1 Short-Form Article

- $\mathbf{2}$
- 3 Title
- 4 In vitro activity of lascufloxacin against Streptococcus pneumoniae with mutations in
- 5 the quinolone resistance-determining regions (QRDRs)
- 6

7 Authors

- 8 Mika Murata^{a, b}
- 9 Kosuke Kosai^a
- 10 Shunsuke Yamauchi^a
- 11 Daisuke Sasaki^a
- 12 Norihito Kaku^b
- 13 Naoki Uno^b
- 14 Yoshitomo Morinaga^b
- 15 Hiroo Hasegawa^a
- 16 Taiga Miyazaki^c
- 17 Koichi Izumikawa^c
- 18 Hiroshi Mukae^d
- 19 Katsunori Yanagihara^b
- 20

21 Affiliations

- 22 aDepartment of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
- ²³ ^bDepartment of Laboratory Medicine, Nagasaki University Graduate School of
- 24 Biomedical Sciences, Nagasaki, Japan
- 25 °Department of Infectious Diseases, Nagasaki University Graduate School of
- 26 Biomedical Sciences, Nagasaki, Japan
- 27 ^dDepartment of Respiratory Medicine, Nagasaki University Graduate School of
- 28 Biomedical Sciences, Nagasaki, Japan
- 29

30 Correspondence

- 31 Kosuke Kosai, MD, PhD
- 32 Department of Laboratory Medicine, Nagasaki University Hospital
- 33 1-7-1 Sakamoto, Nagasaki, Nagasaki 852-8501, Japan
- 34 Tel: +81-95-819-7574; Fax: +81-95-819-7422
- 35 E-mail: k-kosai@nagasaki-u.ac.jp
- 36

Running title

38 Activity of lascufloxacin against pneumococcal mutants

39

40 Abstract

41	Lascufloxacin showed potent activity against Streptococcus pneumoniae with GyrA or
42	ParC mutation (first-step mutants). The frequency to select resistant strains tended to be
43	lower in lascufloxacin than in levofloxacin and garenoxacin after drug exposure of
44	first-step mutants, whereas that was similar in the comparison between lascufloxacin
45	and moxifloxacin. The MIC increase was smaller for lascufloxacin than levofloxacin,
46	garenoxacin, and moxifloxacin when clinical strains with only ParC mutation were
47	exposed to the corresponding drug.

48

49 Key words: lascufloxacin, *Streptococcus pneumoniae*, fluoroquinolone resistance

50 Manuscript

Fluoroquinolones inhibit DNA synthesis by binding to DNA gyrase (GyrA, GyrB) and 51topoisomerase IV (ParC, ParE) in Streptococcus pneumoniae (1). Fluoroquinolone 5253resistance is usually due to gradual accumulation of GyrA and ParC mutations in the quinolone resistance-determining regions (QRDRs) (1, 2). Previously, we reported that 54either GyrA or ParC mutation (first-step) was detected in 20 (48.8%) of 41 susceptible 55strains with levofloxacin MICs of 1 or 2 µg/mL (3, 4). Several in vitro studies and a 56case report indicated that second-step mutants with both GyrA and ParC mutations 57could be selected on exposure of first-step mutants to fluoroquinolones (5-7). 58Lascufloxacin was newly developed by Kyorin Pharmaceutical Co., Ltd. (Tokyo, Japan) 59as a respiratory fluoroquinolone. We evaluated the in vitro activity of lascufloxacin 60 against S. pneumoniae, focusing on the selectivity of resistant strains after drug 61exposure of first-step mutants. 62

We used clinical isolates from patients in Japan between January 2006 and December 2008 for MIC measurement (3). The MICs were measured using the broth microdilution method with MIC plates customized by Eiken Chemical Co., Ltd. (Tokyo, Japan) according to the Clinical and Laboratory Standard Institute (CLSI) protocol. Susceptible strains with levofloxacin MICs of $\leq 2 \mu g/mL$ were chosen, and 33 clinical isolates were

68	included in this study. The MIC ₉₀ of lascufloxacin wa	us 0.12 μg/mL (Τ	Table 1). Mutations
69	in the QRDRs were detected by pyrosequencing. DN	JA was extracted	d using the boiling
70	method reported previously with minor modificat	ions (8). PCR	amplification for
71	pyrosequencing was performed according to the foll	owing profile: 4	4 minutes at 94°C,
72	50 cycles consisting of 15 s at 94°C, 15 s at 55°C	C, and 20 s at	72°C, with a final
73	extension step of 5 minutes at 72°C. Primers for gyr	A reverse and p	<i>arC</i> forward had a
74	5'-biotin label (Bio). PCR primers were	as follows:	gyrA forward,
75	5'-GAATGAATTGGGTGTGAC-3';	gyrA	reverse,
76	5'-Bio-ATACGTGCCTCGGTATAA-3';	parC	forward,
77	5'-Bio-GTTCAACGCCGTATTCTT-3';	parC	reverse,
78	5'-TGCCTCAGTATAACGCATAG-3' (9). We evaluate	ated the presence	e of mutations by
79	pyrosequencing using PyroMark ID (Biotage, Up	psala, Sweden)	according to the
80	manufacturer's instructions. Primers for pyrosequ	iencing were	as follows: gyrA,
81	5'-GGTAAATACCACCCACACGG-3'; parC, 5'-C'	TGTGACATAC	GAACCAT-3' (3,
82	10). Of the 33 strains, 14 strains (42.4%) had a mu	tation in ParC,	whereas no strains
83	with only GyrA mutation were found. The MICs of	lascufloxacin ar	nd levofloxacin for
84	first-step mutants were $0.06-0.12~\mu g/mL$ and $2~\mu g/m$	L, respectively.	
85	To determine the frequency of the appearance of res	istant strains aft	er fluoroquinolone

86	exposure, we used four clinical isolates (G21, G27, G39, and G11) selected from the
87	strains described above, and four laboratory strains (NF9884, CF9842, SF9863, and
88	GF9821) with a first-step QRDR mutation (11). IID553 (wild-type) was used as a parent
89	strain of the first-step laboratory strains. We measured the MICs of levofloxacin,
90	garenoxacin, moxifloxacin, and lascufloxacin using the agar dilution method according
91	to the CLSI protocol. Lascufloxacin and garenoxacin were provided by Kyorin
92	Pharmaceutical Co., Ltd., and levofloxacin and moxifloxacin were purchased from
93	Sigma-Aldrich Japan (Tokyo, Japan) and Tokyo Chemical Industry Co., Ltd. (Tokyo,
94	Japan), respectively. Bacteria were incubated at 35°C for 3 days on Mueller Hinton II
95	agar (Becton Dickinson, Franklin Lakes, NJ) with 5% defibrinated sheep blood (Nippon
96	Bio-Test Laboratories Inc., Tokyo, Japan) containing fluoroquinolones at 2×, 4×, 8×,
97	and 16×MICs. The frequency of the appearance of resistant strains was calculated as the
98	ratio of the number of colonies that appeared to that of bacteria inoculated (12). No
99	differences were observed in the frequency of the appearance of resistant strains when
100	the wild-type laboratory strain, IID553, was exposed to lascufloxacin, levofloxacin, and
101	garenoxacin. The similar result was seen in the comparisons between lascufloxacin and
102	moxifloxacin. Conversely, the frequencies of resistance to lascufloxacin tended to be
103	lower than those to levofloxacin and garenoxacin in both laboratory and clinical strains

104	with first-step mutations (Table 2a). Those to lascufloxacin were similar to those to
105	moxifloxacin (Table 2b). Additionally, although the MICs of levofloxacin, garenoxacin,
106	and moxifloxacin for strains selected after exposure of the clinical strains with only
107	ParC mutation to the corresponding drug were increased up to 16-, 32-, and 16-fold,
108	respectively, those of lascufloxacin were increased up to fourfold, compared with the
109	parent strains (Table 3a and Table 3b). These results indicated that lascufloxacin was
110	unlikely to result in the development of resistance in first-step mutants.
111	It was reported that gatifloxacin, clinafloxacin, and sitafloxacin, which inhibited both
112	DNA gyrase and topoisomerase IV, had lower propensities to select resistant strains (12
113	- 14). The slight increases in the MICs of lascufloxacin in selected second-step mutants
114	also suggested that lascufloxacin possessed dual target properties against both target
115	enzymes in first-step mutants. On the other hand, if resistant strains were selected on
116	exposure of clinical strains with only ParC mutation to the corresponding drug, the
117	increases in MICs of lascufloxacin were smaller than those of levofloxacin and
118	garenoxacin, and moxifloxacin. These observations suggested that lascufloxacin has
119	high potency against mutated DNA gyrase and topoisomerase IV. Taken together, the
120	stable activity of lascufloxacin against first- and second-step mutants of S. pneumoniae
121	was thought to be due to the dual target properties and inhibition of the mutated

122	enzymes. A recent study indicated that lascufloxacin showed strong activity against S.
123	pneumoniae, including fluoroquinolone-resistant strains, and enzymatic analysis
124	indicated that lascufloxacin showed potent inhibitory activities against DNA gyrase and
125	topoisomerase IV with mutation in Staphylococcus aureus as well as against those
126	without mutations (15). This report was consistent with our proposal regarding the
127	activity of lascufloxacin.
128	No additional mutations were observed in some of the strains selected by exposure to
129	fluoroquinolones (Table 3a and Table 3b 村田さんの結果確認). Although gradual
130	accumulation of GyrA and ParC mutations was the main cause of fluoroquinolone
131	resistance, the increases in MICs in those strains were thought to be due to other
132	mechanisms, such as GyrB and ParE mutations and overexpression of efflux pumps,
133	including PmrA and PatA/PatB ABC transporter (16, 17).
134	Lascufloxacin showed potent activity against first-step mutants. In addition,

135 lascufloxacin was unlikely to select resistant strains after drug exposure of first-step 136 mutants compared with levofloxacin and garenoxacin. The selectivity of resistant strains 137 from first-step mutants was similar in the comparison between lascufloxacin and 138 moxifloxacin. We cannot distinguish first-step mutants based on drug susceptibility 139 because they may be susceptible according to the current CLSI breakpoint MIC (≤ 2 µg/mL) for levofloxacin. Lascufloxacin would contribute to preventing the emergence
of resistance when treating pneumococcal infections in clinical settings. A clinical trial
is currently in progress in Japan, and further clinical studies will clarify the efficacy of
lascufloxacin against pneumococcal infection.

144 Acknowledgment

Reagents (lascufloxacin and garenoxacin), technical support, and funding were provided by Kyorin Pharmaceutical Co., Ltd. This work was partly presented as a poster at ASM Microbe 2016. This study was partially supported by the Health and Labour Sciences Research Grants from Ministry of Health, Labour and Welfare, Japan (H28-Shinkou-Ippan-003) and a grant for Research and development of diagnostic methods and therapies for antimicrobial resistant bacteria from Japan Agency for Medical Research and Development (AMED).

152 **References**

- Cornick JE, Bentley SD. 2012. *Streptococcus pneumoniae*: the evolution of antimicrobial resistance to beta-lactams, fluoroquinolones and macrolides. Microbes Infect 14:573-583.
- Brueggemann AB, Coffman SL, Rhomberg P, Huynh H, Almer L, Nilius A,
 Flamm R, Doern GV. 2002. Fluoroquinolone Resistance in *Streptococcus pneumoniae* in United States since 1994-1995. Antimicrob Agents Chemother
 46:680-688.
- Araki N, Yanagihara K, Matsukawa Y, Harada Y, Migiyama Y, Nagaoka K,
 Yamada K, Morinaga Y, Hasegawa H, Kohno S, Kamihira S. 2013. Molecular
 characterization of quinolone-insensitive *Streptococcus pneumoniae* isolates
 from Japanese patients. J Infect Chemother 19:356-359.
- 4. CLSI. 2014. Performance standards for antimicrobial susceptibility testing;
 twenty-fourth informational supplements. CLSI document M100-S24. Clinical
 and Laboratory Standards Institute Wayne, PA.
- 1675. Yamamoto K, Yanagihara K, Sugahara K, Imamura Y, Seki M, Izumikawa K, Kakeya H, Yamamoto Y, Hirakata Y, Kamihira S, Kohno S. 2009. In vitro 168activity of garenoxacin against Streptococcus pneumoniae mutants with 169 characterized resistance mechanisms. Antimicrob 170Agents Chemother 17153:3572-3575.
- Li X, Zhao X, Drlica K. 2002. Selection of *Streptococcus pneumoniae* Mutants
 Having Reduced Susceptibility to Moxifloxacin and Levofloxacin. Antimicrob
 Agents Chemother 46:522-524.
- 175 7. de Cueto M, Rodriguez JM, Soriano MJ, Lopez-Cerero L, Venero J, Pascual A.
 176 2008. Fatal levofloxacin failure in treatment of a bacteremic patient infected
 177 with *Streptococcus pneumoniae* with a preexisting parC mutation. J Clin
 178 Microbiol 46:1558-1560.
- Motoshima M, Yanagihara K, Morinaga Y, Matsuda J, Sugahara K, Yamada Y,
 Kohno S, Kamihira S. 2010. Genetic diagnosis of community-acquired MRSA:
 a multiplex real-time PCR method for Staphylococcal cassette chromosome mec
 typing and detecting toxin genes. Tohoku J Exp Med 220:165-170.
- 9. Fukushima KY, Hirakata Y, Sugahara K, Yanagihara K, Kondo A, Kohno S,
 Kamihira S. 2006. Rapid screening of topoisomerase gene mutations by a novel
 melting curve analysis method for early warning of fluoroquinolone-resistant *Streptococcus pneumoniae* emergence. J Clin Microbiol 44:4553-4558.

- 10. Davies TA, Yee YC, Goldschmidt R, Bush K, Sahm DF, Evangelista A. 2006.
 Infrequent occurrence of single mutations in topoisomerase IV and DNA gyrase
 genes among US levofloxacin-susceptible clinical isolates of *Streptococcus pneumoniae* from nine institutions (1999-2003). J Antimicrob Chemother
 57:437-442.
- 192 11. Fukuda H, Kishii R, Takei M, Hosaka M. 2001. Contributions of the 8-methoxy
 193 group of gatifloxacin to resistance selectivity, target preference, and antibacterial
 194 activity against *Streptococcus pneumoniae*. Antimicrob Agents Chemother 45:
 195 1649-1653.
- 196 12. Kishii R, Takei M, Fukuda H, Hayashi K, Hosaka M. 2003. Contribution of the
 197 8-methoxy group to the activity of gatifloxacin against type II topoisomerases of
 198 Streptococcus pneumoniae. Antimicrob Agents Chemother 47:77-81.
- 13. Okumura R, Hirata T, Onodera Y, Hoshino K, Otani T, Yamamoto T. 2008.
 Dual-targeting properties of the 3-aminopyrrolidyl quinolones, DC-159a and
 sitafloxacin, against DNA gyrase and topoisomerase IV: contribution to
 reducing in vitro emergence of quinolone-resistant *Streptococcus pneumoniae*. J
 Antimicrob Chemother 62:98-104.
- Pan XS, Fisher LM. 1998. DNA gyrase and topoisomerase IV are dual targets of
 clinafloxacin action in *Streptococcus pneumoniae*. Antimicrob Agents
 Chemother 42:2810-2816.
- 15. Kishii R, Yamaguchi Y, Takei M. 2017. *In vitro* activities and spectrum of the
 novel fluoroquinolone, lascufloxacin (KRP-AM1977). Antimicrob Agents
 Chemother doi:10.1128/AAC.00120-17.
- 210 16. Gill MJ, Brenwald NP, Wise R. 1999. Identification of an efflux pump gene,
 211 pmrA, associated with fluoroquinolone resistance in *Streptococcus pneumoniae*.
 212 Antimicrob Agents Chemother 43:187-189.
- 17. Baylay AJ, Piddock LJ. 2015. Clinically relevant fluoroquinolone resistance due
 to constitutive overexpression of the PatAB ABC transporter in *Streptococcus pneumoniae* is conferred by disruption of a transcriptional attenuator. J
 Antimicrob Chemother 70:670-679.

Drug	MIC range (µg/mL)	MIC50 (µg/mL)	MIC ₉₀ (µg/mL)
Lascufloxacin	0.06 - 0.12	0.12	0.12
Garenoxacin	0.03 - 0.25	0.12	0.12
Sitafloxacin	0.06 - 0.12	0.06	0.12
Moxifloxacin	0.12 - 0.5	0.25	0.5
Levofloxacin	1 – 2	2	2
Ciprofloxacin	1 - 8	4	4
Pazufloxacin	2 - 8	4	8

TABLE 1. MICs of 33 clinical isolates for seven fluoroquinolones

MICs were measured using the broth microdilution method.

Strain		QRDR mutation		Drug	MIC (µg/mL)	Frequency a	Frequency at the following drug concentration			
		ParC	GyrA			$2 \times MIC$	$4 \times MIC$	$8 \times MIC$	$16 \times MIC$	
Laboratory strains	IID553	None	None	Lascufloxacin	0.06	2.5×10^{-8}	n.d.	n.d.	n.d.	
				Levofloxacin	0.5	4.1×10 ⁻⁶	n.d.	n.d.	n.d.	
				Garenoxacin	0.03	1.9×10^{-6}	n.d.	n.d.	n.d.	
	NF9884	S79Y	None	Lascufloxacin	0.12	n.d.	n.d.	n.d.	n.d.	
				Levofloxacin	1	3.7×10^{-7}	1.5×10^{-7}	1.8×10^{-7}	3.2×10^{-8}	
				Garenoxacin	0.06	3.4×10^{-7}	7.0×10^{-8}	n.d.	n.d.	
	CF9842	D83N	None	Lascufloxacin	0.06	n.d.	n.d.	n.d.	n.d.	
				Levofloxacin	1	6.8×10^{-8}	1.3×10^{-8}	n.d.	n.d.	
				Garenoxacin	0.03	6.2×10^{-6}	2.6×10 ⁻⁸	n.d.	n.d.	
	SF9863	None	S81F	Lascufloxacin	0.06	8.5×10 ⁻⁶	9.6×10 ⁻⁷	n.d.	n.d.	
				Levofloxacin	1	8.5×10^{-6}	7.7×10^{-6}	3.3×10 ⁻⁶	n.d.	
				Garenoxacin	0.12	$>1.7 \times 10^{-5}$	2.2×10^{-7}	n.d.	n.d.	
	GF9821	None	S81Y	Lascufloxacin	0.06	6.8×10 ⁻⁸	n.d.	n.d.	n.d.	
				Levofloxacin	1	8.3×10^{-8}	1.1×10^{-7}	6.8×10 ⁻⁸	n.d.	
				Garenoxacin	0.12	8.5×10^{-6}	n.d.	n.d.	n.d.	
Clinical strains	G21	S79F	None	Lascufloxacin	0.12	6.3×10 ⁻⁸	n.d.	n.d.	n.d.	
				Levofloxacin	2	1.4×10^{-7}	1.4×10^{-8}	n.d.	n.d.	
				Garenoxacin	0.06	1.9×10^{-7}	1.1×10^{-7}	n.d.	n.d.	
	G27	S79F	None	Lascufloxacin	0.12	8.1×10^{-8}	n.d.	n.d.	n.d.	

TABLE 2a. Frequencies of appearance of resistant strains after exposure of laboratory and clinical strains to lascufloxacin, levofloxacin, and garenoxacin

			Levofloxacin	1	4.6×10^{-7}	2.4×10^{-7}	2.3×10^{-8}	n.d.
			Garenoxacin	0.06	3.7×10^{-7}	1.0×10^{-7}	7.0×10^{-8}	n.d.
G39	D83V	None	Lascufloxacin	0.12	n.d.	n.d.	n.d.	n.d.
			Levofloxacin	2	n.d.	n.d.	n.d.	n.d.
			Garenoxacin	0.06	1.2×10^{-8}	5.8×10 ⁻⁹	n.d.	n.d.
G11	D83Y	None	Lascufloxacin	0.12	n.d.	n.d.	n.d.	n.d.
			Levofloxacin	2	3.7×10^{-8}	n.d.	n.d.	n.d.
			Garenoxacin	0.06	1.3×10^{-7}	3.7×10 ⁻⁸	n.d.	n.d.

TABLE 2b. Frequencies of appearance of resistant strains after exposure of laboratory and clinical strains to lascufloxacin and moxifloxacin

Strain		QRDR mu	utation	Drug	MIC (µg/mL)	Frequency at the following drug concentration			
		ParC	GyrA			$2 \times MIC$	$4 \times MIC$	$8 \times MIC$	$16 \times MIC$
Laboratory strains	IID553	None	None	Lascufloxacin	0.06	n.d.	n.d.	n.d.	n.d.
				Moxifloxacin	0.12	n.d.	n.d.	n.d.	n.d.
	NF9884	S79Y	None	Lascufloxacin	0.12	n.d.	n.d.	n.d.	n.d.
				Moxifloxacin	0.25	$7.0 imes 10^{-8}$	n.d.	n.d.	n.d.
	CF9842	D83N	None	Lascufloxacin	0.06	n.d.	n.d.	n.d.	n.d.
				Moxifloxacin	0.25	$8.1 imes 10^{-8}$	n.d.	n.d.	n.d.
	SF9863	None	S81F	Lascufloxacin	0.06	1.3×10^{-6}	n.d.	n.d.	n.d.
				Moxifloxacin	0.5	$2.2 imes 10^{-7}$	n.d.	n.d.	n.d.
	GF9821	None	S81Y	Lascufloxacin	0.06	$2.6 imes 10^{-7}$	n.d.	n.d.	n.d.

				Moxifloxacin	0.5	$2.0 imes10^{-7}$	n.d.	n.d.	n.d.	
Clinical strains	G21	S79F	None	Lascufloxacin	0.12	n.d.	n.d.	n.d.	n.d.	
				Moxifloxacin	0.25	n.d.	n.d.	n.d.	n.d.	
	G27	S79F	None	Lascufloxacin	0.12	n.d.	n.d.	n.d.	n.d.	
				Moxifloxacin	0.25	$1.3 imes 10^{-7}$	n.d.	n.d.	n.d.	
	G39	D83V	None	Lascufloxacin	0.12	n.d.	n.d.	n.d.	n.d.	
	_			Moxifloxacin	0.25	1.3×10^{-8}	n.d.	n.d.	n.d.	
	G11	D83Y	None	Lascufloxacin	0.12	n.d.	n.d.	n.d.	n.d.	
				Moxifloxacin	0.5	n.d.	n.d.	n.d.	n.d.	

QRDR, quinolone resistance-determining region; n.d., not detected.

MICs were measured using the agar dilution method.

Parent strain	Exposure		MIC (µg/mL)			QRDR mutation	1
	Drug	Concentration	Lascufloxacin	Levofloxacin	Garenoxacin	ParC	GyrA
G21	-	-	0.12	2	0.06	S79F	None
	Lascufloxacin	$2 \times MIC$	0.25	16	0.5	S79F	S81Y
	Levofloxacin	$2 \times and 4 \times MIC$	0.25	16	0.5	S79F	S81Y
	Garenoxacin	$2 \times MIC$	0.12	4	0.5	S79F	None
	Garenoxacin	$4 \times MIC$	0.25	16	0.5	S79F	S81Y
G27	-	-	0.12	2	0.06	S79F	None
	Lascufloxacin	$2 \times MIC$	0.25	32	1	S79F	E85K
	Lascufloxacin	$2 \times MIC$	0.5	16	0.06	S79F	None
	Levofloxacin	$4 \times MIC$	0.5	32	0.12	S79F	None
	Levofloxacin	$8 \times MIC$	0.25	32	1	S79F	E85K
	Garenoxacin	$2 \times MIC$	0.12	2	0.5	S79F	None
	Garenoxacin	$8 \times MIC$	0.25	32	2	S79F	E85K
G39	-	-	0.12	2	0.06	D83V	None
	Garenoxacin	$2 \times MIC$	0.12	8	0.5	D83V	E85K
	Garenoxacin	$4 \times MIC$	0.25	8	0.5	D83V	S81F
G11	-	-	0.12	2	0.12	D83Y	None
	Levofloxacin	$2 \times MIC$	0.25	16	1	D83Y	S81F
	Garenoxacin	$2 \times MIC$	0.12	2	0.5	D83Y	None
	Garenoxacin	$4 \times MIC$	0.25	16	1	D83Y	S81F

TABLE 3a. MICs of selected strains and additional mutation after exposure to lascufloxacin, levofloxacin, and garenoxacin

Parent strain	Exposure		MIC (µg/mL)		QRDR mutation			
	Drug	Concentration	Lascufloxacin	Levofloxacin	Garenoxacin	Moxifloxacin	ParC	GyrA
G27	-	-	0.12	2	0.06	0.25	S79F	None
	Moxifloxacin	$2 \times MIC$	0.25	16	0.12	2	S79F	None
	Moxifloxacin	$2 \times MIC$	0.25	16	1	4	S79F	S81F
G39	-	-	0.12	2	0.06	0.25	D83V	None
	Moxifloxacin	$2 \times MIC$	0.25	8	0.5	2	D83V	S81F

TABLE 3b. MICs of selected strains and additional mutation after exposure to moxifloxacin

QRDR, quinolone resistance-determining region.

MICs were measured using the agar dilution method.