1 Relative depths of the subsurface peaks of phytoplankton abundance conserved over

- 2 ocean provinces
- 3 Mitsuhide Sato^{*1}
- 4 satom@nagasaki-u.ac.jp
- 5 Takuhei Shiozaki²
- 6 shiozaki@g.ecc.u-tokyo.ac.jp
- 7 Fuminori Hashihama³
- 8 *f-hashi@kaiyodai.ac.jp*
- 9 Taketoshi Kodama⁴
- 10 takekodama@g.ecc.u-tokyo.ac.jp
- 11 Hiroshi Ogawa²
- 12 hogawa@aori.u-tokyo.ac.jp
- 13 Hiroaki Saito²
- 14 hsaito@g.ecc.u-tokyo.ac.jp
- 15 Atsushi Tsuda²
- 16 *tsuda@aori.u-tokyo.ac.jp*
- 17 Shigenobu Takeda¹
- 18 s-takeda@nagasaki-u.ac.jp
- 19 Ken Furuya⁵

20	furuya@fs.a.	u-tokyo.ac.jp
	• • •	

21	¹ Graduate School	of Fisheries an	nd Environmental	Sciences,	Nagasaki	University,	Nagasaki-
				,			

- 22 shi, Nagasaki, Japan
- ²³ ² Atmospheric and Ocean Research Institute, the University of Tokyo, Kashiwa-shi, Chiba,
- 24 Japan
- ³ Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
- ⁴ Yokohama Field Station, Fisheries Resources Institute, Japan Fisheries Research and
- 27 Education Agency, Yokohama-shi, Kanagawa, Japan
- ⁵ Graduate School of Science and Engineering, Soka University, Hachioji-shi, Tokyo, Japan
- 29
- 30 *Corresponding author: Mitsuhide Sato
- 31
- 32 **Running head:** Subsurface peak depths of phytoplankton
- 33 Keywords: subsurface chlorophyll maximum, Synechococcus, Prochlorococcus, light,
- 34 nutrients, flow cytometry

35 Abstract

Flow cytometric data collected from more than 250 stations in the Pacific and Indian Oceans 3637were analyzed to determine the factors affecting the depth and magnitude of the subsurface abundance maximum of *Synechococcus*, *Prochlorococcus*, and small eukaryotes (< 6 µm). 38The peak depth of each phytoplankton population estimated by curve fitting was strongly 3940 correlated with the depth of the subsurface chlorophyll maximum (SCM). The slope of the regression line demonstrated that the peak depths of Synechococcus, Prochlorococcus, and 41 small eukaryotes were $74 \pm 1\%$, $88 \pm 1\%$, and $104 \pm 1\%$ of the SCM depth (with confidence 42interval of 95%), respectively. This trend was largely conserved across the different ocean 43provinces of the Pacific and Indian Oceans. The peaks of Synechococcus frequently appeared 44in the nitrate-depleted layer of subtropical waters, suggesting their high affinity for 45regenerated and/or organic nutrients. The estimated daily irradiance received at the peak 46depths of Synechococcus and Prochlorococcus did not show a distinct latitudinal trend and 47fluctuated among neighboring stations, whereas that of small eukaryotes slightly increased 48toward the subarctic region. The present results show that the peak depths of Synechococcus, 4950Prochlorococcus, and small eukaryotes relative to SCM were globally conserved on average, which is largely in line with the difference in their ability to acquire light and nutrients. 51However, the absolute light level and nutrient concentrations at the peak depths varied 52dramatically among neighboring stations, likely affected by physical movements. 53

54 Introduction

Oceanic primary production is estimated to contribute to approximately half of the global 55primary production (Field et al. 1998), which makes marine phytoplankton an essential 56component of climate control. In addition to numerous elaborate measurements of primary 57production on research vessels, optical studies using satellite imagery have contributed to 5859progress in the estimation of global phytoplankton biomass and primary productivity (Behrenfeld et al. 2006). Optical measurements using satellites integrate dispersed data 60 61collected from research vessels using their high spatial and temporal coverage and resolution. 62 However, satellites can only obtain information about the sea surface. This is critical, particularly in open ocean areas, where phytoplankton biomass is not constant within the 63 64 water column. In the stratified water of the open ocean, phytoplankton biomass (based on carbon or chlorophyll) or cell concentration frequently shows a subsurface peak around the 65bottom of the euphotic zone (Lorenzen, 1966; Saijo et al. 1969; Lande et al. 1989). The 66 occurrence of the subsurface maximum makes it difficult to estimate the areal phytoplankton 67biomass or productivity from that at the sea surface (Arrigo et al. 2011; Ardyna et al. 2013). 68 69 To overcome this problem, empirical models have been proposed to estimate the vertical 70 profile of phytoplankton biomass from surface values (Lewis et al. 1983; Morel et al. 1989). The depth and magnitude of the subsurface maximum phytoplankton biomass are 71indispensable parameters for global mapping of phytoplankton biomass and productivity. 72

73	The subsurface maximum phytoplankton biomass or chlorophyll concentration is a long-
74	debated issue in biological oceanography, particularly concerning the mechanism of its
75	formation and maintenance (Cullen, 2015). In addition to time-series surveys at fixed
76	stations, measurements using submersible buoys have accumulated a dataset of vertical
77	profiles of chlorophyll concentration and plankton biomass (Cornec et al. 2021a, b), which
78	has made it possible to evaluate the validity of the outputs of biophysical models at a global
79	scale. Modeling studies have suggested that subsurface maxima occur between the light
80	critical depth and nutrient critical depth (Beckman and Hense, 2007; Gong et al. 2015) in
81	equilibrium, as proposed in earlier field studies (Takahashi et al. 1985; Letelier et al. 2004).
82	Photoacclimation, in which phytoplankton cells accumulate more pigment content in dark
83	environments, can contribute to the formation of subsurface chlorophyll maxima (Letelier et
84	al. 2004; Mignot et al. 2014), which sometimes results in subsurface chlorophyll maxima
85	without any associated peak in carbon biomass.
86	Although previous studies have revealed the characteristics of the subsurface maximum of
87	phytoplankton biomass in the open ocean and elucidated the mechanism of its formation and
88	maintenance, many of these studies have treated phytoplankton as a single component,
89	paying little attention to the physiological differences among phytoplankton populations.
90	Field observations have demonstrated that different phytoplankton groups show different
91	vertical distributions (Venrick, 1999; Veldhuis and Kraay, 2004), resulting in vertical

 $\mathbf{5}$

92	segregation of their habitats. When considering the total productivity of the entire community
93	alone, the differences between phytoplankton populations may be trivial. However, if we are
94	to elucidate the biogeochemical cycling and fate of biogenic materials in the food web, the
95	phytoplankton community composition is indispensable information, since the nutritional
96	physiology of phytoplankton and predator-prey relationships differ according to the species
97	or ecotypes of phytoplankton (e.g., diazotrophs and mixotrophs).
98	Additionally, field studies on the subsurface maximum of phytoplankton have been
99	conducted at fixed stations or within a limited area. Whether there is a universal rule or factor
100	that determines the position or magnitude of phytoplankton subsurface maxima throughout
101	the global ocean remains unknown. Considering the geographical variation in the
102	composition of the phytoplankton community, it may be reasonable to assume that the
103	response of phytoplankton biomass to environmental factors varies from one area to another.
104	However, the number of studies comparing subsurface maximum of phytoplankton biomass
105	among different ocean provinces is insufficient to draw conclusions.
106	In the present study, we compared the subsurface maxima of different phytoplankton
107	populations (Synechococcus, Prochlorococcus, and eukaryotes) in different provinces of the
108	Pacific and Indian Oceans. Flow cytometric data collected from 20 cruises were compiled to
109	create a dataset. The peak depth and magnitude of the three phytoplankton populations were
110	estimated by fitting the sum of sigmoid and Gaussian functions to their discrete vertical

111	profiles. By analyzing them in combination with optical, chemical, and physical data, we
112	aimed to test the validity of the outcome of modeling studies, in which light and nutrient
113	availability determines the depth of phytoplankton biomass peak, and clarify factors that
114	control the depths of subsurface maximum of different phytoplankton populations over
115	different ocean provinces.
116	
117	Materials and Methods
118	Profiles of pico- and nanophytoplankton
119	Flow cytometric data were collected from cruises in the Pacific and Indian Oceans and its
120	marginal seas (Fig. 1 and Table 1). All surveys, except one cruise, were conducted in
121	stratified areas, most of which were carried out between the local spring and fall. Vertical
122	profiles of pico- and nanophytoplankton were obtained from over ten discrete depths using
123	Niskin or Niskin-X samplers. The samples were analyzed onboard without chemical fixation,
124	except for the cruises of R/V Wakataka-maru and Mirai, at which the samples were
125	chemically fixed with glutaraldehyde and frozen in liquid nitrogen (Sato et al. 2006).
126	Samples from 2003 to 2010 were analyzed using a PAS III flow cytometer, and those from
127	2011 to 2018 were analyzed using a CyFlow (Partec). The details of the onboard flow
128	cytometric analyses are described elsewhere (Sato et al. 2010, 2017).
129	Pico- and nanophytoplankton were counted after classifying them as Prochlorococcus,

130	Synechococcus, nano-sized cyanobacteria, cryptophytes, and other eukaryotes (Sato et al.
131	2010). Although eukaryotes enumerated by flow cytometry include algae of different taxa
132	(Vaulot et al. 2008), and sometimes form multiple distinct clusters on a cytogram, particularly
133	in the subarctic and marginal waters (86 of 257 stations), they were enumerated as a single
134	population in the present study to ensure sufficient cell counts for curve fitting and to grasp
135	the general trend of small eukaryotes as a whole. The maximum nominal cellular diameter of
136	eukaryotes enumerated in the present study was approximately 6 μ m, as estimated from a
137	comparison with standard fluorescent beads. This means that larger diatoms or
138	dinoflagellates, which may comprise a significant portion of the phytoplankton biomass in
139	the subpolar or marginal provinces, were excluded from the present analysis. For
140	simplification, we use the term "eukaryotes" to express the pico- and small
141	nanophytoplankton (< 6 μ m) measured by flow cytometry in the present study.
142	In the present study, side scatter (SSC) intensity was not used as an index of cellular
143	biomass (see Supporting Information). The product of the mean red fluorescence (FL3) and
144	cell concentration was calculated to estimate the relative contributions of phytoplankton
145	populations to chlorophyll biomass, as applied in previous studies (Zettler et al. 1996, Sato et
146	al. 2009). Cytometric data were obtained using FloMax software (Partec) and gated on FCS
147	Express Flow 6 software (De Novo Software) for enumeration. It should be noted that
148	Prochlorococcus in surface water (HL-type Prochlorococcus) is likely to be underestimated

149	because of its faint chlorophyll fluorescence. Although this may lead to an overestimation of
150	the relative magnitude of the subsurface maximum, the position (depth) of their peak is only
151	slightly affected.
152	Measurements of environmental parameters (temperature, salinity, chlorophyll a
153	fluorescence, light intensity, and nutrient concentrations) are detailed in Supporting
154	Information.
155	
156	
157	
158	Mathematical and statistical procedures
159	To characterize the vertical distribution pattern of pico- and nanophytoplankton cell
160	concentrations, a mathematical function was fitted to the relationship between depth and cell
161	concentration, and the parameters that represent the position of the subsurface maximum
162	layer and its relative magnitude were extracted.
163	The typical vertical distribution patterns of pico- and nanophytoplankton in stratified open
164	water showed three characteristics: (1) subsurface peaks, (2) relatively constant
165	concentrations above the peak, and (3) sharp declines below the peak. To reproduce such a
166	typical vertical distribution, we adopted the sum of a normal distribution function and logistic
167	function expressed as

$$y = Me^{-\frac{(x-p)^2}{a}} + C\frac{1}{1+e^{b(x-p)}}$$
(1)

Here, x and y denote the depth and cell concentration, respectively, and five constants a, b, 169p, C, and M were optimized for each vertical distribution by curve fitting. In the present 170study, the peak of the normal distribution and the flexion point of the logistic curve were 171assumed to occur at the same point, p, to reduce the calculation amount. We selected these 172173functions to simplify the calculation and more readily interpret the outcome of the estimated constants. A normal distribution around the subsurface maximum of phytoplankton biomass 174in subtropical waters successfully reproduced the real vertical distribution (Gong et al. 2015), 175and Equation (1) can be optimally fitted to most of the vertical distribution patterns of pico-176and nanophytoplankton in the open ocean with a relatively small amount of calculation (Fig. 1772). 178From the five constants in Equation (1), that is, a, b, p, C, and M, the parameters that 179characterize the vertical distribution pattern can be readily derived. In this formula, the cell 180 concentration at depth p can be calculated as (M + C/2), where C represents the ideal cell 181 concentration at negative infinity. The M/C ratio can be used to index the relative peak 182183strength compared with the surface cell concentration. As mentioned above, p represents the peak depth, and a is an index of the width of the peak. Parameter b is an attenuation index in 184the logistic function. 185

186 Curve fitting was performed using software OriginPro 2015 (OriginLab). Levenberg–

187	Marquardt's method was applied for the repetition algorithm. All parameters were confined
188	to a positive value, and the maximum value for p was set to 200 m. When the fitting did not
189	converge successfully, the data at the station were not included in the following analysis. All
190	other fitting, regression, or statistical analyses were performed using OriginPro, R (version
191	4.1.1) or Microsoft Excel. The spatial autocorrelation of the environmental parameters was
192	tested based on Moran's I values calculated using the ape library of R. The study area was
193	partitioned into ocean provinces according to Longhurst (2007).
194	
195	Results
196	Of the 257 stations surveyed during 20 cruises (Table 1), 231, 160, 17, 28, and 240
197	profiles were successfully fitted to Equation (1) (see Materials and Methods) for
198	Synechococcus, Prochlorococcus, nano-sized cyanobacteria, cryptophytes, and other
199	eukaryotes, respectively. At the other stations, the fitting failed because the phytoplankton
200	population was absent or their vertical profile did not show a distinctive subsurface peak.
201	Further analyses of nano-sized cyanobacteria and cryptophytes were not performed in the
202	present study because their sample size was small due to their limited occurrence, and their
203	subsurface peak was indistinctive ($M/C < 0.5$) at most of the stations. During the MR10-01
204	cruise (Table 1), the high-latitudinal area in Kuroshio Province was surveyed during the
205	winter season, when strong mixing occurred. During this cruise, the fitting failed in most

206 cases, and the M/C value was almost zero. The entire dataset presented in this study is listed 207 in Table S1.

208	The horizontal trend in the peak depth of cell concentration was similar for the three
209	populations of pico- and nanophytoplankton, Synechococcus, Prochlorococcus, and
210	eukaryotes (Fig. S2). The peak depth was deeper in the subtropical gyres than in the subarctic
211	waters, equatorial areas, East China Sea, and Bay of Bengal. Among the three subtropical
212	gyres surveyed in the present study (two in the Pacific Ocean and one in the Indian Ocean),
213	the South Pacific subtropical gyre showed the deepest peak depth of all three populations.
214	Although the longitudinal variation in the peak depths in the subtropical Pacific was not as
215	evident as the latitudinal variation, the peak seemed deeper towards the east in the North
216	Pacific subtropical areas, especially in eukaryotes. Although the longitudinal trend in the
217	South Pacific subtropical gyre was not clear owing to the small sample size, the peak depth at
218	170 °W seems shallower compared with that in the eastern area.
219	Compared with the peak depths, the relative magnitudes of the subsurface peaks of the
220	cell concentration (M/C ratio) showed a less clear horizontal trend (Fig. S2). As a general
221	trend, the M/C ratio was smaller than 1 in the high-latitude areas, indicating that the
222	subsurface abundance peak was unclear in these areas. This may reflect the low contribution
223	of carbon biomass accumulation to the subsurface chlorophyll maximum at high latitude
224	(Cornec et al. 2021; Masuda et al. 2021). The <i>M/C</i> ratio was highly variable between

225 neighboring stations, which made its horizontal trend even more unclear.

226	The peak depths of the three pico- and nanophytoplankton populations were compared
227	with the mixed layer, SCM, and nitracline depths on a regional basis (Fig. 3). The peak
228	depths were highly correlated with one another and SCM depths, which were deeper in the
229	subtropical provinces, including the western area of the North Pacific Subtropical Front
230	(NPSTW), the eastern and western areas of the North Pacific Tropical Gyre (NPTGE and
231	NPTGW, respectively), and the South Pacific Subtropical Gyre (SPSG), than in the other
232	areas. In contrast, the mixed layer depth showed a much smaller interprovincial variation, in
233	which it was slightly deeper in the Indian monsoon gyre province (MONS) and the NPTGE
234	and NPTGW (Fig. 3D). The longitudinal difference in the peak depth was not statistically
235	different between NPTGE and NPTGW for any of the three populations (Tukey-Kramer test,
236	p > 0.05). The nitracline depth showed an interprovincial variation, which is similar to that of
237	SCM (Fig. 3F).

The peak depths of *Synechococcus*, *Prochlorococcus*, and eukaryote cell concentrations were highly positively correlated with SCM depth, when all the data from 19 ocean provinces were compiled (Fig. 4). A positive correlation was also observed for each ocean province, including marginal seas or subarctic provinces. Moreover, it seems that data from all ocean provinces are distributed around the same straight line, except for some stations in the Pacific Subarctic Gyre (PSAG), where peak depths seemed to deviate above the line. Three simple

linear relationships were derived as follows (coefficients are shown with standard errors): 244Synechococcus: Peak depth = $(0.47 \pm 0.02) \times SCM + (25.2 \pm 2.2)$ ($R^2 = 0.64$) 245*Prochlorococcus: Peak depth* = $(0.72 \pm 0.04) \times SCM + (16.6 \pm 3.5)$ ($R^2 = 0.72$) 246*Eukaryotes: Peak depth* = $(0.95 \pm 0.03) \times SCM + (9.1 \pm 2.4)$ ($R^2 = 0.85$) 247When the intercept was fixed to 0, the regression was again highly significant: 248Synechococcus: Peak depth = $(0.74 \pm 0.01) \times SCM$ ($R^2 = 0.94$) 249Prochlorococcus: Peak depth = $(0.88 \pm 0.01) \times SCM$ ($R^2 = 0.96$) 250Eukaryotes: Peak depth = $(1.04 \pm 0.01) \times SCM$ ($R^2 = 0.97$) 251The slope of the regression line was in the order of Synechococcus, Prochlorococcus, and 252eukaryotes, indicating an inter-regional trend in the open ocean, where the peak of 253Synechococcus cell concentration occurred at the shallowest depth of the three, while 254eukaryotes showed the deepest peak. In the range of SCM < 40 m, which included profiles 255from the subpolar and marginal provinces, the deviation from the regression line was larger. 256At these stations, chlorophyll fluorescence and phytoplankton abundance did not always 257show a clear peak. When these profiles were excluded from the dataset, the correlation 258became stronger and the intercept of the regression line became smaller $(19.3 \pm 4.0, 5.2 \pm 4.3, 5.2 \pm 5.2$ 259and -5.1 ± 3.8 for *Synechococcus*, *Prochlorococcus*, and eukaryotes, respectively). 260Compared with the SCM depth, the mixed layer depth showed a much weaker correlation 261with the peak depth of any of the phytoplankton groups examined (Fig. S3). The coefficients 262

263	of determination (R^2) for <i>Synechococcus</i> , <i>Prochlorococcus</i> , and eukaryotes were 0.20, 0.01,
264	and 0.04, respectively, whereas the slope of the regression line was significantly different
265	from zero ($p < 0.05$) only for <i>Synechococcus</i> and eukaryotes. When analyzed for each ocean
266	province, the correlation became much weaker ($p > 0.05$). The correlation was only
267	significant in certain subtropical and tropical provinces, and the slope and intercept of the
268	regression line differed among different provinces.
269	The potential density anomaly (σ_{θ}) at the peak depths of the three phytoplankton groups
270	calculated using the pressure, temperature, and salinity obtained from the CTD sensor
271	showed a U-shaped latitudinal distribution with a minimum value around the equator (Fig.
272	S4). The variation at similar latitudes within a specific ocean province was relatively small,
273	except in the Kuroshio and East China Sea provinces, where the intrusion of less saline
274	coastal water greatly affected the density structure of the water column. The σ_{θ} values
275	showed strong spatial autocorrelation, and the <i>p</i> -values based on Moran's I were $< 10^{-15}$ for
276	all three phytoplankton groups. As speculated from the peak depths of the three
277	phytoplankton groups (Figs. 3 and 4), the σ_{θ} values at the peaks of eukaryotes were generally
278	greater than those of the other two groups, and their latitudinal variation was the smallest
279	among the three groups (Fig. S4).
280	The latitudinal variation in the mean PAR at the peak depth was smaller than the variation
281	among the neighboring stations (Fig. 5). The mean PAR at the peak depth of Synechococcus

282	ranged between 0.2 and 9 mol quanta $m^{-2}~d^{-1},$ averaging 2.2 \pm 1.7 (mean \pm standard
283	deviation) mol quanta $m^{-2} d^{-1}$ (Fig. 7A), but no apparent geographical trend was observed. As
284	for Synechococcus, Prochlorococcus did not exhibit any geographical trend (Fig. 5B), and the
285	mean PAR at their peak depth was 1.2 ± 1.2 mol quanta m ⁻² d ⁻¹ . The latitudinal variation was
286	marginally distinguishable in the mean PAR at the peak depth of eukaryotes (Fig. 5C), which
287	was significantly higher (Kruskal-Wallice test, $p < 0.01$) in the subarctic provinces (2.6 ± 1.5
288	mol quanta $m^{-2} d^{-1}$) than in the other areas (1.0 ± 1.9 mol quanta $m^{-2} d^{-1}$). In both the
289	Kuroshio and North Pacific Subtropical Front (NPST) provinces in the transition area from
290	the subtropical to the subarctic regions, the PAR irradiance showed a significant positive
291	correlation with latitude ($p < 0.01$). In relation to this, the PAR irradiance in the North Pacific
292	Subtropical Gyre (NPSG) (0.3 ± 0.4 mol quanta m ⁻² d ⁻¹) was significantly lower ($p < 0.001$)
293	than in the other areas. The mean PAR irradiance at the peak depth of eukaryotic
294	phytoplankton was lower in the SPSG than at similar latitudes in the Indian Ocean (Kruskal-
295	Wallis test, $p < 0.01$), reflecting their deeper peak in the South Pacific (Fig. 5C). The <i>p</i> -values
296	of spatial autocorrelation of the mean PAR at the peak depth were larger than those of σ_{θ} ,
297	0.01, 0.05, and 0.13 for Synechococcus, Prochlorococcus, and eukaryotes, respectively.
298	The estimated N+N concentrations at the peak depths of each phytoplankton group (Figs.
299	6 and S5) were more dispersed than PAR irradiance and showed a clearer latitudinal
300	variation, especially for Synechococcus (Fig. 6A). The N+N concentration at the peak depth

301	of <i>Synechococcus</i> was frequently below the detection limit of the conventional method (50
302	nM) in subtropical gyres (Figs. 6A and S5A). The proportion of data points where the N+N
303	concentration at the abundance peak of Synechococcus was below the detection limit was
304	91% (29 of 32) and 64% (9 of 14) in the North Pacific Tropical Gyre (NPTG) and the SPSG,
305	respectively. In contrast, in the subarctic areas, the N+N concentration at the peak depth of
306	Synechococcus was higher than 10 μ M. In contrast, most of the eukaryote peaks were located
307	on or below the nitracline (Fig. 3F), and N+N concentrations at their peak depths were rarely
308	below the detection limit (Figs. 6C and S5C). Prochlorococcus showed an intermediate trend
309	between Synechococcus and eukaryotes (Fig. 6B), and the variation within an ocean province
310	was large, particularly in the subtropical and tropical gyres (Fig. S5B). For Prochlorococcus,
311	the proportion of data points where the N+N concentration was below the detection limit was
312	66% (21 of 32) and 63% (10 of 16) in the NPPTG and SPTG, respectively. The large
313	variation within an ocean province seemingly reflects the fact that the peak depth of
314	Prochlorococcus is frequently located near the nitracline, where the N+N concentration
315	varies most dramatically vertically. The spatial autocorrelation of the N+N concentration was
316	significant but weaker than that of σ_{θ} , with <i>p</i> -values < 10^{-5} .
317	The relative magnitude of the subsurface peak, M/C , was not significantly correlated with
318	any of the latitudes, daily mean PAR, or N+N concentration at the peak depth ($p > 0.05$) for
319	all three phytoplankton groups. In the generalized linear model with a gamma distribution,

320 the slope was not significantly different from zero (p > 0.05) regardless of the link function 321 adopted.

322

- 323 Discussion
- 324 Global trends of phytoplankton subsurface peak depths

325The present study clearly demonstrated that the peak depths of the pico- and nanophytoplankton cell concentrations varied horizontally with respect to the depth of the 326SCM (Figs. S2 and 4). The latitudinal variation was much greater than the longitudinal 327variation and the peak depth was deeper within the tropical and subtropical gyres in both 328 hemispheres (Fig. 3). Although data obtained by automated floats suggest that a significant 329330 proportion of SCM in subtropical gyres is formed by photoacclimation and is not accompanied by a peak in particulate organic carbon (Cornec et al. 2021a), the present study 331showed that the peaks in phytoplankton cell concentrations were observed even in these 332areas. Although it is worth noting that the peaks of cell abundance were not always 333concomitant with those of the population biomass, the present results (Fig. S1) demonstrate 334that it is valid to use the peak depth of phytoplankton cell concentration as a proxy for 335biomass peak depth (see Supporting Information). 336 The peak depths of *Synechococcus*, *Prochlorococcus*, and eukaryotes, were highly 337hierarchized vertically, particularly in the range of SCM > 40 m. The peak of *Synechococcus* 338

339	was the shallowest, whereas that of eukaryotes was the deepest, with the peak of
340	Prochlorococcus occurring between them. This trend was seen in stratified waters within the
341	Pacific and Indian Oceans, including the subarctic and marginal regions (Fig. 4). In less
342	stratified waters, for example, the Kuroshio province in the winter season, subsurface peaks
343	of cell concentrations were not detected. In the following paragraphs, we discuss the present
344	results in relation to previous model studies and laboratory culture studies to elucidate the
345	factors that can account for the vertical distribution pattern of each phytoplankton population.
346	Previous biophysical model studies have suggested that the subsurface maximum of
347	phytoplankton biomass in stratified open water occurs between the nutrient compensation
348	depth over the nutricline and light compensation depth (Beckman and Hense 2007; Gong et
349	al. 2015). This can account for the deeper peak depth in subtropical and tropical gyres, where
350	strong surface PAR and low light extinction allow light penetration into the deep layer. The
351	mean daily PAR values at SCM have been reported from the subtropical areas including the
352	North Pacific (0.5 mol quanta m ^{-2} d ^{-1} , Letelier et al. 2004), the South Pacific (~0.08 mol
353	quanta $m^{-2} d^{-1}$, Xing et al. 2013), and the North Atlantic (0.07 mol quanta $m^{-2} d^{-1}$, Cornec et
354	al. 2021a), showing a large study-to-study variation, which is consistent with the large
355	variation in the PAR values at abundance peak within a small area (Fig. 5). These values were
356	within the range of the mean daily PAR at the peak of eukaryotes in the NPSG in the present
357	study (0.3 ± 0.4 mol quanta m ⁻² d ⁻¹), which is reasonable considering the nearly 1:1

358	relationship between the eukaryote peak and SCM depths (Fig. 4C). However, the PAR level
359	at the SCM in the Black Sea was found to have fluctuated in a higher range (0.15–3.00 mol
360	quanta $m^{-2} d^{-1}$, Kubryakov et al. 2020). The higher PAR at the SCM in midlatitude areas than
361	in subtropical areas was recently observed from global observations as well (Yasunaka et al.
362	2022), which is consistent with the increase in the PAR level at the peak depth of eukaryotes
363	toward higher latitude in the northern hemisphere in the present study.
364	One of the most important findings of the present study was that the relative depth of
365	Synechococcus, Prochlorococcus, and eukaryotes to the SCM depth was relatively constant
366	across the different ocean provinces studied (Fig. 4), except for some stations in the subpolar
367	and marginal provinces, where SCM was not distinctly formed. This is surprising considering
368	that the taxonomic composition of eukaryotic phytoplankton in subsurface waters is different
369	among the ocean provinces (Furuya, 1990; Suzuki et al. 2002). Additionally, pico-sized
370	cyanobacteria, Synechococcus and Prochlorococcus, show distinct geographic variations in
371	their composition of different ecotypes (Zwirglmaier et al. 2007; 2008), which possess
372	different physiological and nutritional properties.
373	It is widely known that the cellular pigment content of phytoplankton increases with depth
374	because of photoacclimation and/or photoadaptation (Latasa et al. 2017). Thus, the
375	subsurface peak of the total pigment content of each phytoplankton group is expected to be
376	located deeper than the phytoplankton cell abundance maximum. Taking this effect into

377	account, the contribution of <i>Prochlorococcus</i> , the peak of which was located approximately
378	12% shallower than that of SCM (Fig. 4B) on average, is likely to be an important component
379	of SCM, especially in subtropical regions. The finding that the relationship between the peak
380	depth of eukaryotes and SCM depth was close to the 1:1 line (Fig. 4C) suggests that
381	eukaryotes significantly contribute to the chlorophyll content in the SCM layer over different
382	ocean provinces. This is reinforced by the taxon-specific chlorophyll-based biomass
383	estimation of phytoplankton using photosynthetic pigment analyses (Mackey et al. 1998;
384	DiTullio et al. 2003), which found that Prochlorococcus and eukaryotic phytoplankton
385	contributed in large proportions to the chlorophyll biomass in the subsurface water. The
386	integrated FL3 intensities of the three phytoplankton groups (Fig. S6) also support the
387	dominance of Prochlorococcus and eukaryotes in chlorophyll biomass at the SCM over
388	different ocean provinces, whereas the relative contributions of the two groups varied
389	according to province.
390	However, the correlation of each phytoplankton subsurface peak depth with SCM was
391	weaker in the range of SCM $<$ 40 m (Fig. 4). In this region, the SCM is often unclear, and the

392 chlorophyll fluorescence is relatively constant over its cline. In areas affected by riverine

input, such as the East China Sea, the chlorophyll maximum is sometimes formed near the

394 surface by dinoflagellates or buoyant cyanobacteria (Yue et al. 2021), which are not in the

detection range of a flow cytometer (see Materials and Methods). This likely accounts for the

396	deeper subsurface peaks of the three phytoplankton groups compared with the SCM in this
397	area (Fig. 4). In addition, it is possible that the subsurface peak of cell abundance was formed
398	by sinking cells, which are no longer vital and contain small amounts of pigments. Data
399	profiles obtained by automated floats also show that the subsurface maxima of chlorophyll
400	and particulate organic matter are formed only during a limited period of the year in subpolar
401	areas (Cornec et al. 2021a). Therefore, the conserved relative peak depths of each
402	phytoplankton group found in the present study were applied only to stratified water, where a
403	distinct SCM was maintained.
404	Vertical hierarchization of phytoplankton populations
405	In the equilibrium biophysical model (Beckman and Hense 2007; Gong et al. 2015),
406	affinity to nutrients and light harvesting capacity are considered to largely determine the
407	depth at which the maximum biomass of phytoplankton occurs, assuming that grazing and
408	vertical diffusion are constant. Thus, the populations that accumulate at shallow depths
409	demand high PAR irradiance but can survive on trace amounts of regenerated nutrients. In
410	contrast, a population that accumulates in the nutrient-rich deep layer is required to
411	effectively harvest the limited intensity of light. Considering the outcomes of these model
412	studies, the overall trends in the peak depths of the three phytoplankton groups seem to be
413	explained by their different physiological traits for nutrient and light acquisition. In the
414	following paragraphs, we discuss in more detail how these factors affect the relative peak

415 depth of each phytoplankton group.

416	In the present study, at the peaks of <i>Synechococcus</i> , N+N was depleted to an undetectable
417	level, particularly in the subtropical and tropical gyres (Figs. 6A and S5A). This outcome
418	indicates that Synechococcus was most abundant at depths far above the nitracline (Fig. 3F),
419	where the supply of oxidized nitrogen nutrients via upwelling or turbulence was scarce. Since
420	it is unlikely that Synechococcus facilitates nitrogen fixation or phagotrophy to fulfill
421	nitrogen demand, regenerated (ammonium) and/or organic nitrogen nutrients including urea
422	(Collier et al. 1999), amino acids (Paerl 1991), and peptides (Martinez and Azam 1993) are
423	assumed to be promising nitrogen sources for Synechococcus at their abundance peaks
424	The N+N concentration at which the Prochlorococcus cell concentration peaked was
425	generally higher than that of Synechococcus, and highly variable among neighboring stations
426	in the subtropical and tropical gyres (Fig. 6B). This suggests that the peaks of
427	Prochlorococcus appeared around the nitracline (Fig. 3F), where the vertical gradient of N+N
428	concentration was the largest. Although axenic cultures of Prochlorococcus lack the ability to
429	incorporate or assimilate nitrate or nitrite and to depend on ammonium and organic nitrogen
430	compounds as a nitrogen source (Rippka et al. 2000; Moore et al. 2002; Zubkov et al. 2003),
431	recent field studies (Casey et al. 2007; Berthelot et al. 2019) and genomic analyses (Martiny
432	et al. 2009; Barube et al. 2015) have demonstrated that some strains of <i>Prochlorococcus</i> can
433	assimilate nitrate and nitrite, and that assimilation occurs particularly in subsurface water,

434	whereas those that cannot utilize nitrate or nitrite mainly occupy the sunlit surface water. The
435	ability of Prochlorococcus to assimilate various chemical forms of nitrogen compounds
436	likely enables it to remain highly abundant in environments with a wide range of N+N
437	availability, as observed in the present study (Fig. 6B).
438	If we assume that the vertical segregation of different phytoplankton groups is determined
439	only by nutrient acquisition traits, the shallower peaks of Synechococcus than those of
440	Prochlorococcus cannot be explained. The smaller cell diameter of Prochlorococcus is
441	advantageous for incorporating a lower concentration of regenerated nutrients, which can
442	make them more prosperous in shallower waters than Synechococcus, contrary to the trend
443	observed in the present study (Figs. 3 and 4). A previous field experiment in the North Pacific
444	demonstrated that the proportion of regenerated nitrogen in the total assimilated nitrogen was
445	similarly high for both Synechococcus and Prochlorococcus (Berthelot et al. 2019), which
446	supports the idea that both cyanobacteria depend on regenerated nitrogen to similar degrees.
447	This suggests that their potential to incorporate regenerated nutrients at an extremely low
448	level is not sufficient to explain the shallower peak of Synechococcus than that of
449	Prochlorococcus. Another factor that can account for this difference may be the
450	characteristics of light utilization.
451	The different absorption spectra of photosynthetic pigments in Synechococcus and
452	Prochlorococcus can explain the shallower peak in Synechococcus. This concept was

 $\mathbf{24}$

453	incorporated into the biophysical model of Hickman et al. (2010), which successfully
454	reproduced the vertical segregation of Synechococcus and Prochlorococcus. While
455	Synechococcus can absorb green light using phycoerythrin, other phytoplankton groups that
456	inhabit deeper water utilize different wavelength regions of PAR for photosynthesis, which
457	were not utilized by Synechococcus. The high diversity of photosynthetic pigment repertoires
458	in eukaryotes may reflect niche segregation via light physiology. Niche segregation of
459	different phytoplankton groups based on the spectra of photosynthetic pigments has been
460	proposed for the horizontal distribution of phytoplankton worldwide as well (Holtrop et al.
461	2021). The results of this study provide further support for the applicability of the biophysical
462	model to a wide area of the open ocean.
463	The lack of a significant latitudinal trend in the mean daily PAR irradiance received at the
464	subsurface maxima of Synechococcus and Prochlorococcus in stratified waters (Figs. 5A and
465	B) in contrast to the large variation among neighboring stations suggests that the
466	geographical variation in their light physiology is not sufficiently large to cause a detectable
467	change in their critical light depth, assuming that the maximum layer occurs above their light
468	critical depth. Thus, the geographical segregation of different ecotypes of Synechococcus and
469	Prochlorococcus (Zwirglmaier et al. 2007; 2008), which possess different nutritional and
470	light physiology, does not strongly affect the population compensation light intensity of these
471	pico-sized cyanobacteria in the subsurface water and the latitudinal trend of their peak depth.

472	In contrast to cyanobacteria, eukaryotes showed weak latitudinal variation in PAR irradiance
473	received at their subsurface maximum (Fig. 5C). This is likely due to the phylum-to-class-
474	level geographical variation in the composition of eukaryotic phytoplankton (Furuya, 1990;
475	Suzuki et al. 2002). Algae of different phyla or classes possess different repertoires of
476	photosynthetic and accessory pigments, resulting in different absorption spectra. Recently, a
477	global dataset demonstrated that the daily PAR level at SCM varies latitudinally, which is
478	lower than the photosynthetically active level (0.415 mol quanta $m^{-2} d^{-1}$) in subtropical
479	waters but higher in equatorial and mid-latitude areas (Yasunaka et al. 2022). This latitudinal
480	variation is consistent with the present observations that chlorophyll biomass is dominated by
481	eukaryotes and Synechococcus at middle to high latitudes (Fig. S6) and that the mean PAR
482	level at the peak of eukaryotes was slightly elevated toward higher latitudes in the Northern
483	Hemisphere (Fig. 5C), suggesting that inter-regional variations in the phytoplankton
484	community structure and/or physiology can be associated with light intensity at the SCM.
485	
486	Future directions

The strong positive correlation among each subsurface maximum depth when the entire dataset from different ocean provinces was analyzed together (Fig. 4) demonstrates that there is a widely observed trend for the relative depth of each phytoplankton population in the stratified waters of the Pacific and Indian Oceans. Since a shallower subsurface peak of

491	Synechococcus than that of Prochlorococcus and eukaryotes was observed for the subtropical
492	Atlantic (Durand et al. 2001) as well, this trend is possibly a global one. On the other hand,
493	the observation that the depth and magnitude of the abundance peak varied considerably
494	among overlapping or neighboring stations (Figs. S2 and 4) suggests that each data point was
495	not in the equilibrium state proposed by modeling studies.
496	One factor that may account for the variability in the peak depth and magnitude is the
497	diurnal change in the mixed layer depth (Salihoglu 2009), oscillation by the internal wave
498	(Cullen et al. 1983), and mesoscale eddies (Li and Hansell, 2016; Cornec et al. 2021b). The
499	strong spatial autocorrelation in the σ_{θ} values at the peak depths (Fig. S4) demonstrates that
500	the density at the subsurface peak was highly similar among the neighboring stations, as
501	compared to the PAR level or N+N concentrations, suggesting that the subsurface abundance
502	peak moves vertically on the isopycnic surface. In addition to the physical uplift of the
503	subsurface peak itself, decoupling of the light depth and nutricline can affect the depth and
504	magnitude of the peak (Li and Hansell 2016; Xiu and Chai 2020). Although using a large
505	dataset (Fig. 4) can make the overall general trend visible, the vertical depth averaged over
506	different time points or longitudes on the fixed depth axis can obscure the peak of
507	phytoplankton biomass (Hense and Beckmann, 2008; Buitenhuis et al. 2012). Non-
508	equilibrium biophysical models incorporating time parameters are required to reproduce the
509	subsurface maximum in a real environment, even in highly stratified subtropical waters

 $\mathbf{27}$

510 during the summer.

511	In addition to the factors described above, many physiological and ecological factors may
512	also affect the vertical distribution of phytoplankton. In previous biophysical models,
513	nutritional strategies other than obligate autotrophy based on nitrate, nitrite, and ammonium,
514	have rarely been assumed. Although phagotrophy is a strategy for pico- and nano-sized
515	phytoplankton to overcome deficiencies in major nutrients (Arenovski et al. 1995; Sato et al.
516	2017), the contribution of mixotrophs to the total phytoplankton is generally minor or
517	negligible around the SCM in the open ocean (Arenovski et al. 1995; Sato and Hashihama
518	2019). In addition to bottom-up regulation, top-down regulation by microzooplankton grazing
519	may also affect the vertical distribution of phytoplankton. Microzooplankton grazing
520	demonstrates diel variation (Ng and Liu 2016), which can partly account for the temporal
521	change in the position or magnitude of the subsurface maxima of phytoplankton. However,
522	microzooplankton and phytoplankton abundance affect each other, which makes modeling
523	microzooplankton vertical distributions more complex (Li et al. 2011). A large dataset of
524	microzooplankton abundance and grazing is required at comparably high temporal and spatial
525	resolutions to reveal the interaction between phytoplankton and microzooplankton. The
526	inclusion of these parameters may explain the drastic variation in the relative magnitude of
527	the subsurface peak (M/C) , which was not explained by the environmental parameters
528	measured in this study.

530 **Conclusion**

The present study demonstrated that the relative depths of peak abundance of 531Synechococcus, Prochlorococcus, and eukaryotes to that of SCM were highly conserved 532throughout the Pacific and Indian Oceans, and that the depth patterns of their subsurface 533534peaks were in accordance with the physiological traits of their light and nutrient utilization reported in previous studies. These findings on the general trend of the peak depths of 535different phytoplankton groups make it possible to estimate the average pattern of the vertical 536distribution of each phytoplankton group in relation to that of chlorophyll. On the other hand, 537relatively large variations in the PAR level and nutrient availability at the subsurface peak 538depth between neighboring stations suggest that the vertical distribution of each 539phytoplankton group was not in the equilibrium state as predicted from model studies and 540was likely affected by temporally varying factors, including internal waves or eddies, and/or 541diel variations in physiological parameters. More elaborate trait-based biophysical models 542that do not assume equilibrium will help elucidate which factors affect the discrepancy from 543544the vertical distribution of phytoplankton predicted from the equilibrium model. 545

546 **Supporting information**

Table S1. The dataset of peak depths, peak ratios, mixed layer depths, SCM depths, 1% light

548	depths, and σ_{θ} , daily mean PAR, and N+N concentration at the peak of each phytoplankton
549	group, together with station information.
550	Supplemental methods and Figs. S1-S6 are provided as Supporting Information.
551	
552	Acknowledgements
553	We greatly appreciate all the crew members of the R/V Hakuho-maru, Tansei-maru, Shinsei-
554	maru, Mirai and Wakataka-maru for their assistance in ship work. Drs. Xin Liu and Iwao
555	Tanita kindly provided the dataset of nutrient concentrations. Dr. Sachihiko Ito provided
556	advice on physical processes. This study was financially supported by JSPS grants
557	(22710006, 24710004, 25850129, 15H02802, 17H01852, and 18H03361) and MEXT grants
558	(18067007, 24121003, and 24121006).
559	
560	
561	Conflicts of interest
562	The authors declare no conflicts of interest directly relevant to the content of this article.
563	
564	References
565	Ardyna, M. and others 2013. Parameterization of vertical chlorophyll a in the Arctic Ocean:
566	Impact of the subsurface chlorophyll maximum on regional, seasonal, and annual
567	primary production estimates. Biogeosciences 10: 4383-4404.

568	Arenovski, A. L., E. L. Lim, and D. A. Caron. 1995. Mixotrophic nanoplankton in		
569	oligotrophic surface waters of the Sargasso Sea may employ phagotrophy to obtain		
570	major nutrients. J. Plankton Res. 17: 801-820.		

- 571 Arrigo, K. R., P. A. Matrai, and G. L. van Dijken. 2011. Primary productivity in the Arctic
- 572 Ocean: Impacts of complex optical properties and subsurface chlorophyll maxima on
 573 large-scale estimates. J. Geophys. Res.: Oceans 116.
- Beckmann, A., and I. Hence. 2007. Beneath the surface: Characteristics of oceanic
 ecosystems under weak mixing conditions A theoretical investigation. Prog.
- 576 Oceanogr. 75: 771-796.
- Behrenfeld, M. J. and others 2006. Climate-driven trends in contemporary ocean productivity.
 Nature 444: 752-755.
- Berthelot, H. and others 2019. NanoSIMS single cell analyses reveal the contrasting nitrogen
 sources for small phytoplankton. ISME J. 13: 651-662.
- Berube, P. M. and others 2015. Physiology and evolution of nitrate acquisition in
 Prochlorococcus. ISME J. 9: 1195-1207.
- Buitenhuis, E. T. and others 2012. Picophytoplankton biomass distribution in the global
 ocean. Earth Syst. Sci. Data 4: 37-46.
- 585 Casey, J. R., M. W. Lomas, J. Mandecki, and D. E. Walker. 2007. Prochlorococcus

586 contributes to new production in the Sargasso Sea deep chlorophyll maximum.

- 587 Geophys. Res. Lett. 34: 5.
- 588 Collier, J. L., B. Brahamsha, and B. Palenik. 1999. The marine cyanobacterium
- 589 *Synechococcus* sp. WH7805 requires urease (urea amidohydrolase, EC 3.5.1.5) to
- utilize urea as a nitrogen source: molecular-genetic and biochemical analysis of theenzyme. Microbiology 145: 447-459.
- 592 Cornec, M. and others 2021a. Deep chlorophyll maxima in the global ocean: Occurrences,
- 593 drivers and characteristics. Global Biogeochem. Cy. 35: e2020GB006759.

- Cornec, M., R. Laxenaire, S. Speich, and H. Claustre. 2021b. Impact of mesoscale eddies on
 deep chlorophyll maxima. Geophys. Res. Lett. 48: e2021GL093470.
- Cullen, J. J., E. Stewart, E. Renger, R. W. Eppley, and C. D. Winant. 1983. Vertical motion of
 the thermocline, nitracline and chlorophyll maximum layers in relation to currents on
- the Southern California Shelf. J. Mar. Res. 41: 239-262.
- 599 Cullen, J. J. 2015. Subsurface chlorophyll maximum layers: Enduring enigma or mystery
 600 solved? Ann. Rev. Mar. Sci. 7: 207-239.
- 601 DiTullio, G. R., M. E. Geesey, D. R. Jones, K. L. Daly, L. Campbell, and W. O. Smith Jr.
- 602 2003. Phytoplankton assemblage structure and primary productivity along 170°W in
 603 the South Pacific Ocean. Mar. Ecol. Prog. Ser. 255: 55-80.
- DuRand, M. D., R. J. Olson, and S. W. Chisholm. 2001. Phytoplankton population dynamics
 at the Bermuda Atlantic Time-series station in the Sargasso Sea. Deep Sea Res. II 48:
 1983-2003.
- Field, C. B., M. J. Behrenfeld, J. T. Randerson, and P. Falkowski. 1998. Primary Production
 of the Biosphere: Integrating Terrestrial and Oceanic Components. Science 281: 237240.
- Furuya, K. 1990. Subsurface chlorophyll maximum in the tropical and subtropical western
 Pacific Ocean: Vertical profiles of phytoplankton biomass and its relationship with
 chlorophyll *a* and particulate organic carbon. Mar. Biol. 107: 529-539.
- 613 Gong, X., J. Shi, H. W. Gao, and X. H. Yao. 2015. Steady-state solutions for subsurface
- 614 chlorophyll maximum in stratified water columns with a bell-shaped vertical profile of615 chlorophyll. Biogeosciences 12: 905-919.
- Hense, I., and A. Beckmann. 2008. Revisiting subsurface chlorophyll and phytoplankton
 distributions. Deep-Sea Res. I 55: 1193-1199.
- Hickman, A. E., S. Dutkiewicz, R. G. Williams, and M. J. Follows. 2010. Modelling the
- 619 effects of chromatic adaptation on phytoplankton community structure in the

- 620 oligotrophic ocean. Mar. Ecol. Prog. Ser. 406: 1-17.
- Kubryakov, A. A., A. S. Mikaelyan, S. V. Stanichny, and E. A. Kubryakova. 2020. Seasonal
 stages of chlorophyll-*a* vertical distribution and its relation to the light conditions in
 the Black Sea from Bio-Argo measurements. J. Geophys. Res.: Oceans 125, doi:
- 624 10.1029/2020JC016790.
- Lande, R., W. K. W. Li, E. P. W. Horne, and A. M. Wood. 1989. Phytoplankton growth rates
 estimated from depth profiles of cell concentration and turbulent diffusion. Deep Sea
 Res. A 36: 1141-1159.
- Latasa, M., A. M. Cabello, X. A. G. Morán, R. Massana, and R. Scharek. 2017. Distribution
 of phytoplankton groups within the deep chlorophyll maximum. Limnol. Oceanogr.
 620 62: 665-685.
- Letelier, R. M., D. M. Karl, M. R. Abbott, and R. R. Bidigare. 2004. Light driven seasonal
 patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific
 Subtropical Gyre. Limnol. Oceanogr. 49: 508-519.
- Lewis, M. R., J. J. Cullen, and T. Platt. 1983. Phytoplankton and thermal structure in the
 upper ocean: consequences of nonuniformity in chlorophyll profile. J. Geophys. Res.
 88: 2565-2570.
- Li, Q. P., P. J. S. Franks, and M. R. Landry. 2011. Microzooplankton grazing dynamics:
 -parameterizing grazing models with dilution experiment data from the California
 Current Ecosystem. Mar. Ecol. Prog. Ser. 438: 59-69.
- Li, Q. P., and D. A. Hansell. 2016. Mechanisms controlling vertical variability of subsurface
 chlorophyll maxima in a mode-water eddy. J. Mar. Res. 74: 175-199.
- 642 Longhurst, A. R. 2007. Ecological Geography of the Sea, 2nd Edition ed. Academic Press.
- 643 Lorenzen, C. J. 1966. A method for the continuous measurement of in vivo chlorophyll
- 644 concentration. Deep Sea Res. Oceanogr. Abstr. 13: 223-227.
- 645 Mackey, D. J., H. W. Higgins, M. D. Mackey, and D. Holdsworth. 1998. Algal class

646	abundances in the western equatorial Pacific: Estimation from HPLC measurements of		
647	chloroplast pigments using CHEMTAX. Deep-Sea Res. I 45: 1441-1468.		
648	Martinez, J., and F. Azam. 1993. Aminopeptidase activity in marine chroococcoid		
649	cyanobacteria. Appl Environ. Microbiol. 59: 3701-3707.		
650	Martiny, A. C., S. Kathuria, and P. M. Berube. 2009. Widespread metabolic potential for		
651	nitrite and nitrate assimilation among Prochlorococcus ecotypes. Proc. Natl. Acad. Sci.		
652	106: 10787-10792.		
653	Masuda, Y. and others 2021. Photoacclimation by phytoplankton determines the distribution		
654	of global subsurface chlorophyll maxima in the ocean. Comm. Earth Environ. 2: 128.		
655	Mignot, A., H. Claustre, J. Uitz, A. Poteau, F. D'Ortenzio, and X. Xing. 2014. Understanding		
656	the seasonal dynamics of phytoplankton biomass and the deep chlorophyll maximum		
657	in oligotrophic environments: A Bio-Argo float investigation. Global Biogeochem. Cy.		
658	28: 856-876.		
659	Moore, L. R., A. F. Post, G. Rocap, and S. W. Chisholm. 2002. Utilization of different		
660	nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus.		
661	Limnol. Oceanogr. 47: 989-996.		
662	Morel, A., and JF. Berthon. 1989. Surface pigments, algal biomass profiles, and potential		
663	production of the euphotic layer: Relationships reinvestigated in view of remote-		
664	sensing applications. Limnol. Oceanogr. 34: 1545-1562.		
665	Ng, W. H. A., and H. Liu. 2016. Diel periodicity of grazing by heterotrophic nanoflagellates		
666	influenced by prey cell properties and intrinsic grazing rhythm. J. Plankton Res. 38:		
667	636-651.		
668	Paerl, H. W. 1991. Ecophysiological and trophic implications of light-stimulated amino acid		
669	utilization in marine picoplankton. Appl. Environ. Microbiol. 57: 473-479.		
670	Rippka, R. and others 2000. Prochlorococcus marinus Chisholm et al. 1992 subsp. Pastoris		
671	subsp. Nov. strain PCC 9511, the first axenic chlorophyll a2/b2-containing		

672	cyanobacterium (Oxyphotobacteria). Int. J. Syst. Evol. Microbiol. 50: 1833-1847.
673	Saijo, Y., S. Iizuka, and O. Asaoka. 1969. Chlorophyll maxima in Kuroshio and adjacent area.
674	Mar. Biol. 4: 190-196.
675	Salihoglu, B. 2009. Modeling the effect of ENSO on the lower trophic level ecosystem of the
676	Cold Tongue and the Warm Pool regions in the equatorial Pacific. J. Mar. Sys. 77: 160-
677	181.
678	Sato, M., S. Takeda, and K. Furuya. 2006. Effects of long-term sample preservation on flow
679	cytometric analysis of natural populations of pico-and nanophytoplankton. J.
680	Oceanogr. 62: 903-908.
681	Sato, M., S. Takeda, and K. Furuya. 2009. Responses of pico- and nanophytoplankton to
682	artificial iron infusions observed during the second iron enrichment experiment in the
683	western subarctic Pacific (SEEDS II). Deep Sea Res. II 56: 2745-2754.
684	Sato, M., F. Hashihama, S. Kitajima, S. Takeda, and K. Furuya. 2010. Distribution of nano-
685	sized Cyanobacteria in the western and central Pacific Ocean. Aquat. Microb. Ecol.
686	59: 273-282.
687	Sato, M., T. Shiozaki, and F. Hashihama. 2017. Distribution of mixotrophic nanoflagellates
688	along the latitudinal transect of the central North Pacific. J. Oceanogr. 73: 159-168.
689	Sato, M., and F. Hashihama. 2019. Assessment of potential phagotrophy by pico- and
690	nanophytoplankton in the North Pacific Ocean using flow cytometry. Aquat. Microb.
691	Ecol. 82: 275-288.
692	Suzuki, K., C. Minami, H. B. Liu, and T. Saino. 2002. Temporal and spatial patterns of
693	chemotaxonomic algal pigments in the subarctic Pacific and the Bering Sea during the
694	early summer of 1999. Deep-Sea Res. II 49: 5685-5704.
695	Takahashi, M., T. Nakai, T. Ishimaru, H. Hasumoto, and Y. Fujita. 1985. Distribution of the
696	subsurface chlorophyll maximum and its nutrient-light environment in and around the
697	Kuroshio off Japan. J. Oceanogr. Soc. Japan 41: 73-80.

698	Vaulot, D., W. Eikrem, M. Viprey, and H. Moreau. 2008. The diversity of small eukaryotic			
699	phytoplankton (< or = 3 μ m) in marine ecosystems. FEMS Microbiol. Rev. 32: 795-			
700	820.			
701	Veldhuis, M. J. W., and G. W. Kraay. 2004. Phytoplankton in the subtropical Atlantic Ocean:			
702	Towards a better assessment of biomass and composition. Deep-Sea Res. I 51: 507-			
703	530.			
704	Venrick, E. L. 1999. Phytoplankton species structure in the central North Pacific 1973-1996:			
705	variability and persistence. J. Plankton Res. 21: 1029-1042.			
706	Xing, X., D. Zhao, L. Wang, and W. Fan. 2013. Seasonal variation characteristics of			
707	subsurface chlorophyll maximum in the South Pacific subtropical gyre (in Mandarin).			
708	Gaojishu Tongxin/Chinese High Technology Letters 23: 1038-1047.			
709	Xiu, P., and F. Chai. 2020. Eddies affect subsurface phytoplankton and oxygen distributions			
710	in the North Pacific Subtropical Gyre. Geophys. Res. Lett. 47: e2020GL087037.			
711	Yasunaka, S., T. Ono, K. Sasaoka, and K. Sato. 2022. Global distribution and variability of			
712	subsurface chlorophyll <i>a</i> concentrations. Ocean Sci. 18: 255-268.			
713	Yue, J., M. A. Noman, and J. Sun. 2021. Kuroshio intrusion drives the Trichodesmium			
714	assemblage and shapes the phytoplankton community during spring in the East China			
715	Sea. J. Oceanol. Limnol. 39: 536-549.			
716	Zettler, E. R., R. J. Olson, B. J. Binder, S. W. Chisholm, S. E. Fitzwater, and R. Michael			
717	Gordon. 1996. Iron-enrichment bottle experiments in the equatorial Pacific: Responses			
718	of individual phytoplankton cells. Deep Sea Res. II 43: 1017-1029.			
719	Zubkov, M. V., B. M. Fuchs, G. A. Tarran, P. H. Burkill, and R. Amann. 2003. High rate of			
720	uptake of organic nitrogen compounds by Prochlorococcus cyanobacteria as a key to			
721	their dominance in oligotrophic oceanic waters. Appl. Environ. Microbiol. 69: 1299-			
722	1304.			
723	Zwirglmaier, K., J. L. Heywood, K. Chamberlain, E. M. Woodward, M. V. Zubkov, and D. J.			

- Scanlan. 2007. Basin-scale distribution patterns of picocyanobacterial lineages in the
- 725 Atlantic Ocean. Environ. Microbiol. 9: 1278-1290.
- 726 Zwirglmaier, K. and others 2008. Global phylogeography of marine *Synechococcus* and
- 727 *Prochlorococcus* reveals a distinct partitioning of lineages among oceanic biomes.
- 728 Environ. Microbiol. 10: 147-161.

Table 1. List of the cruises where vertical profiles of pico- and nanoplankton cell

Vessel	Cruise name	Period	Survey area
R/V Hakuho-maru	КН-03-2	Sep 2003	WN Pacific
	KH-04-3	Jul – Aug 2004	WN Pacific
	KH-08-2	Aug – Sep 2008	WN Pacific
	KH-11-10	Dec 2011 – Jan	WN Pacific – ES
		2012	Pacific
	KH-12-3	Jul – Aug 2012	WN Pacific
	KH-13-7	Dec 2013 – Jan	South Pacific
		2014	
	KH-14-3	Jun – Jul 2014	North Pacific
	KH-17-4	Aug – Sep 2017	North Pacific
	KH-18-6	Nov – Dec 2018	Eastern Indian Ocean
R/V Tansei-maru	KT-05-24	Sep – Oct 2005	East China Sea
	KT-06-21	Sep 2006	East China Sea
	KT-08-8	May 2005	Kuroshio
	KT-09-17	Sep 2009	East China Sea
	KT-10-19	Sep 2010	East China Sea
	KT-11-23	Sep 2011	East China Sea
	KT-12-24	Sep 2012	Kuroshio
R/V Shin-sei maru	KS-16-9	Jul 2016	WN Pacific
R/V Wakataka-	WK1006	Jun 2010	WN Pacific
maru			
	WK1705	May 2017	WN Pacific
R/V Mirai	MR10-01	Jan – Feb 2010	WN Pacific

concentrations were obtained. See Fig.1 for the locations of the stations.

Fig. 1. Sampling sites. Solid circles demonstrate sampling stations. Dashed lines demonstrate

the borders of ocean provinces as defined by Longhurst (2007). Abbreviations: ECS: East

- 735 China Sea; ISSG: Indian South Subtropical Gyre; KURO: Kuroshio; MONS: Indian
- 736 Monsoon Gyre; NPSTW: North Pacific Subtropical Front (West); NPTGE: North Pacific
- 737 Tropical Gyre (East); NPTGW: North Pacific Tropical Gyre (West); PSAGW: Pacific
- 738 Subarctic Gyre (West); SPSG: South Pacific Subtropical Gyre.

Fig. 2. Example of curve fitting to the vertical distribution of phytoplankton. The cell concentration of eukaryotic pico- and nanophytoplankton was derived from St. 10 (21.5 °N, 165 °E) during the KH-17-4 cruise. C, p, a, and M show each parameter in Equation (1). Briefly, C and M are indicative of base and peak abundance, respectively. The parameters pand a indicate the depth and width of the subsurface peak, respectively.

Fig. 3. Box plots of the estimated peak depths (m) of Synechococcus (A), Prochlorococcus

(B), and eukaryotic phytoplankton (C), the mixed layer depth (D, m), and the SCM depth (E,
m), as classified by ocean provinces (Longhurst 2007). Horizontal bars indicate the 25%,

753	50%, and 75% percentiles. Small squares and error bars demonstrate average values and
754	standard deviations. Solid diamonds demonstrate outliers. Same alphabets above or below the

- box indicate that there was no significant difference between the two provinces (Tukey-
- 756 Kramer test, p > 0.05). Abbreviations are as in Fig. 1.

Fig. 4. Peak depths (m) of Synechococcus (A), Prochlorococcus (B), and eukaryotic phytoplankton (C) cell abundance plotted against the SCM depths (m). Different symbols indicate different ocean provinces (Longhurst 2007). Solid, gray, and blank symbols show subarctic, marginal or equatorial, and subtropical provinces, respectively. The solid line denotes a regression line. The dotted line denotes a 1:1 relationship.

Fig. 5. Mean daily irradiance of photosynthetically available radiation (mol quanta m⁻² d⁻¹)
received by *Synechococcus* (A), *Prochlorococcus* (B), and eukaryotic phytoplankton (C) at
their peak depth, as plotted against latitude. Different symbols indicate different ocean
provinces (Longhurst 2007). Solid, gray, and blank symbols show subarctic, marginal or
equatorial, and subtropical provinces, respectively. Horizontal dotted lines indicate values
averaged over the dataset.

Fig. 6. Concentration of nitrate and nitrite (N+N) at the cell concentration peak depths of *Synechococcus* (A), *Prochlorococcus* (B), and eukaryotic phytoplankton (C), as estimated by
linear interpolation of the discrete distribution. Different symbols indicate different ocean
provinces (Longhurst 2007). Solid, gray, and blank symbols show subarctic, marginal or
equatorial, and subtropical provinces, respectively. When the value was below the detection
limit of the applied method, it was plotted as the detection limit. Horizontal dotted lines
indicate the lower detection limit by the conventional method (0.05 μM).