| 1 | Original | Article  | for         | Thyroi  | d |
|---|----------|----------|-------------|---------|---|
| • | Originai | 11111010 | <i>j</i> 01 | 1119101 | u |

| 2  |                                                                                                                                                |
|----|------------------------------------------------------------------------------------------------------------------------------------------------|
| 3  | A novel diagnostic method for thyroid follicular tumors based on                                                                               |
| 4  | immunofluorescence analysis of p53-binding protein 1 expression: detection of                                                                  |
| 5  | genomic instability                                                                                                                            |
| 6  |                                                                                                                                                |
| 7  | Ryota Otsubo <sup>1,2</sup> , Katsuya Matsuda <sup>1</sup> , Zhanna Mussazhanova <sup>1</sup> , Ayako Sato <sup>1,2</sup> , Megumi             |
| 8  | Matsumoto <sup>2</sup> , Hiroshi Yano <sup>2</sup> , Masahiro Oikawa <sup>3</sup> , Hisayoshi Kondo <sup>4</sup> , Masahiro Ito <sup>5</sup> , |
| 9  | Akira Miyauchi <sup>6</sup> , Mitsuyoshi Hirokawa <sup>7</sup> , Takeshi Nagayasu <sup>2</sup> , and Masahiro                                  |
| 10 | Nakashima <sup>1</sup>                                                                                                                         |
| 11 |                                                                                                                                                |
| 12 | <sup>1</sup> Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute,                                                      |
| 13 | Nagasaki University, Nagasaki 852-8523, Japan                                                                                                  |
| 14 | <sup>2</sup> Department of Surgical Oncology, Nagasaki University Graduate School of                                                           |
| 15 | Biomedical Sciences, Nagasaki 852-8501, Japan                                                                                                  |
|    |                                                                                                                                                |

16 <sup>3</sup>Division of Breast Surgery, New-wa-kai Oikawa Hospital, Fukuoka 810-0014, Japan

| 17 | <sup>4</sup> Biostatics Section, Division of Scientific Data Registry, Atomic Bomb Disease    |
|----|-----------------------------------------------------------------------------------------------|
| 18 | Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-          |
| 19 | 8523, Japan                                                                                   |
| 20 | <sup>5</sup> Department of Pathology, National Hospital Organization Nagasaki Medical Center, |
| 21 | Nagasaki 856-8562, Japan                                                                      |
| 22 | <sup>6</sup> Department of surgery, Kuma Hospital, Kobe, Hyogo 650-0011, Japan                |
| 23 | <sup>7</sup> Department of Diagnostic Pathology and Cytology, Kuma Hospital, Kobe, Hyogo      |
| 24 | 650-0011, Japan                                                                               |
| 25 |                                                                                               |
| 26 | Corresponding Author: Masahiro Nakashima, M.D., Ph.D.                                         |
| 27 | Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute,                  |
| 28 | Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan                                |
| 29 | TEL: + 81-95-819-7105, FAX: +81-95-819-7108                                                   |
| 30 | E-mail: moemoe@nagasaki-u.ac.jp                                                               |
| 31 |                                                                                               |
| 32 | Ryota Otsubo, M.D., Ph.D.                                                                     |

| 33 | Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical |
|----|------------------------------------------------------------------------------------|
| 34 | Sciences, Nagasaki 852-8501, Japan. E-mail: rotsubo@nagasaki-u.ac.jp               |
| 35 |                                                                                    |
| 36 | Katsuya Matsuda, C.T., Ph.D.                                                       |
| 37 | Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute,       |
| 38 | Nagasaki University, Nagasaki 852-8523, Japan. E-mail: katsuya@nagasaki-u.ac.jp    |
| 39 |                                                                                    |
| 40 | Zhanna Mussazhanova, M.D., Ph.D.                                                   |
| 41 | Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute,       |
| 42 | Nagasaki University, Nagasaki 852-8523, Japan. E-mail: ghannakz@mail.ru            |
| 43 |                                                                                    |
| 44 | Ayako Sato, M.D.                                                                   |
| 45 | Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical |
| 46 | Sciences, Nagasaki 852-8501, Japan. E-mail: ay_dopey_smile@yahoo.co.jp             |
| 47 |                                                                                    |
|    |                                                                                    |

48 Megumi Matsumoto, M.D., Ph.D.

| 49 | Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical |
|----|------------------------------------------------------------------------------------|
| 50 | Sciences, Nagasaki 852-8501, Japan. E-mail: mmatsumoto@nagasaki-u.ac.jp            |
| 51 |                                                                                    |
| 52 | Hiroshi Yano, M.D., Ph.D.                                                          |
| 53 | Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical |
| 54 | Sciences, Nagasaki 852-8501, Japan. E-mail: hiroyano@nagasaki-u.ac.jp              |
| 55 |                                                                                    |
| 56 | Masahiro Oikawa, M.D., Ph.D.                                                       |
| 57 | Division of Breast Surgery, New-wa-kai Oikawa Hospital, Fukuoka 810-0014, Japan.   |
| 58 | Email: oimasa@iris.dti.ne.jp                                                       |
| 59 |                                                                                    |
| 60 | Hisayoshi Kondo, Ph.D.                                                             |
| 61 | Biostatics Section, Division of Scientific Data Registry, Atomic Bomb Disease      |
| 62 | Institute, Nagasaki University, Nagasaki 852-8523, Japan. E-mail: hkondo@nagasaki- |
| 63 | u.ac.jp                                                                            |
| 64 |                                                                                    |

| 65 | Masahiro Ito, M.D., Ph.D.                                                          |
|----|------------------------------------------------------------------------------------|
| 66 | Department of Pathology, National Hospital Organization Nagasaki Medical Center,   |
| 67 | Nagasaki 856-8562, Japan. E-mail: itohm@nagasaki-mc.com                            |
| 68 |                                                                                    |
| 69 | Akira Miyauchi, M.D., Ph.D.                                                        |
| 70 | Department of Surgery, Kuma Hospital, Kobe, Hyogo 650-0011, Japan. E-mail:         |
| 71 | miyauchi@kuma-h.or.jp                                                              |
| 72 |                                                                                    |
| 73 | Mitsuyoshi Hirokawa, M.D., Ph.D.                                                   |
| 74 | Department of Diagnostic Pathology and Cytology, Kuma Hospital, Kobe, Hyogo 650-   |
| 75 | 0011, Japan. E-mail: mhirokawa@kuma-h.or.jp                                        |
| 76 |                                                                                    |
| 77 | Takeshi Nagayasu, M.D., Ph.D.                                                      |
| 78 | Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical |
| 79 | Sciences, Nagasaki 852-8501, Japan. E-mail: nagayasu@nagasaki-u.ac.jp              |

| 81 | Masahiro Nakashima, M.D., Ph.D.                                                |
|----|--------------------------------------------------------------------------------|
| 82 | Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute,   |
| 83 | Nagasaki University, Nagasaki 852-8523, Japan. E-mail: moemoe@nagasaki-u.ac.jp |
| 84 |                                                                                |
| 85 | Running head: 53BP1 in thyroid follicular tumors                               |
| 86 |                                                                                |
| 87 | Keywords: 53BP1, DNA damage response, genomic instability, immunofluorescence, |
| 88 | thyroid follicular tumors                                                      |

#### 89 Abstract

| 90  | Background: The preoperative diagnosis of thyroid follicular carcinomas by fine-                                                                               |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 91  | needle aspiration cytology (FNAC) is almost impossible. We previously demonstrated                                                                             |
| 92  | that p53-binding protein 1 (53BP1) expression, based on immunofluorescence (IF), can                                                                           |
| 93  | serve as a valuable biomarker to estimate the malignant potential of various cancers.                                                                          |
| 94  | 53BP1 belongs to a class of DNA damage response molecules that rapidly localize to                                                                             |
| 95  | the site of DNA double-strand breaks (DSBs), forming nuclear foci (NF). This study                                                                             |
| 96  | aimed to elucidate the utility of 53BP1 NF expression as a biomarker to differentiate                                                                          |
| 97  | follicular tumors (FTs).                                                                                                                                       |
| 98  | Methods: We analyzed associations between 53BP1 expression based on IF and                                                                                     |
| 99  | histological types of FTs using 27 follicular adenomas (FAs), 28 minimally invasive                                                                            |
| 100 | follicular carcinomas (MFCs), and 14 widely invasive FCs (WFCs). Furthermore, our                                                                              |
| 101 |                                                                                                                                                                |
| 101 | study clarified the relationship between 53BP1 NF and copy number aberrations                                                                                  |
| 102 | study clarified the relationship between 53BP1 NF and copy number aberrations<br>(CNAs) based on array comparative genomic hybridization (aCGH), a hallmark of |

| 104 | Results: This study demonstrated differences in 53BP1 NF expression between FA and       |
|-----|------------------------------------------------------------------------------------------|
| 105 | FC. The incidence of 53BP1 at NF significantly increased with FT progression in the      |
| 106 | following order: normal follicle < FA < MFC < WFC. In contrast, no significant           |
| 107 | differences were observed in CNAs among the FT samples. Furthermore, there was no        |
| 108 | significant correlation between CNAs and 53BP1 at NF in FTs. Thus, based on a            |
| 109 | comparison of these two indicators of GIN, 53BP1 NF (by IF) was better able to           |
| 110 | estimate the malignancy of FTs compared to CNA (by aCGH). Interestingly, IF              |
| 111 | revealed the heterogenous distribution of 53BP1 NF, which occurred more frequently in    |
| 112 | the invasive or subcapsular area than in the center of the tumor, suggesting intra-tumor |
| 113 | heterogeneity of GIN in FTs.                                                             |
| 114 | <b>Conclusions:</b> We propose that IF analysis of 53BP1 expression could be a novel     |
| 115 | diagnostic method to estimate the malignant potential of FTs. Because 53BP1 NF           |
| 116 | reflect DNA DSBs, we hypothesize that the incidence of 53BP1 at NF can represent the     |
| 117 | level of GIN in tumor cells.                                                             |
|     |                                                                                          |

#### 119 Introduction

| 120 | Follicular carcinoma (FC) is the second most common type of thyroid carcinoma            |
|-----|------------------------------------------------------------------------------------------|
| 121 | and must be differentiated from more common follicular adenoma (FA) (1). It is almost    |
| 122 | impossible to preoperatively diagnose thyroid follicular tumors (FTs) by fine-needle     |
| 123 | aspiration cytology (FNAC), because the criteria for distinguishing these lesions are    |
| 124 | based on histological evidence such as capsular/vascular invasion or metastasis, and not |
| 125 | on cytologic features, as is the case for papillary thyroid carcinoma (PTC) (2,3).       |
| 126 | According to the Bethesda System for Reporting Thyroid Cytology, almost all FCs are      |
| 127 | of category III, which is defined as atypia of undetermined significance or follicular   |
| 128 | lesions of undetermined significance (AUS/FLUS), or category IV, which is defined as     |
| 129 | follicular neoplasm or suspicious for follicular neoplasm (FN/SFN); for these            |
| 130 | categories, the estimated risk of malignancy is 5–15% or 15–30%, respectively (4).       |
| 131 | Thus, to avoid unnecessary surgery, several patients with FC, especially those cases     |
| 132 | including vascular invasion, are required to undergo a complementary total               |
| 133 | thyroidectomy after a preceding histological diagnostic hemithyroidectomy.               |

| 134 | Several molecular techniques have been proposed for the preoperative diagnosis of               |
|-----|-------------------------------------------------------------------------------------------------|
| 135 | FTs (5-7), but there is no decisive method that can clearly distinguish benign tumors           |
| 136 | from malignancy. We previously demonstrated that an immunofluorescence (IF)-based               |
| 137 | method to detect p53-binding protein 1 (53BP1) expression can serve as a valuable               |
| 138 | molecular marker to estimate the malignant potential of various cancers including               |
| 139 | thyroid (8), skin (9), and uterine cervix (10). 53BP1 belongs to a family of                    |
| 140 | evolutionarily conserved DNA damage response (DDR) molecules that are rapidly                   |
| 141 | recruited to the site of DNA double-strand breaks (DSBs) as a downstream effector of $\gamma$ - |
| 142 | H2AX (11); these molecules then form nuclear foci (NF) to co-operatively activate p53           |
| 143 | with other kinases (12-14). The recruitment of 53BP1 protects the damaged end of                |
| 144 | DNA from undergoing resection, which in turn prevents error-free homologous                     |
| 145 | recombination (HR) repair and instead promotes error-prone non-homologous end-                  |
| 146 | joining (NHEJ) (15-19). The expression of 53BP1 at NF has been found to reflect                 |
| 147 | ionizing radiation-induced DSBs, which increase linearly with radiation dose (12).              |
| 148 | Genomic instability (GIN) is considered an important hallmark of malignant tumors and           |
| 149 | is occasionally evident in the precancerous stage of carcinogenesis. Given that one             |

| 150 | manifestation of GIN is induction of the endogenous DDR (20), we proposed that         |
|-----|----------------------------------------------------------------------------------------|
| 151 | 53BP1 NF, based on IF, might be a useful tool to estimate the level of GIN, as well as |
| 152 | the malignant potential of human tumors.                                               |
| 153 | To elucidate the utility of 53BP1 expression as a biomarker to differentiate thyroid   |
| 154 | FTs, this study analyzed associations between 53BP1 expression and histological types  |
| 155 | such as FAs, minimally invasive FCs (MFCs), and widely invasive FCs (WFCs).            |
| 156 | Furthermore, to validate the significance of 53BP1 NF in estimating GIN among FTs,     |
| 157 | our study also clarified the relationship between 53BP1 NF and copy number             |
| 158 | aberrations (CNAs) detected by array comparative genomic hybridization (aCGH),         |
| 159 | which is a well-known hallmark of GIN during carcinogenesis (13, 14).                  |
| 160 |                                                                                        |
| 161 | Materials and Methods                                                                  |
| 162 | Thyroid tissues                                                                        |
| 163 | A total of 69 surgically-resected, formalin-fixed, paraffin-embedded (FFPE)            |
| 164 | thyroid FTs including 27 conventional-type FAs, 28 MFCs, and 14 WFCs were used in      |
| 165 | this study. The diagnoses of all patients were histologically and macroscopically      |

| 166 | confirmed by a pathologist specializing in thyroid oncology (MH or MN). Any             |
|-----|-----------------------------------------------------------------------------------------|
| 167 | suspicious cases were excluded from our analysis. As a normal control, seven non-       |
| 168 | tumorous follicular tissues surrounding FTs were also evaluated. Clinicopathologic      |
| 169 | factors and preoperative cytological diagnoses of these cases are summarized in Table   |
| 170 | 1. This study was retrospectively conducted in accordance with the tenets of the        |
| 171 | Declaration of Helsinki and approved by the institutional ethical committee for medical |
| 172 | research at Nagasaki University (approval date: July 24, 2015; #1506265). Following     |
| 173 | the guidelines of the ethical committee's official informed consent and disclosure      |
| 174 | system, detailed information regarding the study is available on our website            |
| 175 | (http://www-sdc.med.nagasaki-u.ac.jp/pathology/research/index.html). Patients were      |
| 176 | able to opt out of the study by following the instructions on the faculty website. All  |
| 177 | samples were resected from patients at the Nagasaki University Hospital from 1994 to    |
| 178 | 2012 and the Kuma Hospital from 2010 to 2012.                                           |
|     |                                                                                         |

### 180 IF analysis of 53BP1 expression

| 181 | After antigen retrieval by microwaving in citrate buffer, deparaffinized $4$ - $\mu$ m        |
|-----|-----------------------------------------------------------------------------------------------|
| 182 | sections were preincubated with 10% normal goat serum. Tissue sections were then              |
| 183 | incubated with an anti-53BP1 rabbit polyclonal antibody (A300-272A, Bethyl Labs,              |
| 184 | Montgomery, TX) at a 1:200 dilution for 1 h at room temperature. The slides were              |
| 185 | subsequently incubated with Alexa Fluor 488-conjugated goat anti-rabbit antibody              |
| 186 | (Molecular Probes Inc., Eugene, OR, USA). Specimens were counterstained with 4',6-            |
| 187 | diamidino-2-phenylindole dihydrochloride (DAPI; Vysis Inc., Downers Grove, IL,                |
| 188 | USA), analyzed, and photographed using a High Standard All-in-One Fluorescence                |
| 189 | Microscope (Biorevo BZ-9000; KEYENCE Japan, Osaka, Japan) in Z-stack mode,                    |
| 190 | accumulating images from 20 to 30 slices. Signals were analyzed from more than 15             |
| 191 | viewing areas of subcapsular parts per case at a 1,000-fold magnification, as shown in        |
| 192 | Figure 1A. The 53BP1 immunoreactivity pattern was classified into three types based           |
| 193 | on the number and size of NF as follows: (i) stable type: faint nuclear staining, (ii) low    |
| 194 | DDR type: one or two discrete NF, (iii) high DDR type: three or more discrete NF, or          |
| 195 | discrete NF that are larger than $1.0 \ \mu m$ in the minor axis (Fig. 1B). The percentage of |

196 follicular cells expressing each type of 53BP1 staining pattern was calculated for each197 case.

| 199 | Validation of IF analysis of 53BP1 expression using FFPE tissues                          |
|-----|-------------------------------------------------------------------------------------------|
| 200 | We also performed IF analysis of 53BP1 expression to determine whether 53BP1              |
| 201 | NF can be specifically detected in FFPE sections using thyroid tissues after irradiation. |
| 202 | Seven-week-old male Wistar rats were used for this. All animals received whole-body       |
| 203 | irradiation using a Toshiba ISOVOLT TITAN32 X-ray, at 200 kV and a dose rate of           |
| 204 | 0.5531 Gy/min. Two doses of 0.1 and 4 Gy were administered. Two rats in each dose         |
| 205 | group were sacrificed by deep anesthesia 2 h after irradiation. Each thyroid gland was    |
| 206 | resected and immersed in neutral-buffered formalin, and routinely embedded in paraffin    |
| 207 | blocks. Sections were used for IF according to the method described previously herein.    |
| 208 | Control rats were not irradiated but were otherwise handled identically. This             |
| 209 | experimental protocol was approved by the Institutional Animal Care and Use               |
| 210 | Committee at Nagasaki University Animal Center (protocol No. #1610111343).                |
| 211 |                                                                                           |

### 212 DNA extraction

| 213 | Genomic DNA was extracted from tumor areas in FFPE tissues as reported                      |
|-----|---------------------------------------------------------------------------------------------|
| 214 | previously (21). Tumor areas, identified using a guide slide stained with hematoxylin       |
| 215 | and eosin, were microdissected from each FFPE block using $10 \times 10$ -µm-thick-sections |
| 216 | and transferred into tubes. Paraffin removal was performed in 80% xylene; then, tissues     |
| 217 | were washed twice with absolute ethanol and deparaffinized tissue pieces were               |
| 218 | centrifuged at $15,000 \times g$ for 10 min at room temperature. After drying, pellets were |
| 219 | resuspended in 180 $\mu$ l of buffer ATL (QIAamp DNA FFPE Kit, Qiagen, Hilden,              |
| 220 | Germany) and digested with proteinase K for 72 h at 56 °C in a rotation oven with           |
| 221 | periodic mixing and the addition of fresh proteinase K every 24 h. DNA was collected        |
| 222 | using the QIAamp DNA FFPE Kit according to the manufacturer's instructions.                 |
| 223 | Extracted DNA was quantified using a NanoDrop ND-1000 spectrophotometer                     |
| 224 | (NanoDrop Technologies, Wilmington, DE, USA). The concentration of double-                  |
| 225 | stranded DNA (dsDNA) in each sample was quantitated using a Qubit dsDNA HS                  |
| 226 | Assay Kit (Life Technologies, Carlsbad, CA, USA), following the manufacturer's              |
| 227 | instructions, as an indicator of DNA quality for aCGH analysis.                             |

### 229 aCGH analysis

| 230 | aCGH analyses were performed as described previously (15). The Genomic DNA                 |
|-----|--------------------------------------------------------------------------------------------|
| 231 | ULS Labeling Kit (Agilent technologies, Santa Clara, CA, USA) was used to                  |
| 232 | chemically label 500 ng of DNA from tumor samples and reference female genomic             |
| 233 | DNA (Promega, Madison, WI, USA) with Cy5 or Cy3 dyes, respectively, for 30 min at          |
| 234 | 85 °C, which was followed by purification using Agilent-KREApure <sup>™</sup> columns. The |
| 235 | degrees of Cy5 and Cy3 labeling were calculated using a NanoDrop ND-2000                   |
| 236 | spectrophotometer (NanoDrop Technologies). Purified, labeled samples were then             |
| 237 | combined and mixed with human Cot-1 DNA (Invitrogen, Carlsbad, USA), Agilent $10 \times$   |
| 238 | Blocking Agent, and Agilent 2× Hybridization Solution. Prior to array hybridization,       |
| 239 | hybridization mixtures were denatured at 95 °C for 3 min and incubated at 37 °C for 30     |
| 240 | min. An Agilent CGH block was added, and samples were hybridized to the SurePrint          |
| 241 | G3 Human CGH 8×60 K Microarray, which contains eight identical arrays consisting of        |
| 242 | ~63,000 in situ synthesized 60-mer oligonucleotide probes that span coding and             |
| 243 | noncoding sequences with an average spatial resolution of ~54 kb. Hybridization was        |

| 244 | carried out at 65 °C for 40 h before washing in Agilent Oligo aCGH Wash Buffer 1 at       |
|-----|-------------------------------------------------------------------------------------------|
| 245 | room temperature for 5 min; this was followed by washing in Agilent Oligo aCGH            |
| 246 | Wash Buffer 2 at 37 °C for 1 min. Scanning and image analysis were performed using        |
| 247 | an Agilent DNA Microarray Scanner. Feature Extraction Software (version 9.5) was          |
| 248 | used for data extraction from raw microarray image files. The Agilent Genomic             |
| 249 | Workbench (version 6.5) was used to visualize, detect, and analyze chromosomal            |
| 250 | patterns using an Aberration Detection Method-2 algorithm with the threshold set to       |
| 251 | 5.5. The derivative log ratio spread (DLRSpread) of each sample, which estimates the      |
| 252 | log ratio of noise by calculating the spread of log ratio differences between consecutive |
| 253 | probes along all chromosomes, was used as an indicator of quality for aCGH analysis.      |
| 254 | A copy number gain was defined as a $log_2$ ratio > 0.30 and a copy number loss was       |
| 255 | defined as a $\log_2 \text{ ratio} < -0.30$ .                                             |
| 256 |                                                                                           |

257 Statistical analysis

258 Kruskal-Wallis or Cochran-Armitage tests were used to assess clinicopathologic259 factors of patients in this study. The Jonckheere-Terpstra test was used to assess

| 260 | associations between the histological type of FTs (WFC, MFC, FA) and the results of      |
|-----|------------------------------------------------------------------------------------------|
| 261 | preoperative cytology, and to assess differences in the level of 53BP1 expression or the |
| 262 | total length of CNA by aCGH and the histological type of FTs. Spearman's correlation     |
| 263 | coefficients based on rank tests were used to assess the correlation between 53BP1       |
| 264 | expression and the total length of CNA by aCGH. The PHREG procedure in SAS               |
| 265 | software (version 8.2; SAS Institute, Cary, NC, USA) was used for calculations. All      |
| 266 | tests were one-tailed, and a p-value $< 0.05$ was considered statistically significant.  |
| 267 |                                                                                          |
| 268 | Results                                                                                  |
| 269 | 53BP1 expression in thyroid FTs                                                          |
| 270 | Representative images of the staining pattern of 53BP1 expression based on IF are        |
| 271 | shown in Figure 2. Our IF analysis of 53BP1 expression revealed the heterogeneous        |
| 272 | distribution of 53BP1 NF in FT sections. Specifically, we found more frequent            |
| 273 | expression of 53BP1 NF in the invasive front or subcapsular area as compared to that in  |
| 274 | the center portion of FTs, which were defined as shown in Figure 1. Therefore, 53BP1     |
|     |                                                                                          |

| 276 | results, we found a significant difference in the number of 53BP1 NF among different     |
|-----|------------------------------------------------------------------------------------------|
| 277 | histological types of FTs. Representative images of IF analysis of 53BP1 expression in   |
| 278 | each FT histological type are presented in Figure 3. The median incidences of follicular |
| 279 | cells expressing 53BP1 NF were 6.9, 20.9, 28.3, and 36.4% in non-tumor follicles         |
| 280 | (NTFs), FAs, MFCs, and WFCs, respectively. Furthermore, the median incidences of         |
| 281 | follicular cells expressing the high DDR type were 0, 4.3, 6.4, and 9.9% in NTFs, FAs,   |
| 282 | MFCs, and WFCs, respectively. Statistical analysis revealed a significant association    |
| 283 | between 53BP1 NF/high DDR type and the histological type of FTs ( $P < 0.001$ , Fig. 4   |
| 284 | and 5, respectively). The incidence of 53BP1 NF and high DDR type was significantly      |
| 285 | increased with disease progression, in the following order NTFs, FAs, MFCs, and          |
| 286 | WFCs. Adopting 3.1% as a cut-off value to distinguish FC from FA, the sensitivity and    |
| 287 | specificity values were 90.5 and 77.8%, respectively (Fig. 5).                           |
| 288 |                                                                                          |
| 289 | Validation of IF analysis for 53BP1 expression to detect DNA DSBs using FFPE             |

290 sections

| 291 | As shown in Figure 6, our IF method for assessing 53BP1 expression clearly                    |
|-----|-----------------------------------------------------------------------------------------------|
| 292 | demonstrated NF in rat thyroid follicular cells after irradiation. No 53BP1 NF were           |
| 293 | found in non-irradiated rat thyroid glands, whereas the number of NF per cell was             |
| 294 | increased in dose-dependent manner, suggesting the specific detection of 53BP1 NF at          |
| 295 | sites of irradiation-induced DSBs in FFPE sections.                                           |
| 296 |                                                                                               |
| 297 | Correlation between type of 53BP1 expression and CNA by aCGH                                  |
| 298 | We further examined the correlation between the type of 53BP1 expression and                  |
| 299 | CNA as another hallmark of GIN. The degree of CNA was measured by aCGH in FFPE                |
| 300 | samples that met the DNA quality standard for this assessment, which included eight           |
| 301 | FAs, 10 MFCs, and nine WFCs in our series. The quality of aCGH data was considered            |
| 302 | acceptable, with a DLRSpread of 0.38 (0.20–0.69). The mean total numbers of CNAs              |
| 303 | were 25.7, 32.2, and 120.8 Mbp in FAs, MFCs, and WFCs, respectively, which was not            |
| 304 | significantly different based on FT histologic type ( $p = 0.656$ ; Fig. 7). Furthermore, the |
| 305 | correlation diagram comparing total number of CNAs and the proportion of tumor cells          |
| 306 | expressing 53BP1 NF is shown in Figure 8. Our statistical analysis of Spearman's              |

| 307        | correlation coefficients based on the rank test revealed no significant correlation                                                                                                                                                                       |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 308        | between the degree of CNA and 53BP1 NF or the high DDR type in FTs ( $p = 0.226$ and                                                                                                                                                                      |
| 309        | 0.779, respectively). According to CNA at the single chromosome level, our results                                                                                                                                                                        |
| 310        | identified gain of 19p13.2 in four (50%) of eight FAs and gain of 8q24.3 in three of                                                                                                                                                                      |
| 311        | eight FAs (37.5%), six (60%) of 10 MFCs, and four (44%) of nine WFCs. However,                                                                                                                                                                            |
| 312        | significant correlations were not found between these alterations and the type of 53BP1                                                                                                                                                                   |
| 313        | expression.                                                                                                                                                                                                                                               |
| 314        |                                                                                                                                                                                                                                                           |
| 315        | Discussion                                                                                                                                                                                                                                                |
| 316        | The present study clearly demonstrated the existence of differences in 53BP1                                                                                                                                                                              |
| 317        | expression at NF, particularly with respect to the incidence of tumor cells expressing the                                                                                                                                                                |
| 318        | high DDR type, between FA and FC. The prevalence of the high DDR-type of 53BP1                                                                                                                                                                            |
| 319        |                                                                                                                                                                                                                                                           |
|            | immunoreactivity in follicular cells appeared to increase with FT progression. As                                                                                                                                                                         |
| 320        | immunoreactivity in follicular cells appeared to increase with FT progression. As<br>evident in a validation experiment using irradiated rat thyroid glands, the presence of                                                                              |
| 320<br>321 | immunoreactivity in follicular cells appeared to increase with FT progression. As<br>evident in a validation experiment using irradiated rat thyroid glands, the presence of<br>NF or DDR-type 53BP1 immunoreactivity was found to be concordant with the |

| 323 | based on double IF analysis revealed the frequent co-localization of 53BP1 and $\gamma$ H2AX |
|-----|----------------------------------------------------------------------------------------------|
| 324 | NF in all examined FTs (10 cases), as well as in irradiated rat thyroid glands, suggesting   |
| 325 | that endogenous activation of the DDR in tumor cells is a hallmark of GIN                    |
| 326 | (Supplementary figure). These results indicate a higher level of GIN in FCs as               |
| 327 | compared to that in FAs. However, although CNAs (based on aCGH analysis), as                 |
| 328 | another hallmark of GIN and representing chromosomal loss and gain (13, 14, 21-23),          |
| 329 | tended increase with FT progression, no significant difference was observed among FA,        |
| 330 | MFC, and WFC samples. Previous reports also suggested no significant differences in          |
| 331 | CNAs between FC and FA (24, 25). Furthermore, we could not demonstrate a                     |
| 332 | significant correlation between CNA levels and the DDR-type of 53BP1                         |
| 333 | immunoreactivity in FTs. Thus, upon comparing these two indicators of GIN, the               |
| 334 | incidence of 53BP1 NF, reflecting endogenous DNA DSBs, based on IF, could be more            |
| 335 | accurate in estimating the malignant potential of FTs, as compared to that with can-         |
| 336 | based aCGH analysis. Interestingly, our IF analysis revealed the heterogenous                |
| 337 | distribution of 53BP1 NF, which was more frequent in the invasive front or subcapsular       |
| 338 | area, as compared to that in the center of the tumor, suggesting intra-tumor                 |

| 339 | heterogeneity of GIN in FTs. Thus, the intra-tumor heterogeneity based on CNA levels      |
|-----|-------------------------------------------------------------------------------------------|
| 340 | should be further elucidated. Actually, a previous study suggested the presence of tumor  |
| 341 | heterogeneity in FC based on aCGH (26).                                                   |
| 342 | According to the 2017 Bethesda System for Reporting Thyroid Cytology, in the              |
| 343 | cases of category III or IV, molecular testing is recommended to obtain further           |
| 344 | diagnostic information as usual management. Several molecular techniques were             |
| 345 | reportedly proposed for the preoperative diagnosis of FTs (5-7), but there is no critical |
| 346 | method that can clearly distinguish between benign tumors and malignancy. Although        |
| 347 | there are several publications analyzing differences in CNAs among FTs by aCGH (25-       |
| 348 | 32), to the best of our knowledge, any specific features that can distinguish FA or FC,   |
| 349 | which have been practically utilized, have not yet been identified. It has been reported  |
| 350 | that the gene-expression classifier Afirma® Thyroid FNA Analysis is practically           |
| 351 | available for the preoperative risk assessment of thyroid nodules with indeterminate      |
| 352 | FNAC (33). This diagnostic test is based on a microarray gene-expression assay            |
| 353 | measuring the expression of 167 genes using FNAC samples and was found to correctly       |
| 354 | identify 78 of 85 nodules as suspicious for malignancy (92% sensitivity), with a          |

| 355 | specificity of 52% among 265 cytologically-indeterminate nodules (33). For nodules         |
|-----|--------------------------------------------------------------------------------------------|
| 356 | classified as FN/SFN, the sensitivity was 90% and the specificity was 49%, suggesting      |
| 357 | difficulties associated with predicting benign FT correctly using this assay (33). More    |
| 358 | recently, the next-generation sequencing (NGS)-based ThyroSeq® using FNAC                  |
| 359 | samples was also made available (34). The ThyroSeq v2.1 panel detects known thyroid        |
| 360 | cancer-associated molecular alterations including 14 genetic point mutations and 42        |
| 361 | types of fusion genes (34). By analyzing 462 AUS/FLUS nodules of thyroid follicular        |
| 362 | cells, this test revealed 31 (6.7%) were positive for mutations. Among them, 26 (84%)      |
| 363 | were surgically removed and 20 (77%) malignant and six (23%) benign lesions were           |
| 364 | histologically confirmed. Based on the results, all 20 malignant nodules were PC           |
| 365 | including 18 follicular variants. The authors finally concluded that ThyroSeq v2.1 was     |
| 366 | able to classify 20 of 22 cancers correctly, showing a sensitivity of 90.9%, a specificity |
| 367 | of 92.1%, a positive predictive value of 76.9%, and a negative predictive value of         |
| 368 | 97.2%, with an overall accuracy of 91.8%. Thus, although the accuracy of molecular         |
| 369 | assays using FNAC samples has recently improved, it is still difficult to correctly        |

| 370 | predict FCs of Bethesda category III (AUS/FLUS) or IV (FN/SFN), even by using             |
|-----|-------------------------------------------------------------------------------------------|
| 371 | modern techniques, and thus these methodologies require further improvements.             |
| 372 | In summary, this retrospective study suggests that the incidence of high DDR-type         |
| 373 | 53BP1 immunoreactivity in FTs could be an attractive candidate biomarker to               |
| 374 | distinguish FC from FA. Indeed, when we adopted 3.1% as a cut-off value for the           |
| 375 | incidence of high DDR-type, this test could differentiate FC or FA among 69 FFPE FT       |
| 376 | samples with a sensitivity of 90.5% and a specificity of 77.8%. Although it is limited by |
| 377 | the lower specificity, which means that a significant fraction of FA is not               |
| 378 | distinguishable, we propose that IF analysis of 53BP1 expression could represent a        |
| 379 | novel diagnostic method to estimate the malignant potential of thyroid FTs based on       |
| 380 | post-operative FFPE samples. Because 53BP1 NF reflect spontaneously occurring DNA         |
| 381 | DSBs, we hypothesize that the incidence of these foci can represent the level of GIN in   |
| 382 | tumor cells. IF analysis is associated with much lower cost and is technically easier     |
| 383 | compared to microarray gene-expression assays or NGS assays; it can also be used with     |
| 384 | both FFPE and FNAC samples. Thus, IF analysis of 53BP1 expression will not only be        |
| 385 | an auxiliary histologic technique to accurately diagnose FTs but also a novel technique   |

| 386 | to make preoperative diagnoses based on FNAC from the invasive front or subcapsular    |
|-----|----------------------------------------------------------------------------------------|
| 387 | portion of FTs. Further studies using cytologic specimens are required to confirm this |
| 388 | notion in the near future.                                                             |
| 389 |                                                                                        |
| 390 | Acknowledgements                                                                       |
| 391 | This work was supported in part through the Atomic Bomb Disease Institute,             |
| 392 | Nagasaki University, by a Grant-in-Aid for Scientific Research from the Japanese       |
| 393 | Ministry of Education, Science, Sports and Culture (No. 24590414, No. 26461951), and   |
| 394 | by the Program of the Network-Type Joint Usage/Research Center for Radiation           |
| 395 | Disaster Medical Science.                                                              |
| 396 |                                                                                        |
| 397 | Author Disclosure Statement                                                            |

**398** The authors have stated that they have no conflicts of interest.

#### **399 References**

- 400 1. Hemmer S, Wasenius VM, Knuutila S, Joensuu H, Franssila K 1998 Comparison of
- 401 benign and malignant follicular thyroid tumours by comparative genomic
- 402 hybridization. Br J Cancer **78**:1012–1017.
- 403 2. McHenry CR, Phitayakorn R 2011 Follicular adenoma and carcinoma of the
- 404 thyroid gland. Oncologist **16**:585–593.
- 405 3. Suster S 2006 Thyroid tumors with a follicular growth pattern: problems in
- differential diagnosis. Arch Pathol Lab Med **130**:984–988.
- 407 4. Cibas ES, Ali SZ 2009 The Bethesda System for Reporting Thyroid Cytopathology.
- 408 Thyroid **19**:1159–1165.
- 409 5. Sobrinho-Simões M, Preto A, Rocha AS, Castro P, Máximo V, Fonseca E, Soares P
- 410 2005 Molecular pathology of well-differentiated thyroid carcinomas. Virchows Arch
- **411 447**:787–793.
- 412 6. Foukakis T, Gusnanto A, Au AY, Höög A, Lui WO, Larsson C, Wallin G,
- 413 Zedenius J 2007 A PCR-based expression signature of malignancy in
- 414 follicular thyroid tumors. Endocr Relat Cancer 14:381–391.

| 415 | 7.  | Nagar S, Ahmed S, Peeples C, Urban N, Boura J, Thibodeau B, Akervall J, Wilson       |
|-----|-----|--------------------------------------------------------------------------------------|
| 416 |     | G, Long G, Czako P 2014 Evaluation of genetic biomarker for distinguishing benign    |
| 417 |     | from malignant thyroid neoplasms. Am J Surg 207:596–601.                             |
| 418 | 8.  | Nakashima M, Suzuki K, Meirmanov S, Naruke Y, Matsuu-Matsuyama M, Shichijo           |
| 419 |     | K, Saenko V, Kondo H, Hayashi T, Ito M, Yamashita S, Sekine I 2008 Foci formation    |
| 420 |     | of p53-binding protein 1 in thyroid tumors: activation of genomic instability during |
| 421 |     | thyroid carcinogenesis. Int J Cancer 122:1082–1088.                                  |
| 422 | 9.  | Naruke Y, Nakashima M, Suzuki K, Matsuu-Matsuyama M, Shichijo K, Kondo H,            |
| 423 |     | Sekine I 2008 Alteration of p53-binding protein 1 expression during skin             |
| 424 |     | carcinogenesis: Association with genomic instability. Cancer Sci 99:946-951.         |
| 425 | 10. | Matusda K, Miura S, Kurashige T, Suzuki K, Kondo H, Ihara M, Nakajima H,             |
| 426 |     | Masuzaki H, Nakashima M 2011 Significance of p53-binding protein 1 nuclear foci      |
| 427 |     | in uterine cervical lesions: endogenous DNA double strand breaks and genomic         |
| 428 |     | instability during carcinogenesis. Histopathology <b>59</b> :441–451.                |
| 429 | 11. | Wang B, Matsuoka S, Carpenter PB, Elledge SJ 2002 53BP1, a mediator of the DNA       |
| 430 |     | damage checkpoint. Science 298:1435–1438.                                            |

| 431 | 12. | Schultz LB, Chehab NH, Malikzay A, Halazonetis TD 2000 p53 binding protein 1                 |
|-----|-----|----------------------------------------------------------------------------------------------|
| 432 |     | (53BP1) is an early participant in the cellular response to DNA double-strand breaks.        |
| 433 |     | J Cell Biol <b>151</b> :1381–1390.                                                           |
| 434 | 13. | Negrini S, Gorgoulis VG, Halazonetis TD 2010 Genomic instability-an evolving                 |
| 435 |     | hallmark of cancer. Nat Rev Mol Cell Biol 11:220–228.                                        |
| 436 | 14. | Mondello C, Smirnova A, Giulotto E 2008 Gene amplification, radiation sensitivity            |
| 437 |     | and DNA double-strand breaks. Mutat Res 704:29–37.                                           |
| 438 | 15. | Bunting SF, Callén E, Wong N, Chen H-T, Polato F, Gunn A, Bothmer A, Feldhahn                |
| 439 |     | N, Fernandez-Capetillo O, Cao L, Xu X, Deng CX, Finkel T, Nussenzweig M, Stark               |
| 440 |     | JM, Nussenzweig A 2010 53BP1 inhibits homologous recombination in Brca1-                     |
| 441 |     | deficient cells by blocking resection of DNA breaks. Cell 141: 243-254.                      |
| 442 | 16. | Cao L, Xu X, Bunting SF, Liu J, Wang R-H, Cao LL, Wu JJ, Peng T-N, Chen J,                   |
| 443 |     | Nussenzweig A, Deng CX, Finkel T 2009 A selective requirement for 53BP1 in the               |
| 444 |     | biological response to genomic instability induced by Brca1 deficiency. Mol Cell <b>35</b> : |
| 445 |     | 534–541.                                                                                     |

446 17. Chapman JR, Taylor MR, Boulton SJ. Playing the end game 2012 DNA double-

strand break repair pathway choice. Mol Cell **47**:497–510.

- 448 18. Kakarougkas A, Ismail A, Klement K, Goodarzi AA, Conrad S, Freire R, Shibata A,
- 449 Lobrich M, Jeggo PA 2013 Opposing roles for 53BP1 during homologous
- 450 recombination. Nucleic Acids Res **41**:9719–9731.
- 451 19. Zimmermann M, de Lange T 2014 53BP1: pro choice in DNA repair. Trends Cell
- **452** Biol **24**:108–117.
- 453 20. Suzuki K, Yokoyama S, Waseda S, Kodama S, Watanabe M 2003 Delayed
  454 reactivation of p53 in the progeny of cells surviving ionizing radiation. Cancer Res
  455 63:936–941.
- 456 21. Oikawa M, Yoshiura K, Kondo H, Miura S, Nagayasu T, Nakashima M 2011
- 457 Significance of genomic instability in breast cancer in atomic bomb survivors:
- 458 analysis of microarray-comparative genomic hybridization. Radiat Oncol **6**:168.
- 459 22. Kallioniemi OP, Kallioniemi A, Piper J, Isola J, Waldman FM, Gray JW, Pinkel D
- 460 1994 Optimizing comparative genomic hybridization for analysis of DNA sequence
- 461 copy number changes in solid tumors. Genes Chromosomes Cancer 10:231–243.

| 462 | 23. | Mitelman F, Johansson B, Mertens F 2004 Fusion genes and rearranged genes as a     |
|-----|-----|------------------------------------------------------------------------------------|
| 463 |     | linear function of chromosome aberrations in cancer. Nat Genet <b>36</b> :331–334. |
| 464 | 24. | Roque L, Rodrigues R, Pinto A, Moura-Nunes V, Soares J 2003 Chromosome             |
| 465 |     | imbalances in thyroid follicular neoplasms: a comparison between                   |
| 466 |     | follicular adenomas and carcinomas. Genes Chromosomes Cancer <b>36</b> :292–302.   |
| 467 | 25. | Qureshi AA, Collins VP, Jani P 2013 Genomic differences in benign and malignant    |
| 468 |     | follicular thyroid tumours using 1-Mb array-comparative genomic hybridisation. Eur |
| 469 |     | Arch Otorhinolaryngol 270:325–335.                                                 |
| 470 | 26. | Da Silva L, James D, Simpson PT, Walker D, Vargas AC, Jayanthan J, Lakhani         |
| 471 |     | SR, McNicol AM 2011 Tumor heterogeneity in a follicular carcinoma of thyroid: a    |
| 472 |     | study by comparative genomic hybridization. Endocr Pathol 22:103–107.              |
| 473 | 27. | Hemmer S, Wasenius VM, Knuutila S, Joensuu H, Franssila K 1998 Comparison of       |
| 474 |     | benign and malignant follicular thyroid tumours by comparative genomic             |
| 475 |     | hybridization. Br J Cancer 78:1012–1017.                                           |
| 476 | 28. | Hemmer S, Wasenius VM, Knuutila S, Franssila K, Joensuu H 1999 DNA copy            |
| 477 |     | number changes in thyroid carcinoma. Am J Pathol 154:1539–1547.                    |

| 478 | 29. | Frisk T, Kytölä S, Wallin G, Zedenius J, Larsson C 1999 Low frequency of     |
|-----|-----|------------------------------------------------------------------------------|
| 479 |     | numerical chromosomal aberrations in follicular thyroid tumors detected      |
| 480 |     | by comparative genomic hybridization. Genes Chromosomes Cancer 25:349–353.   |
| 481 | 30. | Roque L, Rodrigues R, Pinto A, Moura-Nunes V, Soares J 2003 Chromosome       |
| 482 |     | imbalances in thyroid follicular neoplasms: a comparison between             |
| 483 |     | follicular adenomas and carcinomas. Genes Chromosomes Cancer 36:292-302.     |
| 484 | 31. | Rodrigues RF, Roque L, Rosa-Santos J, Cid O, Soares J 2004 Chromosomal       |
| 485 |     | imbalances associated with anaplastic transformation of follicular thyroid   |
| 486 |     | carcinomas. Br J Cancer <b>90</b> :492–496.                                  |
| 487 | 32. | Castro P, Eknaes M, Teixeira MR, Danielsen HE, Soares P, Lothe RA, Sobrinho- |
| 488 |     | Simões M 2005 Adenomas and follicular carcinomas of the thyroid display two  |
| 489 |     | major patterns of chromosomal changes. J Pathol 206:305–311.                 |
| 490 | 33. | Alexander EK, Kennedy GC, Baloch ZW, Cibas ES, Chudova D, Diggans J,         |
| 491 |     | Friedman L, Kloos RT, LiVolsi VA, Mandel SJ, Raab SS, Rosai J, Steward DL,   |
| 492 |     | Walsh PS, Wilde JI, Zeiger MA, Lanman RB, Haugen BR 2012 Preoperative        |

| 493 | diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med    |
|-----|----------------------------------------------------------------------------------|
| 494 | <b>367</b> :705–715.                                                             |
| 495 | 34. Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL, Gooding   |
| 496 | WE, LeBeau SO, Ohori NP, Seethala RR, Tublin ME, Yip L, Nikiforova MN 2015       |
| 497 | Impact of the Multi-Gene ThyroSeq next-generation sequencing assay on cancer     |
| 498 | diagnosis in thyroid nodules with atypia of undetermined significance/follicular |
| 499 | lesion of undetermined significance cytology. Thyroid <b>25</b> :1217–1223.      |

### 1 Figure legends

| 2  | Fig. 1. Definition of anatomic sites of follicular tumors (A) and types of p53-binding    |
|----|-------------------------------------------------------------------------------------------|
| 3  | protein 1 (53BP1) immunoreactivity (B) in this study. (A) The subcapsule was defined      |
| 4  | as an area within 2 mm of the inner line of the capsule and the center comprised an area  |
| 5  | more than 2 mm from the inner line of the capsule of tumors. (B) NF: nuclear foci;        |
| 6  | DDR: DNA damage response.                                                                 |
| 7  |                                                                                           |
| 8  | Fig. 2. Representative images of immunofluorescence analysis of p53-binding protein 1     |
| 9  | (53BP1) expression in a follicular tumor. The incidence of 53BP1 nuclear foci was         |
| 10 | higher with invasion and in subcapsular areas compared to that in the center of the       |
| 11 | tumor or non-tumor thyroid.                                                               |
| 12 |                                                                                           |
| 13 | Fig. 3. Immunofluorescence analysis of p53-binding protein 1 (53BP1) expression in        |
| 14 | follicular tumors of the thyroid. The incidence of 53BP1 nuclear foci in follicular cells |
| 15 | was increasingly observed with follicular tumor progression based on the following        |

| 16 | order: normal follicle (A), adenoma (B), minimally invasive carcinoma (C), widely          |
|----|--------------------------------------------------------------------------------------------|
| 17 | invasive carcinoma ( <b>D</b> ).                                                           |
| 18 |                                                                                            |
| 19 | Fig. 4. Comparison of median incidences of follicular cells expressing p53-binding         |
| 20 | protein 1 (53BP1) nuclear foci (NF) among follicular tumors (FTs) of the thyroid. The      |
| 21 | incidence of 53BP1 NF, which was measured in the subcapsular area of tumors,               |
| 22 | significantly ( $p < 0.001$ ) increased in the order of follicular adenoma (FA), minimally |
| 23 | invasive follicular carcinoma (MFC), and widely invasive follicular carcinoma (WFC).       |
| 24 |                                                                                            |
| 25 | Fig. 5. Comparison of median incidences of follicular cells expressing the high DNA        |
| 26 | damage response (DDR)-type of p53-binding protein 1 (53BP1) among follicular               |
| 27 | tumors (FTs) of the thyroid. The incidence of high DDR-type 53BP1 expression, which        |
| 28 | was measured in the subcapsule areas of tumors, significantly ( $p < 0.001$ ) increased in |
| 29 | the order of follicular adenoma (FA), minimally invasive follicular carcinoma (MFC),       |
| 30 | and widely invasive follicular carcinoma (WFC). Upon adopting a 3.1% cut-off value         |

| 31 | for the incidence of the high DDR-type, this model could differentiate FC or FA among   |
|----|-----------------------------------------------------------------------------------------|
| 32 | 69 FT cases with a sensitivity of 90.5% and a specificity of 77.8%.                     |
| 33 |                                                                                         |
| 34 | Fig. 6. Immunofluorescence analysis of p53-binding protein 1 (53BP1) expression in      |
| 35 | irradiated rat thyroid tissues to detect DNA double strand breaks (DSBs) using          |
| 36 | formalin-fixed paraffin-embedded sections. No 53BP1 nuclear foci (NF) were observed     |
| 37 | in non-irradiated thyroid tissues, whereas the number of NF per cell was increased with |
| 38 | irradiation in a dose-dependent manner.                                                 |
| 39 |                                                                                         |
| 40 | Fig. 7. Comparison of the mean total number of copy number aberrations (CNAs) by        |
| 41 | array comparative genomic hybridization among follicular tumors (FTs) of the thyroid.   |
| 42 | No significant differences in CNAs were observed among histologic types of FTs          |
| 43 | including follicular adenoma (FA), minimally invasive follicular carcinoma (MFC), and   |
| 44 | widely invasive follicular carcinoma (WFC) ( $p = 0.656$ ).                             |
| 45 |                                                                                         |

| 46 | Fig. 8. Diagram of the correlation between total number of copy number aberrations           |
|----|----------------------------------------------------------------------------------------------|
| 47 | (CNAs), based on array comparative genomic hybridization, and the incidence of tumor         |
| 48 | cells expressing p53-binding protein 1 (53BP1) nuclear foci (NF) in follicular tumors        |
| 49 | (FTs). No significant correlation between the number of CNAs and the expression of           |
| 50 | 53BP1 NF or the high DNA damage response (DDR)-type was observed in FTs                      |
| 51 | including follicular adenoma (FA), minimally invasive follicular carcinoma (MFC), and        |
| 52 | widely invasive follicular carcinoma (WFC) ( $p = 0.226$ and 0.779, respectively).           |
| 53 |                                                                                              |
| 54 | Supplementary Figure. Co-localization of 53BP1 (green) and γH2AX (red) nuclear               |
| 55 | foci in follicular carcinoma (upper and middle panels) and in rat thyroid follicular cells   |
| 56 | 2 h after 4-Gy irradiation (lower panels), as assessed by double-label                       |
| 57 | immunofluorescence. The scale bar indicates 20 $\mu$ m. The scale bar in the inset indicates |
| 99 | 2 μ                                                                                          |



В

Α











### p<0.001 by Jonckheere-Tapstra test







