Supporting Information

β-SELECTIVE D-PSICOFURANOSYLATION OF PYRIMIDINE BASES AND THIOLS

Atsushi Ueda,^{1,2} * Yuri Nishimura,¹ Yui Makura,² Masakazu Tanaka,² and

Jun'ichi Uenishi^{1,3}

¹ Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607-8412, Japan
² Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.

³ Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.

E-mail for A. Ueda: aueda@nagasaki-u.ac.jp

Table of Contents

1. <i>N</i> -Glycosidation of D-psicofuranose 15 with pyrimidine bases	S2
2. Spectroscopic data of compounds 21 and 23 ·····	S5
3. <i>O</i> -Glycosidation of D-psicofuranose 1 with 1-pentadecanol	S6

1. N-Glycosidation of D-psicofuranose 15 with pyrimidine bases

Table S1. N-Glycosidation of D-psicofuranose 15 with pyrimidine bases

1-[1,6-*O***-Benzoyl-3,4-***O***-(3-pentylidene)-β- and α-D-psicofuranosyl]uracil (S-1β and S-1α): According to the general procedure for the** *N***-glycosidation, a mixture of compounds S-1β and S-1α was obtained from 15** and uracil in 57% yield in a 8:1 ratio. Colorless syrup. Eluent for column: 40% EtOAc in *n*-hexane. $R_f = 0.18$ (40% EtOAc in *n*-hexane). ¹H NMR (500 MHz, CDCl₃) δ (β-anomer)¹: 8.76 (1H, br s, N*H*), 7.90–7.86 (2H, m), 7.86–7.81 (2H, m), 7.67 (1H, d, *J*_{5,6} = 8.3 Hz, H-6), 7.60–7.50 (2H, m), 7.46–7.35 (4H, m), 5.56 (1H, d, *J*_{3',4'} = 6.4 Hz, H-3'), 5.47 (1H, dd, *J*_{5,6} = 8.3, *J* = 1.9 Hz, H-5), 5.00 (1H, d, *J*_{1'a,1'b} = 12.3 Hz, H-1'a), 4.92 (1H, dd, *J*_{3',4'} = 6.4, *J*_{4',5'} = 2.2 Hz, H-4'), 4.86 (1H, dd, *J*_{6'a,6'b} = 12.7, *J*_{5',6'a} = 2.7 Hz, H-6'a), 4.38 (1H, dd, *J*_{6'a,6'b} = 12.7, *J*_{5',6'a} = 3.7 Hz, H-6'b), 1.98–1.85 (2H, m), 1.75–1.65 (2H, m), 1.08 (3H, t, *J* = 7.5 Hz), 0.94 (3H, t, *J* = 7.5 Hz); δ (α-anomer)¹: 8.98 (1H, br s, N*H*), 8.00–7.94 (2H, m), 7.94–7.90 (2H, m), 7.78 (1H, d, *J*_{5,6} = 8.3 Hz, H-6), 7.60–7.50 (2H, m), 7.46–7.35 (4H, m), 5.77 (1H, d, *J*_{5,6} = 8.3 Hz, H-5), 5.23 (1H, d, *J*_{3',4'} = 6.0 Hz, H-3'), 4.90–4.82 (3H, m), 4.58–4.53 (2H, m), 4.49–4.43 (1H, m), 1.75–1.65 (4H, m), 0.90–0.82 (6H, m). ¹³C NMR (125 MHz, CDCl₃) δ (β-anomer)¹: 165.7, 165.6, 163.0, 150.1, 140.5, 133.8, 133.3, 129.5 (4C), 129.1 (2C), 128.7 (2C), 128.5 (2C), 118.7, 101.0, 99.8, 86.5, 84.4, 81.2, 64.45, 64.41, 28.6, 27.6, 8.6, 8.3. IR (film): 2978, 1715, 1683, 1452 cm⁻¹. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₉H₃₀N₂O₉Na, 573.1849; found, 573.1876.

1-[1,6-O-Benzoyl-3,4-O-(3-pentylidene)- β - and α -D-psicofuranosyl]thymine (S-2 β and S-2 α): According to the general procedure for the N-glycosidation, a mixture of compounds S-2 β and S-2 α was obtained from 15 and thymine in 46% yield in a 9:1 ratio. Colorless syrup. Eluent for column: 40% EtOAc in *n*-hexane. $R_f = 0.16$ (40% EtOAc in *n*-hexane). ¹H NMR (500 MHz, CDCl₃) δ (β-anomer)¹: 8.39–8.23 (1H, m, NH), 7.89–7.79 (4H, m), 7.63–7.49 (2H, m), 7.43 (1H, d, J = 1.2 Hz, H-6), 7.47–7.32 (4H, m), 5.62 (1H, d, $J_{3',4'} = 6.4$ Hz, H-3'), 5.01 (1H, d, $J_{1'a,1'b} = 12.2$ Hz, H-1'a), 4.95 (1H, dd, $J_{3',4'} = 6.4$, $J_{4',5'} = 1.9$ Hz, H-4'), 4.85 (1H, ddd, $J_{5',6'b} = 3.9$, $J_{5',6'a} = 2.3$, $J_{4',5'} = 1.9$ Hz, H-5'), 4.82 (1H, d, $J_{1'a,1'b} = 12.2$ Hz, H-1'b), 4.73 (1H, dd, $J_{6'a,6'b} = 12.6$, $J_{5',6'a} = 2.3$ Hz, H-6'a), 4.28 (1H, dd, *J*_{6'a,6'b} = 12.6, *J*_{5',6'b} = 3.9 Hz, H-6'b), 1.95–1.85 (2H, m), 1.77–1.61 (2H, m), 1.58 (3H, d, J = 1.2 Hz, 5-CH₃), 1.07 (3H, t, J = 7.5 Hz), 0.94 (3H, t, J = 7.5 Hz); δ $(\alpha$ -anomer)¹: 8.62–8.49 (1H, m, NH), 8.01–7.96 (2H, m), 7.96–7.90 (2H, m), 7.63–7.49 (2H, m), 7.47–7.32 (5H, m), 5.23 (1H, d, $J_{3',4'} = 6.0$ Hz, H-3'), 4.91 (1H, d, $J_{1'a,1'b} = 11.5$ Hz, H-1'a), 4.88– 4.81 (2H, m), 4.58–4.52 (2H, m), 4.50–4.44 (1H, m), 1.96 (3H, d, J = 1.2 Hz, 5-CH₃), 1.77–1.61 (4H, m), 0.90–0.81 (6H, m). ¹³C NMR (125 MHz, CDCl₃) δ (β-anomer)¹: 165.54, 165.50, 163.3, 150.1, 136.5, 133.9, 133.3, 129.5 (2C), 129.3, 129.0 (2C), 128.9, 128.7 (2C), 128.4 (2C), 118.5, 109.3, 99.9, 86.4, 84.6, 81.3, 64.6, 64.4, 28.6, 27.6, 12.0, 8.6, 8.2. IR (film): 2978, 1722, 1717, 1674 cm⁻¹. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₃₀H₃₂N₂O₉Na, 587.2027; found, 587.2006.

 N^4 -Benzoyl-1-[1,6-O-benzoyl-3,4-O-(3-pentylidene)- β - and α -D-psicofuranosyl]cytosine (S-3 β and S-3 α): According to the general procedure for the *N*-glycosidation, a mixture of compounds S-3 β and S-3 α was obtained from 15 and N^4 -benzoylcytosine in 56% yield in a 8:1 ratio. Colorless

syrup. Eluent for column: 60% EtOAc in *n*-hexane. $R_f = 0.26$ (70% EtOAc in *n*-hexane). ¹H NMR (500 MHz, CDCl₃) δ (β -anomer)¹: 8.47 (1H, br s, NH), 8.10 (1H, d, $J_{5.6} = 7.4$ Hz, H-6), 7.87–7.83 (2H, m), 7.81 (1H, d, *J*_{5.6} = 7.4 Hz, H-5), 7.77–7.71 (2H, m), 7.65–7.58 (1H, m), 7.57–7.48 (3H, m), 7.44–7.35 (4H, m), 7.35–7.28 (3H, m), 5.65 (1H, d, $J_{3',4'}$ = 6.4 Hz, H-3'), 5.10 (1H, d, $J_{1'a,1'b}$ = 12.1 Hz, H-1'a), 5.05 (1H, d, $J_{1'a,1'b} = 12.1$ Hz, H-1'b), 4.93 (1H, dd, $J_{3',4'} = 6.4$, $J_{4',5'} = 2.1$ Hz, H-4'), 4.88 (1H, ddd, $J_{5',6'b} = 3.5$, $J_{5',6'a} = 2.3$, $J_{4',5'} = 2.1$ Hz, H-5'), 4.68 (1H, dd, $J_{6'a,6'b} = 12.7$, $J_{5',6'a} = 2.3$ Hz, H-6'a), 4.33 (1H, dd, $J_{6'a,6'b} = 12.7$, $J_{5',6'b} = 3.5$ Hz, H-6'b), 2.01–1.89 (2H, m), 1.81–1.67 (2H, m), 1.11 (3H, t, J = 7.5 Hz), 0.95 (3H, t, J = 7.5 Hz); δ (α -anomer)¹: 8.77 (br s, NH), 8.23 (1H, d, *J*_{5,6} = 7.6 Hz, H-5), 7.99–7.95 (2H, m), 7.95–7.23 (14H, m), 5.41 (1H, d, *J*_{3',4'} = 5.8 Hz, H-3'), 5.05 $(1H, d, J_{1'a,1'b} = 11.5 \text{ Hz}, H-1'a), 4.99 (1H, d, J_{1'a,1'b} = 11.5 \text{ Hz}, H-1'b), 4.90-4.86 (1H, m), 4.60-$ 4.55 (2H, m), 4.47 (1H, dd, *J*_{6'a,6'b} = 12.7, *J*_{5',6'b} = 7.4 Hz, H-6'b), 1.81–1.67 (2H, m), 1.66–1.55 (2H, m), 0.87 (3H, t, J = 7.7 Hz), 0.77 (3H, t, J = 7.4 Hz). ¹³C NMR (125 MHz, CDCl₃) δ (β-anomer)¹: 165.6, 165.5, 162.3, 154.8, 145.4, 133.3, 133.1, 133.0, 129.44 (2C), 129.41, 129.2 (2C), 128.9 (3C), 128.44 (2C), 128.40 (3C), 127.5 (3C), 118.5, 100.5, 95.7, 86.1, 84.6, 81.2, 64.7, 64.1, 28.6, 27.7, 8.6, 8.2. IR (KBr): 3310, 1719 cm⁻¹. HRMS (ESI) m/z: $[M+Na]^+$ calcd for C₃₆H₃₅N₃O₉Na, 676.2272; found, 676.2271.

Scheme S1. Deprotection of S-1 to diol 18

Compounds 18β and 18α were also obtained from S-1 under the similar condition described for the synthesis of 18 from 6 (73% yield for 18β).

2. Spectroscopic data of compounds 21 and 23

1,6-Di-*O*-**benzoyl-2,3-***O*-(**3**-**pentylidene**)- α -**D**-**psicofuranose** (**21**): Colorless syrup. $R_{\rm f} = 0.31$ (15% EtOAc in *n*-hexane). [α]²⁶_D +18.9 (*c* 0.89, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ : 7.72–7.60 (8H, m), 7.45–7.29 (12H, m), 4.57 (1H, d, $J_{3,4} = 4.5$ Hz, H-3), 4.08 (1H, ddd, $J_{4,OH} = 9.7$, $J_{4,5} = 8.8$, $J_{3,4} = 4.5$ Hz, H-4), 4.01 (1H, ddd, $J_{4,5} = 8.8$, $J_{5,6b} = 4.4$, $J_{5,6a} = 3.5$ Hz, H-5), 3.86 (1H, dd, $J_{6a,6b} = 11.3$, $J_{5,6a} = 3.5$ Hz, H-6a), 3.82 (1H, dd, $J_{6a,6b} = 11.3$, $J_{5,6b} = 4.4$ Hz, H-6b), 3.77 (1H, d, $J_{1a,1b} = 11.2$ Hz, H-1b), 2.28 (1H, d, $J_{4,OH} = 9.7$ Hz, OH), 1.86–1.75 (2H, m), 1.69–1.60 (2H, m), 1.03 (9H, s), 0.99 (3H, t, J = 7.5 Hz), 0.97 (9H, s), 0.84 (3H, t, J = 7.5 Hz). ¹³C NMR (125 MHz, CDCl₃) δ : 135.6 (4C), 133.2, 133.1, 132.8, 132.6, 129.80 (2C), 129.78 (2C), 129.63 (2C), 129.59 (2C), 127.79 (2C), 127.75 (2C), 127.65 (2C), 127.63 (2C), 117.0, 112.8, 82.0, 79.9, 72.8, 64.6, 63.5, 29.7, 29.5, 26.83 (3C), 26.76 (3C), 19.2, 19.1, 8.5, 8.2. IR (KBr): 3489, 2932, 2859 cm⁻¹. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₄₃H₅₆O₆Si₂Na, 747.3513; found, 747.3504.

Methyl 1,6-di-*O*-benzoyl-3,4-*O*-(3-pentylidene)-β-D-psicofuranoside (23): Colorless oil. $R_{\rm f} = 0.45$ (20% EtOAc in *n*-hexane). [α]²⁶_D +29.7 (*c* 1.04, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ: 8.06–7.97 (4H, m), 7.59–7.52 (2H, m), 7.43–7.35 (4H, m), 4.85 (1H, d, $J_{3,4} = 7.5$ Hz, H-3), 4.75 (1H, dd, $J_{3,4} = 7.5$, $J_{4,5} = 5.0$ Hz, H-4), 4.57 (1H, dd, $J_{6a,6b} = 12.0$, $J_{5,6a} = 3.7$ Hz, H-6a), 4.56 (1H, d, $J_{1a,1b} = 11.9$ Hz, H-1a), 4.48 (1H, dd, $J_{6a,6b} = 12.0$, $J_{5,6b} = 5.0$ Hz, H-6b), 4.40 (1H, ddd, $J_{4,5} = J_{5,6b} = 5.0$, $J_{5,6a} = 3.7$ Hz, H-5), 4.38 (1H, d, $J_{1a,1b} = 11.9$ Hz, H-1b), 3.48 (3H, s), 1.89 (2H, q, J = 7.5 Hz), 1.71–1.58 (2H, m), 1.00 (3H, t, J = 7.5 Hz), 0.90 (3H, t, J = 7.5 Hz). ¹³C NMR (125 MHz, CDCl₃) δ: 166.2, 165.9, 133.2, 133.1, 129.7 (2C), 129.64, 129.60 (2C), 129.57, 128.41 (2C), 128.38 (2C), 121.0, 103.5, 83.2, 81.1, 80.2, 64.0, 62.9, 49.4, 29.2, 29.0, 8.4, 8.2. IR (film): 2972, 2943, 1719 cm⁻¹. HRMS (DART) *m/z*: [M+NH₄]⁺ calcd for C₂₆H₃₄NO₈, 488.2284; found, 488.2293.

3. O-Glycosidation of D-psicofuranose 1 with 1-pentadecanol

Scheme S3. *O*-Glycosidation of 1 with 1-pentadecanol

1-Pentadecyl 1,6-di-*O*-benzoyl-3,4-*O*-isopropylidene- β -D-psicofuranoside (S-4): A mixture of 1 (103 mg, 0.154 mmol) and 1-pentadecanol (52.7 mg, 0.231 mmol) was predried azeotropically by coevaporation with dry toluene three times, which was further dried under reduced pressure over the presence of P₄O₁₀. The above mixture was dissolved in dry CH₂Cl₂ (3 mL), to which was added trimethylsilyl trifluoromethanesulfonate (41.8 μ L, 0.231 mmol) at -40 °C. The reaction was gradually warmed to 0 °C over 45 min. The reaction mixture was quenched with satd. aq. NaHCO₃ solution and extracted with CH₂Cl₂. The combined organic layers were washed with water and

brine, dried over Na₂SO₄, and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluted with 5% EtOAc in *n*-hexane to give **S-4** (88.2 mg, 89%) as a colorless oil. $R_{\rm f} = 0.77$ (30% EtOAc in *n*-hexane). $[\alpha]^{23}_{\rm D} -10.5$ (*c* 1.05, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ : 8.10–8.06 (4H, m), 7.61–7.55 (2H, m), 7.48–7.43 (4H, m), 4.85 (1H, dd, $J_{3,4} = 5.9$, $J_{4,5} = 1.5$ Hz, H-4), 4.73 (1H, d, $J_{1a,1b} = 11.9$ Hz, H-1a), 4.72 (1H, d, $J_{3,4} = 5.9$ Hz, H-3), 4.54 (1H, ddd, $J_{5,6b} = 7.3$, $J_{5,6a} = 6.8$, $J_{4,5} = 1.5$ Hz, H-4), 4.73 (1H, dd, $J_{6a,6b} = 11.0$, $J_{5,6b} = 7.3$ Hz, H-6b), 3.60 (1H, dt, J = 9.0, 6.4 Hz), 3.47 (1H, dt, J = 9.0, 7.0 Hz), 1.52 (3H, s), 1.50–1.42 (2H, m), 1.35 (3H, s), 1.25–1.14 (24H, m), 0.88 (3H, t, J = 6.7 Hz). ¹³C NMR (75 MHz, CDCl₃) δ : 166.0, 165.8, 133.1, 133.0, 129.9, 129.7, 129.7, 128.3, 128.3, 113.1, 108.9, 85.4, 84.0, 82.4, 65.2, 61.4, 59.7, 31.8, 29.6, 29.6, 29.5, 29.4, 29.3, 26.5, 26.1, 25.1, 22.6, 14.1. IR (film): 2925, 2853, 1726, 1602, 1452 cm⁻¹. MS (FAB) *m/z*: calcd for C₃₈H₅₄O₈Na, 661.3716; found, 661.3710.

NOTE

1. Assignment was performed from the spectrum of anomeric mixture.