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ABSTRACT: We present an E-selective ring-closing metathesis reaction in a-helical stapled peptides at i and i + 4 positions. The 
use of two chiral carbocyclic a,a-disubstituted a-amino acids, (1S,3S)-Ac5c3OAll and (1R,3S)-Ac5c3OAll provide a high E-selectivity of 
up to a 59:1 E/Z ratio, while mixtures with a E/Z of 2.1–0.5:1 were produced with standard acyclic (S)-(4-pentenyl)alanine amino 
acids. A stapled octapeptide composed of (1S,3S)- and (1R,3S)-Ac5c3OAll amino acids showed a right-handed a-helical crystal structure. 

The function of a protein strictly depends on its higher-order 
structure formed by protein folding. To achieve a similar func-
tionality using short oligopeptides, it is important to constrain 
their secondary structures to a specific state. This issue can be 
resolved by the concept of foldamers.1 Helical foldamers, in-
cluding peptides,2 oligoureas,3 and polymers,4 are representa-
tive foldamers that can be used as organocatalysts, chiral lig-
ands, drug delivery tools, etc. The hydrocarbon stapling of a 
peptide is a powerful and convenient approach to stabilize the 
secondary structure of helical peptide foldamers and to enhance 
their functionality.5 The first example of helical hydrocarbon-
stapled peptide was reported by Blackwell and Grubbs using O-
allyl L-homoserine-containing peptide as a cyclization precur-
sor (Figure 1A).6 The ring-closing metathesis (RCM) reaction 
of this peptide using the first-generation Grubbs catalyst gave 
the desired 310-helical stapled peptides in high yields as an in-
separable E/Z mixture with a ca. 5:1 ratio. In 2000, Verdine and 
co-workers reported all-hydrocarbon stapling with (S)-(4-pen-
tenyl)alanines [Ala(4-Pte)] at i and i + 4, as well as i + 7 posi-
tions in a-helical peptides (Figure 1B).7 The all-hydrocarbon 
stapling became one of the most commonly used strategies to 
induce helicity, although their E/Z-selectivities as well as crys-
tallographic structures have not been elucidated. A joint group 
of Toniolo, Grubbs, and O’Leary reported the first example of 
E-selective hydrocarbon-stapling formation with a E/Z of over 

20:1 at i and i + 3 positions in 310-helical peptide foldamers 
(Figure 1C).8 They used O-allyl L-serine in a peptide sequence 
of a-aminoisobutyric acid (Aib), which preferred a 310-helical 
secondary structure.9 Grubbs, O’Leary et al. reported Z-selec-
tive all-hydrocarbon stapling in a-helical peptides using a Z-
selective ruthenium catalyst (E:Z = <1:9).10 However, there are 
no reports on E-selective hydrocarbon-stapling at i and i + 4 
positions of peptides, while development of E-selective macro-
cyclization by RCM has attracted increased attention in the last 

 

 
Figure 1. Helical stapled peptides obtained by the RCM reaction 
(acrystallographic structure of peptides, bconversion, cthe E/Z-ratio 
was not determined) 
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decade.11 A successive RCM reaction at i and i + 4 positions of 
peptides followed by ethenolysis of the undesired Z-configured 
staples reported by Grubbs et al. might be an alternative route 
to obtain E-enriched staples with a E/Z of up to 24:1.12 However, 
the initial E/Z-selectivities of the RCM products were moderate 
between 2.4:1 to 4.9:1. Since a-helix is the most abundant sec-
ondary structure, a-helix-inducing i,i + 4-stapled peptides are 
frequently used for the peptide-based drug discovery.13 Further-
more, recent studies imply that E/Z-configuration of stapled 
peptides is a key to their biological activity.14 Accordingly, a 
direct approach to access the E-selective hydrocarbon-stapled 
peptides at i,i + 4 positions has been demanded.15 

A possible reason of poor E-selectivities of hydrocarbon-sta-
pling at i and i + 4 positions is a flexible nature of the tethered 
side chains of L-homoserine and (S)-Ala(4-Pte), which easily 
form both E- and Z-hydrocarbon stapling. If the conformation 
of tethered side chains of the stapling precursor is properly con-
strained, selective hydrocarbon-stapling of thermodynamically 
more stable E-isomer at i and i + 4 positions in a-helical pep-
tides is possible. Accordingly, carbocyclic a,a-disubstituted a-
amino acids (dAAs)16,17 are suitable for this purpose because of 
a rigid carbocyclic ring and existence of the second stereogenic 
center on the ring. Furthermore, carbocyclic dAAs enhance the 
efficacy of peptide coupling reaction,9b,18 while side-chain ste-
reogenic centers control a helical screw direction, as well as a 
secondary structure of their peptides.19 We have recently re-
ported the synthesis of L-arginine-enriched stapled peptides 
containing 3-allyloxy-1-aminocyclopentanecarboxylic acids 
(Ac5c3OAll) possessing a high cell permeability, as well as a high 
stability against peptidases.20 However, a detailed structural 
analysis of peptides has not been performed, particularly for 
their E/Z-selectivity and crystallographic structures. This work 
is aimed at the synthesis of stapled L-leucine-based Ac5c3OAll-
containing peptides and determination of the impact of Ac5c3OAll 
stereochemistry. A peptide containing Verdine’s Ala(4-Pte) 
was also synthesized as a control. Herein, we report E-selective 
RCM in a-helical peptides stapled at i and i + 4 positions and 
analysis of their structure by X-ray diffraction (Figure 1D). 

We synthesized four Ac5c3OAll (Figure S1) from (1S,3S)- and 
(1R,3S)-1-amino-3-hydroxycyclopentanecarboxylic acids.21,22 
These Ac5c3OAll were successfully introduced to L-leucine-
based peptides to provide 1a octapeptides as RCM precursors.22 
Further, RCM between tethered allyloxy groups of compound 
1a was performed by Grubbs catalyst to produce stapled pep-
tides 2a. After optimization of the reaction conditions (see Ta-
ble S1),22 the reaction of 1a using 20 mol % of the second-gen-
eration Grubbs catalyst in toluene completed within 30 min 
gave 2a with an excellent E/Z of 24:1 and 96 % isolated yield. 
The amount of catalyst could be reduced to 10 mol % preserv-
ing a high E-selectivity of 21:1. 

Under the optimized conditions, however, other peptides 1b–
1d possessing different stereochemistry on Ac5c3OAll provided 
moderate to low E-selectivities (E/Z = 1.9–13:1, Scheme 1). 
Moreover, considerable amounts of dimer byproducts were 
formed in the reactions of 1c and 1d, possibly due to the mis-
matched configurations of the side chains. The octapeptide 3 
incorporated with commonly used acyclic dAAs, Ala(4-Pte) 
was also synthesized. RCM of (R)- or (S)-Ala(4-Pte)-based pep-
tide 3a–3d under the optimized conditions (A), as well as under 
the standard conditions for all-hydrocarbon stapling (B)7,23 gave 
a mixture of E- and Z-isomers with E/Z = 2.1:1–1:2.2 and with 
moderate yields. 

Scheme 1. RCM reaction of octapeptides 1 and 3a 

 
aIsolated yields (0.05 mmol scale) are provided with the E/Z ratio 

determined by 1H NMR. bIncluding inseparable dimer byproducts. 
cNMR yield. 

 
Next, we investigated the impact of the substrate on the E-

selectivity. In contrast to the decrease of E-selectivity (E/Z = ca. 
7–12:1) with shorter peptides reported by Grubbs et al.,8 our 
Ac5c-based peptides retained high E/Z-selectivity even at a pen-
tapeptide level (E/Z = 23–26:1, Table 1, entries 1–3). The oc-
tapeptide 5d having L-leucine tripeptide on the C-terminus en-
sured better E-selectivity (E/Z = 40:1, entry 4). The optimized 
conditions were inappropriate for Val-containing peptide 5e, 
with a formation of an enormous amount of dimer byproducts 
and the decreased E/Z of 16:1 (entry 5). The heptapeptide 5f 
containing Ac5c3OAll instead of O-allyl-L-homoserines in Karle 
and Balaram’s sequence shown in Figure 1A (E/Z = ca. 5:1) 
improved the E-selectivity up to 35:1 (entry 6). Our method is 
also compatible with the solid-phase synthesis, as we did for 
peptides 5g and 5h.22,23 The best E-selectivity was achieved 
with the 6h peptide (E/Z = 59:1, entry 8). 

Since Ac5c3OAll in compound 1a provided a better RCM reac-
tion rate with improved E-selectivity than that with commonly 
used (S)-Ala(4-Pte) (3a), we compared their crystallographic 
structures in stapled peptides. The crystallographic structures 
were successfully obtained for carbocyclic-dAAs-containing 
peptides 1a and 2a, and for acyclic-dAAs-containing peptides 
3a, (E)-4a, and (Z)-4a (Figure 2). A superimposed structure of 
stapled peptides 2a and 4a shows that 2a has larger helical ra-
dius than that in 4a. The crystalline peptides 1a and 2a involve 
four consecutive intramolecular hydrogen bonds [N(n + 
4)H···O=C(n)] of the i ¬ i + 4 type in 1a, and five consecutive 
intramolecular hydrogen bonds of the i ¬ i + 4 type in 2a (Table 
S19). These values indicate the existence of an a-helical 
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Table 1. Effect of peptide sequence in substrate on E-selective stapling 

 

Entry Sequence [Y = allyl or (E)-2-butenyl tether] Yield (%) E/Za 

1 Boc-Leu-Leu-(1S,3S)-Ac5c3OY-Leu-Leu-Leu-(1R,3S)-Ac5c3OY-OMe (5a/6a) 68 23:1 
2 Boc-Leu-(1S,3S)-Ac5c3OY-Leu-Leu-Leu-(1R,3S)-Ac5c3OY-OMe (5b/6b) 85 24:1 
3 Boc-(1S,3S)-Ac5c3OY-Leu-Leu-Leu-(1R,3S)-Ac5c3OY-OMe (5c/6c) 75 26:1 
4 Boc-(1S,3S)-Ac5c3OY-Leu-Leu-Leu-(1R,3S)-Ac5c3OY-Leu-Leu-Leu-OMe (5d/6d) 98 40:1 
5b Boc-(1S,3S)-Ac5c3OY-Val-Val-Val-(1R,3S)-Ac5c3OY-OMe (5e/6e) 99 16:1 
6 Boc-Val-(1S,3S)-Ac5c3OY-Leu-Aib-Val-(1R,3S)-Ac5c3OY-Leu-OMe (5f/6f) 78 35:1 
7c,d Bz-(1S,3S)-Ac5c3OY-Leu-Leu-Leu-(1R,3S)-Ac5c3OY-NH2 (5g/6g) 65 23:1 
8c,d Ac-Thr-Phe-(1S,3S)-Ac5c3OY-Asp-Leu-Leu-(1R,3S)-Ac5c3OY-Tyr-Tyr-Gly-Pro-NH2 (5h/6h) 99e,f 59:1f 

aDetermined by 1H NMR. bIn CH2Cl2 at 25 °C. cThe result was obtained after cleavage from the resin. dThe first-generation Grubbs catalyst 
was used in CH2Cl2 and the reaction was repeated once. eConversion. fDetermined by HPLC. 

 
secondary structure in 1a and 2a. Conversely, crystalline pep-
tide 3a involves four consecutive intramolecular hydrogen 
bonds of the i ¬ i + 4 type and one intramolecular hydrogen 
bond [N(n + 3)H···O=C(n)] of the i ¬ i + 3 type. Two consec-
utive intramolecular hydrogen bonds of both the i ¬ i + 4 type 
and i ¬ i + 3 type were observed in (E)-4a and (Z)-4a. These 
values indicate the coexistence of the a- and 310-helical struc-
tures. Based on types and numbers of these intramolecular hy-
drogen bonds, the stapling in 2a increased a-helicity compared 
to 1a, while the stapling in (E)-4a and (Z)-4a increased 

 

 
Figure 2. (A) Crystallographic structures of unstapled peptides (1a, 
3a) and stapled peptides [2a, (E)-4a, (Z)-4a]. (B) Superimposed 
structure of 2a (magenta) and (E)-4a (cyan). 

310-helicity compared to 3a. Similar trends were observed with 
the torsion angles, where the average torsion angles of 2a 
[avg.(f1–f7) = −66.8° and avg.(y1–y7) = −42.0°] are much 
closer to the ideal values of the right-handed a-helix [f = −63° 
and y = −42°]24 than that of 1a [avg.(f1–f7) = −68.0° and 
avg.(y1–y7) = −38.8°].22 Conversely, the average torsion an-
gles of peptides 3a, (E)-4a, and (Z)-4a [avg.(f1–f7) = −68.0°, 
−74.5°, and −73.1°; avg.(y1–y7) = −34.7°, −32.3°, and −33.5°, 
respectively] are much closer to the ideal values of the right-
handed 310-helix [f = −57° and y = −30°] rather than those of 
the a-helix. These results suggest that a-helicity of stapled pep-
tides is better enhanced by cyclic dAAs (Ac5c3OAll) than by com-
monly used acyclic-dAAs [Ala(4-Pte)] in the crystalline state. 

Although the detailed reaction mechanism of the E-selective 
side-chain formation is unclear so far, we performed additional 
experiments illustrated in Scheme 2 to reveal the conditions 
providing a high E-selectivity. The poor E/Z-selectivities of 4a 
was not caused by a macro-ring strain, since the poor E-selec-
tivity of 4.2−2.0:1 was also observed for the RCM of 7, which 
involves 7-octenyl side chain. Combination of a cyclic dAA, 
(1S,3S)-Ac5c3OAll, and an acyclic dAA, (R)-Ala(4-Pte), in pep-
tide 9 was not adapted for E-selective RCM reaction that re-
sulted in a poor E/Z-selectivity (E/Z = 3.4−2.6:1). It was possi-
ble to isomerize the olefin geometry of 2a (E/Z = 3:1) to a 21:1 
ratio under the optimized conditions. These results suggest that 
high E-selectivity is due to the thermodynamic preference of E-
isomer by the combination of (1S,3S)-Ac5c3OAll and (1R,3S)-
Ac5c3OAll. 

In conclusion, we developed an E-selective RCM reaction in 
a-helical stapled peptide at i,i + 4 positions. The combination 
of carbocyclic dAAs, (1S,3S)-Ac5c3OAll, and (1R,3S)-Ac5c3OAll 
provided the maximum E-selectivity of up to 59:1, while com-
monly used acyclic (S)- and (R)-Ala(4-Pte), produced a mixture 
of E- and Z-isomers with the E/Z of 2.1−0.5:1. A variety of pep-
tide sequences with a different amount of residues was detected 
in the solution-phase and by the solid-phase synthesis. X-ray 
crystallographic analysis suggested that peptide 2a, composed 
Scheme 2. Further RCM reactions 
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aConditions A: The second-generation Grubbs catalyst (20 

mol %), toluene (5 mM), 40 °C, 30 min; Conditions B: the first-
generation Grubbs catalyst (20 mol %), 1,2-dichloroethane (5 mM), 
25 °C, 2 h. bIncluding inseparable dimer byproducts. 

of (1S,3S)-Ac5c3OAll and (1R,3S)-Ac5c3OAll, possessed a right-
handed a-helical structure, while peptide 4a, composed of (S)-
Ala(4-Pte), comprises a mixture of right-handed 310- and a-hel-
ical segment conformations. Further studies including mecha-
nistic investigation and application to helical foldamer organo-
catalysts,25 as well as biologically active peptides26 are in the 
progress in our laboratory. 
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