Supporting Information

β-SELECTIVE D-PSICOFURANOSYLATION OF PYRIMIDINE BASES AND THIOLS

Atsushi Ueda, ${ }^{1,2}$ * Yuri Nishimura, ${ }^{1}$ Yui Makura, ${ }^{2}$ Masakazu Tanaka, ${ }^{2}$ and Jun'ichi Uenishi ${ }^{1,3}$

${ }^{1}$ Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607-8412, Japan
${ }^{2}$ Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
${ }^{3}$ Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.

E-mail for A. Ueda: aueda@nagasaki-u.ac.jp

Table of Contents

1. N-Glycosidation of D-psicofuranose 15 with pyrimidine bases S2

1. N-Glycosidation of D-psicofuranose 15 with pyrimidine bases

Table S1. N-Glycosidation of D-psicofuranose $\mathbf{1 5}$ with pyrimidine bases

Entry | Nucleophile | Product | Nuc | Time (d) | Yield (\%) | β / α ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

S-1
1-[1,6-O-Benzoyl-3,4-O-(3-pentylidene)- β - and α-D-psicofuranosyl]uracil (S-1 β and $\mathrm{S}-1 \alpha$): According to the general procedure for the N-glycosidation, a mixture of compounds $\mathbf{S} \mathbf{- 1} \beta$ and $\mathbf{S}-1 \boldsymbol{\alpha}$ was obtained from $\mathbf{1 5}$ and uracil in 57% yield in a 8:1 ratio. Colorless syrup. Eluent for column: 40% EtOAc in n-hexane. $R_{\mathrm{f}}=0.18\left(40 \%\right.$ EtOAc in n-hexane). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\beta \text {-anomer })^{1}: 8.76(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H), 7.90-7.86(2 \mathrm{H}, \mathrm{m}), 7.86-7.81(2 \mathrm{H}, \mathrm{m}), 7.67\left(1 \mathrm{H}, \mathrm{d}, J_{5,6}\right.$ $=8.3 \mathrm{~Hz}, \mathrm{H}-6), 7.60-7.50(2 \mathrm{H}, \mathrm{m}), 7.46-7.35(4 \mathrm{H}, \mathrm{m}), 5.56\left(1 \mathrm{H}, \mathrm{d}, J_{3^{\prime}, 4^{\prime}}=6.4 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.47(1 \mathrm{H}$, dd, $\left.J_{5,6}=8.3, J=1.9 \mathrm{~Hz}, \mathrm{H}-5\right), 5.00\left(1 \mathrm{H}, \mathrm{d}, J_{1}{ }^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}=12.3 \mathrm{~Hz}, \mathrm{H}-1\right.$ 'a $), 4.92\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}}=6.4, J_{4^{\prime}, 5}\right.$, $\left.=2.2 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 4.86\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}}=12.3 \mathrm{~Hz}, \mathrm{H}-1^{\prime} \mathrm{b}\right), 4.85\left(1 \mathrm{H}, \mathrm{ddd}, J_{5^{\prime}, 6^{\prime} \mathrm{b}}=3.7, J_{5^{\prime}, 6^{\prime} \mathrm{a}}=2.7, J_{4,5}{ }^{\prime}\right.$ $\left.=2.2 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 4.62\left(1 \mathrm{H}, \mathrm{dd}, J_{6^{\prime} \mathrm{a}^{\mathrm{a}} \mathrm{G}^{\prime} \mathrm{b}}=12.7, J_{5^{\prime}, 6^{\prime} \mathrm{a}}=2.7 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}\right), 4.38\left(1 \mathrm{H}, \mathrm{dd}, J_{6^{\prime} \mathrm{a}, 6^{\prime} \mathrm{b}}=12.7\right.$, $\left.J_{5^{\prime}, 6^{\prime} \mathrm{b}}=3.7 \mathrm{~Hz}, \mathrm{H}-6 ’ \mathrm{~b}\right), 1.98-1.85(2 \mathrm{H}, \mathrm{m}), 1.75-1.65(2 \mathrm{H}, \mathrm{m}), 1.08(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 0.94(3 \mathrm{H}, \mathrm{t}$, $J=7.5 \mathrm{~Hz}) ; \delta(\alpha \text {-anomer })^{1}: 8.98(1 \mathrm{H}, \mathrm{br}$ s, $\mathrm{N} H), 8.00-7.94(2 \mathrm{H}, \mathrm{m}), 7.94-7.90(2 \mathrm{H}, \mathrm{m}), 7.78(1 \mathrm{H}, \mathrm{d}$, $\left.J_{5,6}=8.3 \mathrm{~Hz}, \mathrm{H}-6\right), 7.60-7.50(2 \mathrm{H}, \mathrm{m}), 7.46-7.35(4 \mathrm{H}, \mathrm{m}), 5.77\left(1 \mathrm{H}, \mathrm{d}, J_{5,6}=8.3 \mathrm{~Hz}, \mathrm{H}-5\right), 5.23$ $\left(1 \mathrm{H}, \mathrm{d}, J_{3^{\prime}, 4^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.90-4.82(3 \mathrm{H}, \mathrm{m}), 4.58-4.53(2 \mathrm{H}, \mathrm{m}), 4.49-4.43(1 \mathrm{H}, \mathrm{m}), 1.75-1.65$
$(4 \mathrm{H}, \mathrm{m}), 0.90-0.82(6 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\beta \text {-anomer })^{1}: 165.7,165.6,163.0$, $150.1,140.5,133.8,133.3,129.5$ (4C), 129.1 (2C), 128.7 (2C), 128.5 (2C), 118.7, 101.0, 99.8, 86.5, 84.4, 81.2, 64.45, 64.41, 28.6, 27.6, 8.6, 8.3. IR (film): 2978, 1715, 1683, $1452 \mathrm{~cm}^{-1}$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Na}, 573.1849$; found, 573.1876.

1-[1,6-O-Benzoyl-3,4-O-(3-pentylidene)- β - and α-D-psicofuranosyl]thymine (S-2 β and S-2 α): According to the general procedure for the N-glycosidation, a mixture of compounds $\mathbf{S}-\mathbf{2} \beta$ and S-2 α was obtained from 15 and thymine in 46% yield in a 9:1 ratio. Colorless syrup. Eluent for column: 40% EtOAc in n-hexane. $R_{\mathrm{f}}=0.16$ (40% EtOAc in n-hexane). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta\left(\beta\right.$-anomer) ${ }^{1}: 8.39-8.23(1 \mathrm{H}, \mathrm{m}, \mathrm{N} H), 7.89-7.79(4 \mathrm{H}, \mathrm{m}), 7.63-7.49(2 \mathrm{H}, \mathrm{m}), 7.43(1 \mathrm{H}, \mathrm{d}$, $J=1.2 \mathrm{~Hz}, \mathrm{H}-6), 7.47-7.32(4 \mathrm{H}, \mathrm{m}), 5.62\left(1 \mathrm{H}, \mathrm{d}, J_{3^{\prime}, 4^{\prime}}=6.4 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.01\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}}=12.2\right.$ $\left.\mathrm{Hz}, \mathrm{H}-11^{\prime} \mathrm{a}\right), 4.95\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}}=6.4, J_{4^{\prime}, 5^{\prime}}=1.9 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 4.85\left(1 \mathrm{H}, \mathrm{ddd}, J_{5^{\prime}, 6^{\circ} \mathrm{b}}=3.9, J_{5^{\prime}, 6^{\prime} \mathrm{a}}=2.3\right.$, $\left.J_{4^{\prime}, 5}=1.9 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 4.82\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}}=12.2 \mathrm{~Hz}, \mathrm{H}-1{ }^{\prime} \mathrm{b}\right), 4.73\left(1 \mathrm{H}, \mathrm{dd}, J_{6^{\prime} \mathrm{a}, 6^{\prime} \mathrm{b}}=12.6, J_{5^{\prime}, 6^{\prime} \mathrm{a}}=2.3\right.$ $\mathrm{Hz}, \mathrm{H}-6$ 'a $), 4.28\left(1 \mathrm{H}, \mathrm{dd}, J_{6^{\prime} \mathrm{a}, 6^{\circ} \mathrm{b}}=12.6, J_{5^{\prime}, 6^{\circ} \mathrm{b}}=3.9 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{b}\right), 1.95-1.85(2 \mathrm{H}, \mathrm{m}), 1.77-1.61(2 \mathrm{H}$, $\mathrm{m}), 1.58\left(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}, 5-\mathrm{CH}_{3}\right), 1.07(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 0.94(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}) ; \delta$ $(\alpha \text {-anomer })^{1}: 8.62-8.49(1 \mathrm{H}, \mathrm{m}, \mathrm{N} H), 8.01-7.96(2 \mathrm{H}, \mathrm{m}), 7.96-7.90(2 \mathrm{H}, \mathrm{m}), 7.63-7.49(2 \mathrm{H}, \mathrm{m})$, $7.47-7.32(5 H, m), 5.23\left(1 H, d, J_{3^{\prime}, 4}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.91\left(1 \mathrm{H}, \mathrm{d}, J_{1}{ }^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}=11.5 \mathrm{~Hz}, \mathrm{H}-1\right.$ 'a) , $4.88-$ $4.81(2 \mathrm{H}, \mathrm{m}), 4.58-4.52(2 \mathrm{H}, \mathrm{m}), 4.50-4.44(1 \mathrm{H}, \mathrm{m}), 1.96\left(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}, 5-\mathrm{CH}_{3}\right), 1.77-1.61$ $(4 \mathrm{H}, \mathrm{m}), 0.90-0.81(6 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\beta \text {-anomer })^{1}: 165.54,165.50,163.3$, $150.1,136.5,133.9,133.3,129.5$ (2C), 129.3, 129.0 (2C), 128.9, 128.7 (2C), 128.4 (2C), 118.5, 109.3, 99.9, 86.4, 84.6, 81.3, 64.6, 64.4, 28.6, 27.6, 12.0, 8.6, 8.2. IR (film): 2978, 1722, 1717, 1674 cm^{-1}. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}{ }_{9} \mathrm{Na}, 587.2027$; found, 587.2006.

N^{4}-Benzoyl-1-[1,6-O-benzoyl-3,4-O-(3-pentylidene)- β - and α-D-psicofuranosyl]cytosine (S-3 β and $\mathrm{S}-3 \alpha$): According to the general procedure for the N-glycosidation, a mixture of compounds S-3 $\boldsymbol{\beta}$ and $\mathbf{S}-\mathbf{3} \boldsymbol{\alpha}$ was obtained from $\mathbf{1 5}$ and N^{4}-benzoylcytosine in 56% yield in a 8:1 ratio. Colorless
syrup. Eluent for column: 60% EtOAc in n-hexane. $R_{\mathrm{f}}=0.26\left(70 \% \mathrm{EtOAc}\right.$ in n-hexane). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\beta \text {-anomer })^{1}: 8.47(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H), 8.10\left(1 \mathrm{H}, \mathrm{d}, J_{5,6}=7.4 \mathrm{~Hz}, \mathrm{H}-6\right), 7.87-7.83$ $(2 \mathrm{H}, \mathrm{m}), 7.81\left(1 \mathrm{H}, \mathrm{d}, J_{5,6}=7.4 \mathrm{~Hz}, \mathrm{H}-5\right), 7.77-7.71(2 \mathrm{H}, \mathrm{m}), 7.65-7.58(1 \mathrm{H}, \mathrm{m}), 7.57-7.48(3 \mathrm{H}, \mathrm{m})$, $7.44-7.35(4 \mathrm{H}, \mathrm{m}), 7.35-7.28(3 \mathrm{H}, \mathrm{m}), 5.65\left(1 \mathrm{H}, \mathrm{d}, J_{3^{\prime}, 4^{\prime}}=6.4 \mathrm{~Hz}, \mathrm{H}-3^{\mathrm{\prime}}\right), 5.10\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime} \mathrm{a},{ }^{\prime}{ }^{\prime} \mathrm{b}}=12.1\right.$ $\left.\mathrm{Hz}, \mathrm{H}-1^{\prime} \mathrm{a}\right), 5.05\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}}=12.1 \mathrm{~Hz}, \mathrm{H}-1^{\prime} \mathrm{b}\right), 4.93\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}}=6.4, J_{4^{\prime}, 5}=2.1 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right)$, $4.88\left(1 \mathrm{H}, \operatorname{ddd}, J_{5^{\prime}, 6^{\circ} \mathrm{b}}=3.5, J_{5^{\prime}, 6^{\prime} \mathrm{a}}=2.3, J_{4^{\prime}, 5^{\prime}}=2.1 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 4.68\left(1 \mathrm{H}, \mathrm{dd}, J_{6^{\prime}, 6^{\circ} \mathrm{b}}=12.7, J_{5^{\prime}, 6^{\prime} \mathrm{a}}=2.3\right.$ $\left.\mathrm{Hz}, \mathrm{H}-6^{\prime} \mathrm{a}\right), 4.33\left(1 \mathrm{H}, \mathrm{dd}, J_{6^{\prime} \mathrm{a}, 6^{\circ} \mathrm{b}}=12.7, J_{5^{\prime}, 6^{\circ} \mathrm{b}}=3.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{b}\right), 2.01-1.89(2 \mathrm{H}, \mathrm{m}), 1.81-1.67(2 \mathrm{H}$, $\mathrm{m}), 1.11(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 0.95(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}) ; \delta(\alpha \text {-anomer) })^{1}: 8.77(\mathrm{br} \mathrm{s}, \mathrm{N} H), 8.23(1 \mathrm{H}, \mathrm{d}$, $\left.J_{5,6}=7.6 \mathrm{~Hz}, \mathrm{H}-5\right), 7.99-7.95(2 \mathrm{H}, \mathrm{m}), 7.95-7.23(14 \mathrm{H}, \mathrm{m}), 5.41\left(1 \mathrm{H}, \mathrm{d}, J_{3^{\prime}, 4^{\prime}}=5.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.05$ $\left(1 \mathrm{H}, \mathrm{d}, J_{l^{\prime}, 1^{\prime} \mathrm{b}}=11.5 \mathrm{~Hz}, \mathrm{H}-1\right.$ 'a $), 4.99\left(1 \mathrm{H}, \mathrm{d}, J_{1}{ }^{\text {'a }, 1^{\prime} \mathrm{b}}=11.5 \mathrm{~Hz}, \mathrm{H}-1\right.$ ' b$), 4.90-4.86(1 \mathrm{H}, \mathrm{m}), 4.60-$ $4.55(2 \mathrm{H}, \mathrm{m}), 4.47\left(1 \mathrm{H}, \mathrm{dd}, J_{6^{\prime}, 6^{\circ} \mathrm{b}}=12.7, J_{5^{\prime}, 6^{\circ} \mathrm{b}}=7.4 \mathrm{~Hz}, \mathrm{H}-6{ }^{\prime} \mathrm{b}\right), 1.81-1.67(2 \mathrm{H}, \mathrm{m}), 1.66-1.55(2 \mathrm{H}$, m), $0.87(3 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 0.77(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\beta \text {-anomer })^{1}$: $165.6,165.5,162.3,154.8,145.4,133.3,133.1,133.0,129.44$ (2C), 129.41, 129.2 (2C), 128.9 (3C), 128.44 (2C), 128.40 (3C), 127.5 (3C), 118.5, 100.5, 95.7, 86.1, 84.6, 81.2, 64.7, 64.1, 28.6, 27.7, 8.6, 8.2. IR (KBr): $3310,1719 \mathrm{~cm}^{-1}$. HRMS (ESI) $m / z:[M+N a]^{+}$calcd for $\mathrm{C}_{36} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{Na}$, 676.2272; found, 676.2271.

Scheme S1. Deprotection of S-1 to diol 18

Compounds $\mathbf{1 8 \beta}$ and $\mathbf{1 8 \alpha}$ were also obtained from $\mathbf{S} \mathbf{- 1}$ under the similar condition described for the synthesis of 18 from 6 (73% yield for $\mathbf{1 8 \beta}$).

2. Spectroscopic data of compounds 21 and 23

Scheme S2. Detailed synthesis of $\mathbf{1 4}$

1,6-Di- \boldsymbol{O}-benzoyl-2,3-O-(3-pentylidene)- $\boldsymbol{\alpha}$-D-psicofuranose (21): Colorless syrup. $R_{\mathrm{f}}=0.31(15 \%$ EtOAc in n-hexane). $[\alpha]^{26}{ }_{\mathrm{D}}+18.9$ (c $0.89, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.72-7.60(8 \mathrm{H}$, $\mathrm{m}), 7.45-7.29(12 \mathrm{H}, \mathrm{m}), 4.57\left(1 \mathrm{H}, \mathrm{d}, J_{3,4}=4.5 \mathrm{~Hz}, \mathrm{H}-3\right), 4.08\left(1 \mathrm{H}\right.$, ddd, $J_{4, \mathrm{OH}}=9.7, J_{4,5}=8.8, J_{3,4}=$ $4.5 \mathrm{~Hz}, \mathrm{H}-4), 4.01\left(1 \mathrm{H}, \mathrm{ddd}, J_{4,5}=8.8, J_{5,6 \mathrm{~b}}=4.4, J_{5,6 \mathrm{a}}=3.5 \mathrm{~Hz}, \mathrm{H}-5\right), 3.86\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=11.3\right.$, $\left.J_{5,6 \mathrm{a}}=3.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 3.82\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=11.3, J_{5,6 \mathrm{~b}}=4.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\right), 3.77\left(1 \mathrm{H}, \mathrm{d}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=11.2 \mathrm{~Hz}\right.$, $\mathrm{H}-1 \mathrm{a}), 3.73\left(1 \mathrm{H}, \mathrm{d}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=11.2 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}\right), 2.28\left(1 \mathrm{H}, \mathrm{d}, J_{4, \mathrm{OH}}=9.7 \mathrm{~Hz}, \mathrm{OH}\right), 1.86-1.75(2 \mathrm{H}, \mathrm{m})$, $1.69-1.60(2 \mathrm{H}, \mathrm{m}), 1.03(9 \mathrm{H}, \mathrm{s}), 0.99(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 0.97(9 \mathrm{H}, \mathrm{s}), 0.84(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 135.6$ (4C), 133.2, 133.1, 132.8, 132.6, 129.80 (2C), 129.78 (2C), 129.63 (2C), 129.59 (2C), 127.79 (2C), 127.75 (2C), 127.65 (2C), 127.63 (2C), 117.0, 112.8, 82.0, $79.9,72.8,64.6,63.5,29.7,29.5,26.83$ (3C), 26.76 (3C), 19.2, 19.1, 8.5, 8.2. IR (KBr): 3489, 2932, $2859 \mathrm{~cm}^{-1}$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{43} \mathrm{H}_{56} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}, 747.3513$; found, 747.3504 .

23
Methyl 1,6-di-O-benzoyl-3,4- \boldsymbol{O}-(3-pentylidene)- $\boldsymbol{\beta}$-D-psicofuranoside (23): Colorless oil. $R_{\mathrm{f}}=$ $0.45\left(20 \%\right.$ EtOAc in n-hexane). $[\alpha]^{26}{ }_{\mathrm{D}}+29.7\left(c 1.04, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.06-$ $7.97(4 \mathrm{H}, \mathrm{m}), 7.59-7.52(2 \mathrm{H}, \mathrm{m}), 7.43-7.35(4 \mathrm{H}, \mathrm{m}), 4.85\left(1 \mathrm{H}, \mathrm{d}, J_{3,4}=7.5 \mathrm{~Hz}, \mathrm{H}-3\right), 4.75(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{3,4}=7.5, J_{4,5}=5.0 \mathrm{~Hz}, \mathrm{H}-4\right), 4.57\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=12.0, J_{5,6 \mathrm{a}}=3.7 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 4.56\left(1 \mathrm{H}, \mathrm{d}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=\right.$ $11.9 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}), 4.48\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=12.0, J_{5,6 \mathrm{~b}}=5.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\right), 4.40\left(1 \mathrm{H}, \mathrm{ddd}, J_{4,5}=J_{5,6 \mathrm{~b}}=5.0\right.$, $\left.J_{5,6 \mathrm{a}}=3.7 \mathrm{~Hz}, \mathrm{H}-5\right), 4.38\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{la}, 1 \mathrm{~b}}=11.9 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}\right), 3.48(3 \mathrm{H}, \mathrm{s}), 1.89(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz})$, $1.71-1.58(2 \mathrm{H}, \mathrm{m}), 1.00(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 0.90(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 166.2,165.9,133.2,133.1,129.7$ (2C), 129.64, 129.60 (2C), 129.57, 128.41 (2C), 128.38 (2C), $121.0,103.5,83.2,81.1,80.2,64.0,62.9,49.4,29.2,29.0,8.4,8.2$. IR (film): 2972, 2943, $1719 \mathrm{~cm}^{-}$ ${ }^{1}$. HRMS (DART) $m / z:\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{NO}_{8}, 488.2284$; found, 488.2293.

3. \boldsymbol{O}-Glycosidation of D-psicofuranose 1 with 1-pentadecanol

Scheme S3. O-Glycosidation of $\mathbf{1}$ with 1-pentadecanol

S-4
1-Pentadecyl 1,6-di-O-benzoyl-3,4-O-isopropylidene- $\boldsymbol{\beta}$-D-psicofuranoside (S-4): A mixture of $\mathbf{1}$ ($103 \mathrm{mg}, 0.154 \mathrm{mmol}$) and 1-pentadecanol $(52.7 \mathrm{mg}, 0.231 \mathrm{mmol})$ was predried azeotropically by coevaporation with dry toluene three times, which was further dried under reduced pressure over the presence of $\mathrm{P}_{4} \mathrm{O}_{10}$. The above mixture was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, to which was added trimethylsilyl trifluoromethanesulfonate $(41.8 \mu \mathrm{~L}, 0.231 \mathrm{mmol})$ at $-40{ }^{\circ} \mathrm{C}$. The reaction was gradually warmed to $0{ }^{\circ} \mathrm{C}$ over 45 min . The reaction mixture was quenched with satd. aq. NaHCO_{3} solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with water and
brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluted with 5% EtOAc in n-hexane to give $\mathbf{S}-4(88.2 \mathrm{mg}$, $89 \%)$ as a colorless oil. $R_{\mathrm{f}}=0.77$ (30% EtOAc in n-hexane). $[\alpha]^{23}{ }_{\mathrm{D}}-10.5\left(c 1.05, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.10-8.06(4 \mathrm{H}, \mathrm{m}), 7.61-7.55(2 \mathrm{H}, \mathrm{m}), 7.48-7.43(4 \mathrm{H}, \mathrm{m}), 4.85\left(1 \mathrm{H}, \mathrm{dd}, J_{3,4}\right.$ $\left.=5.9, J_{4,5}=1.5 \mathrm{~Hz}, \mathrm{H}-4\right), 4.73\left(1 \mathrm{H}, \mathrm{d}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=11.9 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}\right), 4.72\left(1 \mathrm{H}, \mathrm{d}, J_{3,4}=5.9 \mathrm{~Hz}, \mathrm{H}-3\right), 4.54$ $\left(1 \mathrm{H}, \mathrm{ddd}, J_{5,6 \mathrm{~b}}=7.3, J_{5,6 \mathrm{a}}=6.8, J_{4,5}=1.5 \mathrm{~Hz}, \mathrm{H}-5\right), 4.44\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=11.0, J_{5,6 \mathrm{a}}=6.8 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right)$, $4.44\left(1 \mathrm{H}, \mathrm{d}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=11.9 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}\right), 4.36\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=11.0, J_{5,6 \mathrm{~b}}=7.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\right), 3.60(1 \mathrm{H}, \mathrm{dt}, J$ $=9.0,6.4 \mathrm{~Hz}), 3.47(1 \mathrm{H}, \mathrm{dt}, J=9.0,7.0 \mathrm{~Hz}), 1.52(3 \mathrm{H}, \mathrm{s}), 1.50-1.42(2 \mathrm{H}, \mathrm{m}), 1.35(3 \mathrm{H}, \mathrm{s}), 1.25-$ $1.14(24 \mathrm{H}, \mathrm{m}), 0.88(3 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 166.0,165.8,133.1,133.0$, 129.9, 129.7, 129.7, 128.3, 128.3, 113.1, 108.9, 85.4, 84.0, 82.4, 65.2, 61.4, 59.7, 31.8, 29.6, 29.6, 29.5, 29.4, 29.3, 26.5, 26.1, 25.1, 22.6, 14.1. IR (film): 2925, 2853, 1726, $1602,1452 \mathrm{~cm}^{-1} . \mathrm{MS}$ (FAB) $m / z: 661[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (FAB) m / z : calcd for $\mathrm{C}_{38} \mathrm{H}_{54} \mathrm{O}_{8} \mathrm{Na}, 661.3716$; found, 661.3710 .

NOTE

1. Assignment was performed from the spectrum of anomeric mixture.
