of rotifers and other

gnathiferans.

Although this library is far from complete, our database

provides a large amount of information about the transcriptome

of rotifers, including the predicted products of the highly expressed

transcripts of B. plicatilis (Table 2). The most abundant non-SSU

rRNA transcript encodes a cathepsin L-like cysteine peptidase.

Cathepsin L has been identified in several arthropods, but the role

of cathepsins in invertebrates is not known. The next most

abundant transcript (BpA0299) contains a complete 1593 nt ORF

with weak BLASTX matches (E.0.01) to insect chitinases and has

three chitin binding Peritrophin-A domains identified by

hmmpfam. In insects, proteins with these domains are associated

with the peritrophic matrix lining the midgut and play a role in

partitioning digestive enzymes, and in defence against ingested

bacterial pathogens [39]. Both of these processes are important to

understanding rotifer ecology and to aquaculture, and this gene

provides a potential avenue to their study. Gamma-aminobutyric

acid (GABA) has been shown to enhance population growth of B.

plicatilis cultures, particularly in stressful conditions such as low food

concentration and high free ammonia levels [40,41], suggesting the

existence of a GABA receptor and its importance for rotifer

aquaculture. We found a transcript for a GABA receptor associated

protein (BpA0418), which now allows the action of GABA in rotifers

to be explored at the molecular level. Finally, one of our transcripts

(BpA0140) has significant similarity to trehalose-6-phosphate synthase (tps)

in BLAST and hmmpfam searches. This gene encodes the enzyme

used in the first step of trehalose synthesis in most eukaryotes. The

three ESTs that represent this transcript are similar to 59 portion of

tps containing the glycosyltransferase domain GT-20 (pfam00982, E

value 2.66e213) associated with trehalose synthase activity, but the

whole transcript has not been isolated. Trehalose has been detected

in the resting eggs of B. plicatilis [42] but not in several bdelloid

species [42,43]. Unsuccessful PCR screens for tps in bdelloids have

suggested that bdelloids are unable to synthesize trehalose [43]. Our

discovery of a potential tps in B. plicatilis suggests that non-bdelloid

rotifers use the tps pathway to synthesize trehalose and that bdelloids

secondarily lost tps and the ability to synthesize trehalose.

Significantly, none of the genes we identified are related to the

production of collagen, although collagens are very abundant

proteins in most animals; other genes encoding proteins involved

in cell structure, particularly laminin as well as actins, filamin,

connectin, and tubulins, are present in our database. Biochemical

assays have found no evidence of fibrous or non-fibrous collagens

in B. plicatilis [44] and this is supported by the absence of collagen

gene transcripts in our database. While acanthocephalans are
Figure 3. Distribution of UTRs by Length and %AT
doi:10.1371/journal.pone.0000671.g003
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known to contain collagen [45], the distribution of collagen in

other rotifers and in other gnathiferan phyla is unknown. The

presence of collagen genes may thus be a useful cladistic marker

[4] and the morphological and physiological response over

evolutionary time to the loss of collagen may be of interest.

We found no evidence of alternately spliced genes, although our

survey was too small to rule out alternate splicing in rotifers. We

found one transcript that appeared to be an incorrectly spliced

version of another; if this interpretation is correct it would imply that

the introns of the monogonont B. plicatilis are much larger than those

found in several bdelloid rotifers (,350 nt vs ,60 nt, [46]; DMW

unpublished). Other than genes belonging to known gene families

(primarily alpha- and beta- tubulins) we found no evidence of

multiple divergent gene copies in B. plicatilis, whereas this appears to

be the norm in bdelloid rotifers ([47]; DMW unpublished). This

provides additional evidence that the unique multiple-copy genome

of bdelloids is related to their uniquely asexual evolution.

Another difference between monogonont and bdelloid rotifers

apparent from our results is that monogonont rotifers appear to

lack a conserved trans-spliced leader sequence. In contrast, bdelloid

rotifers from two species belonging to different families were

shown to have the same 23 nt exon sequence trans-spliced from

,100 nt spliced leader (SL) RNAs to the 59 end of more than 50%

of their transcripts [48]. Searches of putative 59 UTRs from our

library revealed no similarity to the bdelloid SL exon, or any

similarity among 59 UTR sequences themselves. While our library

was not enriched for 59 ends, we did identify likely upstream

regions in 68 transcripts. As our criteria were rather stringent,

requiring identifiable similarity with the 59 end of the coding

sequence of a BLAST ortholog, this is no doubt an underestimate

of the 59 UTRs present in our database. If premature termination

of first-strand synthesis had caused these 59 UTRs to be

incomplete, we would expect an inverse relationship between 59

UTR length and total transcript length. No such relationship was

observed, so most or perhaps all of the 59UTRs we identified are

probably full length. As TSL sequence was easily identified in

more than 50% of bdelloid transcripts simply by comparing 59

ends in a much smaller library using similar methodology, it seems

likely that there is no conserved TSL sequence in B. plicatilis.

However, we cannot exclude the possibility that only a small sub-

set of low abundance transcripts are trans-spliced or that transcription

of trans-spliced genes are suppressed under starvation conditions. If

monogonont rotifers do in fact lack SL RNA, bdelloids and

monogononts would be the most closely related groups that are

known to differ in this phenomenon, and may thus provide a useful

model system in which to study the evolution of SL RNA.

MATERIALS AND METHODS

cDNA library construction and sequencing
Brachionus plicatilis Muller 1856 strain NH1L [49], a member of the

B. plicatilis sensu strictu clade of the B. plicatilis species complex [11],

was cultured at 25uC in Allen’s artificial seawater [50] (diluted to

17 ppt salinity) inoculated with 3–76106 cells/ml Chlorella vulgaris

strain K-73122 in a Jarfermentor (MBS, Japan). The algal food

source C. vulgaris was cultured in bacteria-free medium, harvested

by centrifugation, suspended in deionized, filtered water to

a density of 8.66109 cells/ml supplemented with 800 ng/ml

vitamin B12 (which is essential for rotifer growth [51,52]) prior to

introduction to the rotifer culture.

Rotifers were harvested by filtration onto a plankton net (45

micron mesh) that was washed with sterilized artificial seawater;

rotifers were resuspended in 400 ml seawater that was exchanged

every 2–3 hours over 12 hours to allow the rotifers to consume

any remaining Chlorella and excrete their gut contents. The washed

and starved rotifers were collected by plankton net and suspended

in ISOGEN (Nippon Gene, Japan). The rotifers were homoge-

nized with 0.8 mm glass beads using a vortex mixer and total

RNA was isolated from the homogenate according to the

manufacturer’s instructions. Poly(A)+ RNA was purified from

total RNA using MagExtractor (Toyobo, Japan). About 2.8 mg of

poly(A)+ RNA was used to construct the cDNA library. Double-

stranded cDNA was prepared using a cDNA Synthesis Kit

(Amersham Bioscience, USA). The blunt-ended cDNA was ligated

to the EcoRI/NotI adaptor, then ligated into EcoRI-predigested

lambda-ZAPII arms (Stratagene, USA), and packaged in vitro by

using Gigapack III gold packaging extract (Stratagene).

An aliquot of the cDNA library was incubated with E. coli XL1-

Blue MRF to allow in vivo mass excision by ExAssist helper phage.

The incubated solution was transfected into E. coli SOLR strain and

plated on LB ampicillin plates containing X-Gal and IPTG to

recover pBluescript SK (-) plasmids. Based on blue/white selection,

the recombinant efficiency of the cDNA library was 83%. The

average insert length from 40 randomly picked clones was estimated

by restriction enzyme analysis to be approximately 2 kb (SD 1 kb).

Plasmid DNA was purified using a QIAGEN plasmid kit or

a Genomic Solutions RevPrep robot, sequenced with ABI Big Dye

3.1 chemistry using standard M13 forward and reverse primers,

and eluted on ABI PRISM 310, 3100, or 3730xl Genetic

Analyzers (Applied Biosystems).

Sequence analysis
All sequence data was examined independently using either

DNASIS Pro software (Hitachi software, Japan) or unix shell scripts

developed at the Josephine Bay Paul Center combining phred, phrap

[53-55], lucy [56] trimseq, and trimest [57] and available from the

corresponding author on request. Assemblies were compared and

discrepancies examined and reconciled by hand. Contigs and unique

sequences from singletons were compared to NCBI databases using

BLASTN and BLASTX [58] and to Pfam databases using

estgenewise [59] and hmmpfam [60]. Putative function was assigned

based on best BLAST hit to a well-annotated sequence, and scored

as similar if the top hit had a score greater than 50, and as highly

similar if the top hit had a score greater than 90.

Sequences with significant similarity to database sequences by

BLASTX were, when necessary, reoriented to match the subject

sequence. All forward open reading frames greater than 150 bp

were found, translated, and compared to databases by BLASTP. If

an ORF began with an ATG, its set of top blast hits were similar to

those found when blasting the entire transcript, and the ATG of

the ORF was within 60 bases of the start site of at least one top

blast hit, that ATG was considered the likely translation start site

and all positions upstream to be part of the 59 untranslated

regions. Similarly, if a sequence contained a polyA tail and had an

ORF with a set of top blast hits similar to those found when

blasting the entire transcript, the stop codon of the ORF was

considered the likely translation termination site, and all positions

downstream but before the polyA tail were considered to be the 3’

untranslated region.

SUPPORTING INFORMATION

Table S1 Table S1 is a tab deliminated ASCII text file

containing Accession, # of ESTs, length, best BLAST hit

information, predicted function, and predicted functional class

for each contig.

Found at: doi:10.1371/journal.pone.0000671.s001 (0.10 MB

TXT)
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