Chiral azabicyclo- N -oxyls mediated enantioselective electrooxidation of sec-alcohols

Hirofumi Shiigi, Hiroyuki Mori, Tomoaki Tanaka, Yosuke Demizu and Osamu Onomura*

Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

Abstract

Enantiomerically pure azabicyclo-N-oxyls were prepared from L-hydroxyproline. They mediated enantioselective electrooxidation of racemic sec-alcohols to afford optically active sec-alcohols with moderate to high s value (up to 21).

2,2,6,6-Tetramethylpiperidine- N-oxyl (TEMPO) has been utilized in chemical ${ }^{1}$ and electrochemical oxidation ${ }^{2}$ of alcohols as a mediator. Also, optically active N-oxyls structurally modified from TEMPO were effective for oxidative kinetic resolution of sec-alcohols by chemical and electrochemical methods. ${ }^{3}$ We have recently reported preparation of several azabicyclo- N-oxyls and their mediatory role for electrooxidation of alcohols. ${ }^{4}$ This oxidation was applicable to a transformation of sterically hindered secondary alcohols into the corresponding ketones in higher yields than those of TEMPO-mediated reactions (Eq. 1). We wish to report herein the preparation of enantiomerically pure azabicyclo- N-oxyls and their mediatory role for enantioselective electrooxidation of racemic sec-alcohols. ${ }^{5}$

The chiral azabicyclo skeleton was prepared from L-hydroxyproline as shown in Eq. 2. Namely, the electrooxidation of N-methoxycarbonyl-L-hydroxyproline ethyl ester (1) afforded methoxylated compound 2 in 94% yield, which was allylated with

[^0]allyltrimethylsilane catalyzed by TiCl_{4} to give allylated compound $\mathbf{3}$ as a diastereomer mixture. Alkaline hydrolysis of $\mathbf{3}$ followed by electrooxidation afforded methoxylated diastereomeric mixture 4 in 70% yield. TiCl_{4}-catalyzed cyclization ${ }^{6}$ for (2S)-isomer of $\mathbf{4}$ afforded the corresponding azabicyclo compound 5 in enantiomerically pure form, ${ }^{7}$ while (2R)-isomer of $\mathbf{4}$ did not give the corresponding cyclized product but polar components.

Enantiomerically pure azabicyclo- N-oxyls $7 \mathbf{7 a}$ and $7 \mathbf{b}-\mathbf{k}$ attached with various O-protecting groups were synthesized by usual methods as shown in Eq. 3. The yields are summarized in Table 1. Acylation for hydroxyl group of $\mathbf{5}$ gave $\mathbf{6 b}-\mathbf{k} .{ }^{8}$ After N-methoxycarbonyl group of $\mathbf{5}$ and $\mathbf{6 b}$-k were removed with $\mathrm{Me}_{3} \mathrm{SiI}$, successive oxidation with m CPBA afforded N-oxyls 7a-k. ${ }^{9}$

Table 1. Preparation of enantiomerically pure N -oxyls $7 \mathrm{a}-\mathrm{k}$

Entry	PG	Yield of $\mathbf{6 b - k}$ (\%)		Yield of $\mathbf{7 a - k}(\%)$	
1	H		-	$\mathbf{7 a}$	35
2	Acetyl	$\mathbf{6 b}$	88	$\mathbf{7 b}$	65
3	Pivaloyl	$\mathbf{6 c}$	49	$\mathbf{7 c}$	50
4	Benzoyl	$\mathbf{6 d}$	96	$\mathbf{7 d}$	59
5	3,5-Dimethylbenzoyl	$\mathbf{6} \mathbf{e}$	54	$\mathbf{7 e}$	47
6	2-Phenylbenzoyl	$\mathbf{6 f}$	70	$\mathbf{7 f}$	30
7	1-Naphthoyl	$\mathbf{6 g}$	67	$\mathbf{7 g}$	57
8	1-(2-Methylnaphthoyl)	$\mathbf{6 h}$	31	$\mathbf{7 h}$	37
9	2-Naphthoyl	$\mathbf{6 i}$	75	$\mathbf{7 i}$	70
10	Tosyl	$\mathbf{6 j}$	$\mathbf{7 3}$	$\mathbf{7 j}$	48
11	Phenylcarbamoyl	$\mathbf{6 k}$	66	$\mathbf{7 k}$	57

Cyclic voltammogram for $\mathbf{7 g}$ showed reversible wave pattern similar to that for azabicyclo- N-oxyl $\mathbf{A}^{4,10}$ This strongly suggests that enantiomerically pure azabicyclo- N-oxyls could also play the role of an oxidation mediator just like \mathbf{A} (Fig. 1).

Figure 1. Cyclic voltammogram for $\mathbf{7 g}$.

The enantioselective electrooxidation of DL-1-phenylethanol (8) catalyzed with chiral azabicyclo- N-oxyls $7 \mathbf{a}-\mathbf{m}$ was carried out as follows (Eq. 4). ${ }^{11}$ That is, the oxidation was conducted using platinum electrodes in an undivided beaker-type cell, containing a catalytic amount of $\mathbf{7 a}-\mathbf{m}$, excess amount of sodium bromide, and a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and saturated aqueous NaHCO_{3} as solvent. After passing through $1.5 \mathrm{~F} / \mathrm{mol}$ of electricity at constant current (20 mA , terminal voltage: ca 3 V) at $0^{\circ} \mathrm{C}$, acetophenone 9
and (S)-8 were obtained. The results are shown in Table 2. 0.1 equiv of N-oxyl 7a did not work as a mediator for oxidation at all (entry 1). ${ }^{13}$ In the case of using acetylated N-oxyl 7b, pivaloylated 7c, 3,5-dimethylbenzoylated 7e, and 2-phenylbenzoylated 7f, (S)-8 was recovered with low s value (entries $2,3,5$ and 6), ${ }^{14}$ while use of benzoylated $\mathbf{7 d}$ afforded (S)-8 with moderate s value of 8 (entry 4). The most efficient N-oxyl $\mathbf{7 g}$ which was protected with 1-naphthoyl group gave (S)-8 with high s value of 21 (entry 7). Other N-oxyls $\mathbf{7 h} \mathbf{- m}$ were less effective than $\mathbf{7 g}$ (entries 11-16). ${ }^{15,16}$ Although 0.2 or 0.5 equiv of N-oxyl 7 g worked well as a chiral mediator for the enantioselective oxidation, 0.05 equiv of $\mathbf{7 g}$ was somewhat ineffective for enantioselectivity (entries $8-10$).

7a-m (0.05-0.5 equiv)
NaBr (4.0 equiv)

Table 2 Enantioselective oxidation of DL-phenylethanol (8) catalyzed by 7a-m

Entry	N-oxyl 7a-m (equiv)	Yield of 9 (\%)	Yield of recovered (S)-8 (\%)	\% ee of (S)-8	s
1	7 a (0.1)	14	86	0	0
2	7b (0.1)	58	33	7	1
3	7c (0.1)	44	56	19	2
4	7d (0.1)	38	57	47	8
5	7e (0.1)	60	33	23	2
6	7f (0.1)	42	57	38	5
7	7g (0.1)	43	56	64	21
8	7 g (0.05)	45	50	62	10
9	$7 \mathrm{~g}(0.2)$	42	54	64	20
10	7g (0.5)	42	53	65	20
11	7h (0.1)	51	49	37	3
12	7 i (0.1)	42	57	41	5
13	7j (0.1)	35	44	13	2
14	7k (0.1)	50	44	27	2
15	71 (0.1)	43	43	42	4
16	7m (0.1)	41	59	22	2

Table 3 summarizes the enantioselective oxidation of some sec-alcohols $\mathbf{1 0} \mathbf{- 1 4}$ mediated by $7 \mathbf{g}$, which was passed through $1.5 \mathrm{~F} / \mathrm{mol}$ of electricity at constant current (20 mA , terminal voltage: ca 3 V) at $0^{\circ} \mathrm{C}$ (Eq. 5). (S)-1-(2-Methylphenyl)ethanol ((S)-10) and (S)-1-(2,4,6-trimethylphenyl)ethanol ((S)-11) were obtained in 47% yield with 72% ee for (S)-10 (entry 1) and in $\mathbf{4 7 \%}$ yield with 64% ee for (S)-11 (entry 2). Although in the case of 1-(1-naphthalenyl)ethanol (12) and 1-indanol (14), (S)-12 and (S)-14 were obtained with low s value of 6 and 5, respectively (entries 3 and 5), 1-(2-naphthalenyl)ethanol (13) gave (S)-13 with good s value of 11 (entry 4).

sec-Alcohol	7g (0.1 equiv)	Ketone	+	Recovered (S)-alcoho
	NaBr (4.0 equiv)			
	$\mathrm{Pt}(+)-\mathrm{Pt}(-), 1.5 \mathrm{~F} / \mathrm{mol}, 20 \mathrm{~mA}$			
10-14	sat. aq. $\mathrm{NaHCO}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$	15-19		(S)-10-14

Table 3 Enantioselective oxidation of various sec-alcohols $\mathbf{1 0 - 1 4}$ catalyzed by $\mathbf{7 g}$
Entry

Scheme 1 shows our proposed mechanism for kinetic resolution of DL-8 mediated by chiral N-oxyl $7 \mathbf{g}$. The carbonyl group of N-oxoammonium ion $7 \mathbf{g}$, which is generated
by the oxidation of $7 \mathbf{g}$ with bromonium ion, might coordinate to the oxoammonium group. Since (R)-8 can smoothly approach $\mathbf{7 g}$ ' to form the active intermediate, $(R)-\mathbf{8}$ might be easily oxidized to afford acetophenone (9). On the other hand, the formation of intermediate composed of (S)-8 and $\mathbf{7} \mathbf{g}$ ' seems to be somewhat difficult.

79

$7 \mathrm{~g}^{\prime} \mid-\mathrm{H}^{+}$

9

$7 \mathbf{g}^{\prime} \mid-\mathrm{H}^{+}$

Scheme 1. Plausible stereochemical course for kinetic resolution of dL-8.

In summary, we report preparation of enantiomerically pure azabicyclo- N-oxyls and their mediatory role for enantioselective electrooxidation of racemic sec-alcohols. O-Protecting group on azabicyclo- N -oxyls affected the enantioselectivity for the oxidation of sec-alcohols. Further modification of chiral N-oxyls is underway.

Acknowledgements

This work was supported in part by a Grant-in-Aid for Young Scientists (B) (19790017) from the Ministry of Education, Science, Sports and Culture, Japan, a Grant-in-Aid for Scientific Research (C) (19550109) from Japan Society for the Promotion of Science, and a Konica Minolta Imaging Science Foundation, Japan.

References and notes

1. Representative recent reviews: (a) de Nooy, A. E. J.; Besemer, A. C.; van Bekkum, H. Synthesis 1996, 1153-1174. (b) Sheldon, A. R.; Arends W. C. E. I. Adv. Synth. Catal. 2004, 346, 1051-1076.
2. (a) Semmelhack, M. F.; Chou, C. S.; Cortes, D. A. J. Am. Chem. Soc. 1983, 105, 4492-4494. (b) Osa, T.; Akiba, U.; Segawa, I.; Bobbitt, J. M. Chem. Lett. 1988, 8, 1423-1426. (c) Inokuchi, T.; Matsumoto, S.; Torii, S. J. Org. Chem. 1991, 56, 2416-2421. (d) Yoshida, T.; Kuroboshi, M.; Oshitani, J.; Gotoh, K.; Tanaka H. Synlett 2007, 2691-2694.
3. (a) Ma, Z.; Huang, Q.; Bobbit, J. M. J. Org. Chem. 1993, 58, 4837-4843. (b) Rychnovsky, S. D.; McLernon, T. L.; Rajapakse, H. J. Org. Chem. 1996, 61, 1194-1195. (c) Kashiwagi, Y.; Kurashima, F.; Kikuchi, C.; Anzai, J.; Osa, T.; Bobbit, J. M. Tetrahedron Lett. 1999, 40, 6469-6472. (d) Kuroboshi, M.; Yoshihisa, H.; Cortona, M. N.; Kawakami, Y.; Gao, Z.; Tanaka, H. Tetrahedron Lett. 2000, 41, 8131-8135.
4. Demizu, Y.; Shiigi, H.; Oda, T.; Matsumura, Y.; Onomura, O. Tetrahedron Lett. 2008, 49, 48-52.
5. We found only one literature for enantioselective chemical oxidation mediated by C_{2} symmetrical azabicyclo- N-oxyls with low enantioselectivities (s value: up to 2.5): Graetz, B.; Rychnovsky, S.; Leu, W.; Farmer, P.; Lin, R. Tetrahedron: Asymmetry 2005, 16, 3584-3598.
6. Physical data for 5: Colorless oil. $[\alpha]^{24}{ }_{\mathrm{D}}=+5.6$ (c 1.0, CHCl_{3}). IR (neat): 3480, $2955,1705 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.25(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}$, 1 H), 4.11 (br s, 1H), 4.11-3.98 (m, 1H), 3.74 (s, 3H), 2.80-2.50 (br s, 1H), 2.21-1.80 (m, 6H). [HR-FAB(+)]: m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{ClNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$220.0740: found 220.0735 .
7. The optical purity of $\mathbf{5}$ was determined after conversion to 1 -naphthoylaed N-oxyl 7 g by chiral HPLC: Daicel Chiralcel OD-H column ($4.6 \mathrm{~mm} \phi, 250 \mathrm{~mm}$), n-hexane : isopropanol $=5: 1$, wavelength: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: 12.3 min for ($6 R$)-7g, 17.4 min for ($6 S$)- $\mathbf{7 g}$.
8. The stereoconfiguration for $\mathbf{6 g}$ was deduced by NOE correlation.

9. Physical data for 7g: Red amorphous. $[\alpha]_{\mathrm{D}}{ }^{27}=-13.3$ (c 1.0, CHCl_{3}). IR (neat): 2930, $1717 \mathrm{~cm}^{-1}$. [HR-EI]: m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClNO}_{3}[\mathrm{M}]^{+} 330.0897$: found 330.0899.
10. Cyclic voltammogram for $7 \mathbf{g}$ was measured in $0.1 \mathrm{M} \mathrm{Et}_{4} \mathrm{NBF}_{4} / \mathrm{MeCN}$ solution using glassy-carbon as a working electrode, platinum as a counter electrode, and $\mathrm{Ag} / 0.01$ $\mathrm{M} \mathrm{AgNO}_{3}$ as a reference electrode. Concentration of $7 \mathrm{~g}: 1.0 \mathrm{mM}$. Scan rate: 30 mV / s. Cyclic voltammogram for other O -acyloxylated N -oxyls $\mathbf{7 b}-\mathbf{f}, \mathbf{h}-\mathrm{m}$ showed reversible wave pattern similar to that for $\mathbf{7 g}$, while that for hydroxylated N-oxyls $7 \mathbf{7}$ was irreversible.
11. Representative procedure for the enantioselective electrooxidation of sec-alcohols: Anodic oxidation of DL-1-phenylethanol (DL-8) was carried out using platinum electrodes ($1 \mathrm{~cm} \times 2 \mathrm{~cm}$) in an undivided beaker-type cell. DL-8 ($61 \mathrm{mg}, 0.5 \mathrm{mmol}$), $7 \mathbf{g}(16.5 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{NaBr}(206 \mathrm{mg}, 2.0 \mathrm{mmol})$ were added into a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(2.5 \mathrm{~mL})$. After passing through 1.5 $\mathrm{F} / \mathrm{mol}$ of electricity at constant current $(20 \mathrm{~mA})$ at $0^{\circ} \mathrm{C}$, the mixture was poured in water and extracted with AcOEt (20 mL x 3). The combined organic layer was dried over MgSO_{4} and the solvent removed under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane : AcOEt = $10: 1$) to afford acetophenone $9(25.8 \mathrm{mg}, 43 \%$ yield) and (S)-8 ($34.2 \mathrm{mg}, 56 \%$ yield) as a colorless oil. ${ }^{12}$
12. The optical purity of (S)-8 was determined by chiral HPLC: Daicel Chiralcel OB column ($4.6 \mathrm{~mm} \mathrm{\phi}, 250 \mathrm{~mm}$), n-hexane : isopropanol = $15: 1$, wavelength: 254 nm , flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$, retention time: 13.5 min for ($(S) \mathbf{8}, 17.5 \mathrm{~min}$ for $(R)-\mathbf{8}$.
13. DL-8 was oxidized in the absence of N-oxyl to afford $\mathbf{9}$ with 16% yield.
14. Kagan, H. B.; Fiaud, J. C. Topics in Stereochemistry; Eliel, E. L., Ed.; Wiley \& Sons: New York, 1988, Vol. 18, 249-330.
15. A precursor for N-oxyl $7 \mathbf{7}$ was synthesized by TiBr_{4}-catalyzed cyclization of 4 .
16. A precursor for N-oxyl 7 m was synthesized by reductive dechlorination of 5 .

[^0]: Key words: chiral nitroxyl radical; enantioselective oxidation; optically active alcohol; electrooxidation
 *Corresponding author, Tel +81-95-819-2429, Fax +81-95-819-2476, E-mail onomura@nagasaki-u.ac.jp (O. Onomura)

