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A B S T R A C T

Foreground object identification can be considered as anomaly detection in a redundant background. This paper
proposes unsupervised deep learning of foreground objects on the basis of the prior knowledge about spatio-
temporal sparseness and low-rankness of foreground objects and background scenes. The proposed framework
trains a U-Net model to encode and decode the sparse foreground objects in batches of input images with low-
rank backgrounds, by minimizing a combination of nuclear and 𝓁1 norms as a loss function. This approach is
similar to background subtraction based on robust principal component analysis (RPCA): an iterative method
that detects sparse foreground objects as outliers while learning the principal components of the linearly
dependent background. In contrast, the proposed method is advantageous over RPCA in that once the U-Net
model has learned enough features common to the foreground objects, it can robustly detect them from any
single image regardless of the low-rankness and sparseness. The U-Net also enables online object segmentation
with much less computational expense than that of RPCA. These advantages are illustrated with background
subtraction in video surveillance. It is also shown that the proposed method can build up a well-generalized
cell segmentation model from only a few dozen unannotated training images.
. Introduction

Our objective is to obtain informative image features with minimal
upervision, by leveraging prior knowledge. It is observed that struc-
ural events or spatially structured patterns in images often result in a
equence or set of images that exhibit recurring and redundant features.
n the other hand, unusual or abnormal events of interest tend to
ause sparse outlying features. In many cases, the combination of such
edundant and sparse features can be represented by a low-rank and
parse (L+S) model.

The L+S modeling has proven to be a successful approach for
nalyzing various types of time-series data. This includes surveil-
ance videos that capture both the background and foreground ele-
ents (Candès et al., 2011; Guyon et al., 2012), optical-flow sequences

hat involve egomotion and object motion (Sakai and Kuhara, 2015),
ltrasound images with clutter and blood flow (Zhang et al., 2020), mu-
ic with accompaniment and singing voice components (Huang et al.,
012), and even respiratory auscultation sounds (Sakai et al., 2016).
hese instances underscore the inherent versatility of the L+S model,
ositioning it as an invaluable asset for processing and analyzing a
ollection of high-dimensional data across diverse domains.

The paradigmatic use of the L+S model manifests in robust principal
omponent analysis (RPCA) (Skočaj et al., 2007; Candès et al., 2011),

powerful technique designed to effectively capture the low-rank

∗ Corresponding author.
E-mail address: ktakeda@nagasaki-u.ac.jp (K. Takeda).

structure of a high-dimensional dataset by isolating sparse outliers. This
analytical framework has been further fortified by the development of
efficient algorithms tailored for RPCA or L+S approximation (Bouw-
mans and Zahzah, 2014). Beyond its classical applications, the L+S
modeling finds resonance in the realm of deep learning techniques. G-
LBM (Rezaei et al., 2020) employs a variational auto-encoder to learn
the background as a low-dimensional manifold and segment foreground
objects as outliers. Another innovative approach, CORONA (Solomon
et al., 2020), inserts trainable convolutional layers into the computation
graph of the iterative shrinkage/thresholding algorithm applied to
RPCA for ultrasound image processing. A recent proposal (Cai et al.,
2021) presents an efficient, learnable RPCA variant, circumventing the
need for singular value thresholding in the computation graph.

While all these existing methodologies based on the L+S model
can separate sparse foreground from a low-rank background without
requiring annotations, they share a common limitation — they ex-
clusively focus on learning background components, neglecting the
distinctive features of foreground components. This drawback becomes
evident in scenarios where the focus should be on extracting features
specific to foreground components. As an illustrative example, consider
the context of surveillance videos targeting foreground pedestrians;
background components learned in one scene may not be suitable for
background subtraction in videos taken from different viewpoints, even
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Fig. 1. Our U-Net-based model for online foreground separation. The model takes an input image composed of 𝑚 pixel values represented by 𝒅(𝑗) ∈ R𝑚. Using the dual-frame
U-Net architecture (Han and Ye, 2018), the model estimates the sparse foreground image as 𝒔(𝑗) ∈ R𝑚. Each box with a number in the figure corresponds to a tensor of feature
maps and its number of channels. The matrices 𝐋,𝐒 ∈ R𝑚×𝑛 store the output images as column vectors 𝒍(𝑗) = 𝒅(𝑗) − 𝒔(𝑗) and 𝒔(𝑗) for 𝑗 = 1,… , 𝑛. During the training phase, the model’s
parameters Θ are optimized to minimize the sum of nuclear and 𝓁1 norms, as shown in Eq. (9). This minimization results in 𝐋 and 𝐒 being respectively as low-rank and sparse
s possible.
ource: Extracted from our DICTA paper (Takeda et al., 2022)
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hen the foreground comprises consistent objects like pedestrians. In
he domain of foreground object segmentation, where supervised deep
earning stands as the mainstream approach (Kalsotra and Arora, 2022),
here exists untapped research potential for exploring the incorporation
f low-rank and sparse priors. Such exploration could lead to the
evelopment of methodologies for unsupervised learning, specifically
ailored to extract features pertinent to the sparse foreground of in-
erest in situations where annotated training datasets are scarce or
mpractical.

We introduce an innovative approach for semantic object segmenta-
ion using unsupervised deep learning that capitalizes on low-rank and
parse priors for training. Our method leverages a popular hourglass-
ike model with convolutional layers, illustrated in Fig. 1, which is
dept at encoding and decoding local and sparse foreground features.
o train our model, we adopt the sum of nuclear and 𝓁1 norms, which
erves as the objective function of RPCA, as the loss function to mini-
ize with respect to the model parameters. In comparison to the other

ecent deep learning-based methods mentioned above, our method
tands out as the most succinct and pragmatic approach for identifying
earned sparse foregrounds amidst cluttered backgrounds. Our model
an learn the features of sparse components of training datasets with-
ut supervision, making it ideal for unsupervised segmentation tasks.
fter acquiring sufficient knowledge about the features of foreground
bjects, our model can isolate them in any given scene, irrespective of
heir level of sparseness. Hence, there is no need to retrain the model to
uit different backgrounds, resulting in computationally efficient online
egmentation of target objects whose features have been assimilated as
he sparse components of training datasets. We show these advantages
n background subtraction and foreground object segmentation tasks.

e also prove the generalization capability of our model through cell
egmentation, where it was trained with a small-scale dataset.

Key contributions of this article include:
2

• development of an unsupervised deep learning method for online
detection of foreground objects,

• introduction of a novel loss function combining nuclear and
sparsity-inducing norm,

• outperformance over the traditional robust principal component
analysis (RPCA) in both computational efficiency and output
quality, and

• demonstration of high generalizability utilizing limited amounts
of unannotated data in the application to video surveillance and
cell segmentation.

his article serves as an extension to our conference paper presented at
ICTA 2022 (Takeda et al., 2022). Novel contributions of this article

nclude:

• comparison on sparsity-inducing loss functions 𝓁1 and SCAD,
• additional evidence that our model learns discriminative features

of foreground objects without supervision, and
• intensive evaluation on the segmentation generalizability regard-

ing dataset size and diversity.

. Low-rank and sparse (L+S) model

Consider a batch of 𝑛 𝑚-dimensional vector data denoted by {𝒅(𝑗)}
here each vector 𝒅(𝑗) ∈ R𝑚. Assume that {𝒅(𝑗)} can be decomposed

into two distinct batches: {𝒍(𝑗)} and {𝒔(𝑗)}. The first batch {𝒍(𝑗)} has
edundancy, meaning that the vectors in this batch are linearly de-
endent on each other. We can measure this dependence using an 𝑚
y 𝑛 matrix 𝐋 = [𝒍(1),… , 𝒍(𝑛)] ∈ R𝑚×𝑛, which has low-rankness. On
he other hand, the second batch {𝒔(𝑗)} has a sparse nature, meaning
hat most of its entries are zero. We can measure the sparsity of this
atch by counting the number of nonzero entries in the 𝑚 by 𝑛 matrix
= [𝒔(1),… , 𝒔(𝑛)] ∈ R𝑚×𝑛.
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The L + S model is a technique used to represent a given matrix
= [𝒅(1),… ,𝒅(𝑛)] ∈ R𝑚×𝑛 as the sum of a low-rank matrix 𝐋 and

sparse matrix 𝐒. Finding the best L + S model for a given 𝐃 is a
constrained multi-objective optimization problem. The objective is to
minimize both the rank of 𝐋 and the 𝓁0 norm of 𝐒, subject to the
constraint that 𝐃 = 𝐋 + 𝐒:

Minimize
(𝐋,𝐒)

{

rank𝐋, ‖𝐒‖0
}

subject to 𝐃 = 𝐋 + 𝐒. (1)

The rank of 𝐋, rank𝐋, represents the maximal number of linearly
independent columns of 𝐋, while the 𝓁0 norm of 𝐒, ‖𝐒‖0, counts
he number of nonzero entries in 𝐒. The goal is to find the pair of
atrices that best approximates 𝐃 by recovering a low-rank matrix

from the data corrupted by sparse, unknown errors. This approach is
known as robust principal component analysis (RPCA). Unlike classical
PCA, which assumes small and dense noise, the entries in 𝐒 can have
arbitrarily large magnitudes, and its support is assumed to be sparse
but unknown beforehand. Unfortunately, the optimization problem in
Eq. (1) is computationally intractable.

Fortunately, it has been shown that the optimal (𝐋,𝐒) for the prob-
lem described in Eq. (1) can be obtained by solving the following
convex optimization problem (Candès et al., 2011):

Minimize
(𝐋,𝐒)

‖𝐋‖∗ + 𝜆‖𝐒‖1 subject to 𝐃 = 𝐋 + 𝐒. (2)

Here, the nuclear norm of 𝐋, ‖𝐋‖∗, is defined as the sum of the singular
values of 𝐋, whereas the matrix 𝓁1 norm of 𝐒, ‖𝐒‖1, is defined as the
sum of the absolute values of the matrix entries. Minimizing the nuclear
norm ‖𝐋‖∗ and the matrix 𝓁1 norm ‖𝐒‖1 encourages low-rankness and
sparsity in 𝐋 and 𝐒, respectively, as these norms can be considered as
convex envelopes of the matrix rank and 𝓁0 norm. The hyperparameter
𝜆 > 0 balances the contributions of these norms to the minimizers.

The objective function in Eq. (2) is non-differentiable at the low-
rank and sparse matrices (𝐋,𝐒) ∈ R𝑚×𝑛 × R𝑚×𝑛, as it involves the
non-differentiable nuclear norm and 𝓁1 norm. Therefore, gradient-
based methods are unable to provide optimal low-rank and sparse
matrices, but can only obtain their coarse approximations. To tackle
this issue, practical algorithms for RPCA via principal component pur-
suit (Bouwmans and Zahzah, 2014) are typically designed based on
proximal methods. For instance, one can use the alternating directions
method of multipliers (ADMM) (Gabay and Mercier, 1976; Boyd et al.,
2011) to derive the following iteration steps:

𝐋 ← svt(𝐃 − 𝐒 − 𝐄, 1∕𝜌), (3)
𝐒 ← soft(𝐃 − 𝐋 − 𝐄, 𝜆∕𝜌), and (4)
𝐄 ← 𝐄 + 𝐋 + 𝐒 − 𝐃. (5)

Here, 𝜌 is an arbitrary positive constant. In Eq. (3), the singular value
thresholding operation (Cai et al., 2010; Ma et al., 2011), denoted as
svt, is defined as

svt(𝐐, 𝜏) = 𝐔 soft(𝐊, 𝜏)𝐕⊤, (6)

where 𝐔, 𝐊, and 𝐕 are the singular value decomposition (SVD) of
𝐐 = 𝐔𝐊𝐕⊤, and 𝜏 ≥ 0 is a threshold applied to the singular values
which make up the diagonal matrix 𝐊. The soft thresholding opera-
tion (Daubechies et al., 2004; Donoho, 1995), denoted as soft in Eqs. (4)
and (6), is defined as

soft(𝑞, 𝜏) = sign(𝑞) max(|𝑞| − 𝜏, 0), (7)

and works element-wise on matrices. The thresholding operations, svt
and soft, correspond to the proximal mappings with respect to the
nuclear and 𝓁1 norms, respectively.

The ADMM algorithm is a powerful optimization technique that
can provide solutions with guaranteed convergence rates and is widely
used for RPCA problems. However, the RPCA method involves compu-
tationally intensive SVD in the iteration step, even though the ADMM

algorithm can produce an acceptable approximate solution with only a

3

few hundred iterations in practice. Furthermore, RPCA does not provide
any insight into the features of the sparse component.

An alternative approach to estimate the sparse component 𝒔 of a
test input 𝒅 is to remove the principal components represented by the
columns of the matrix 𝐔. This can be done by decomposing 𝒅 into its
vector projection 𝒅∥ = 𝐔𝐔⊤𝒅 and vector rejection 𝒅⟂ = 𝒅 − 𝒅∥ with
respect to the principal subspace of {𝒍(𝑗)}. Assuming that 𝒅 = 𝒍 + 𝒔,
where the principal components can express 𝒍 as 𝐔𝒂, we can estimate
𝒔 as the vector rejection 𝒅⟂ since

𝒅⟂ = (𝒍 + 𝒔) − 𝐔𝐔⊤(𝐔𝒂 + 𝒔) = 𝒔 − 𝐔𝐔⊤𝒔. (8)

If 𝒔 is sparse, and therefore the vector projection of 𝒔 onto the principal
subspace, given by 𝐔𝐔⊤𝒔, is negligibly small, the vector projection and
rejection, 𝒅∥ and 𝒅⟂, respectively approximate 𝒍 and 𝒔 well.

3. Unsupervised deep learning with low-rank and sparse priors

3.1. U-net-based model

We propose a novel deep neural network model for detecting fore-
ground objects in images. The architecture of our model is illustrated
in Fig. 1. Given a batch of input images {𝐝(𝑗)}, where each 𝐝(𝑗) ∈
R𝑚×𝑐𝑑 is a column vector storing 𝑚 pixel values of the 𝑗th image
with 𝑐𝑑 color channels, our model takes 𝐝(𝑗) as input, processes it as
a two-dimensional image, and outputs the corresponding foreground
and background images as 𝒔(𝑗) and 𝒍(𝑗) in grayscale, respectively. The
foreground objects are detected as the non-zero entries of 𝒔(𝑗).

There are a variety of hourglass-like model (Siddique et al., 2021)
to encode and decode convolutional image features to produce 𝒔(𝑗). We
employ a dual-frame U-Net (Han and Ye, 2018) with a set of learnable
parameters, 𝛩. The background image 𝒍(𝑗) is obtained by subtracting
the foreground image 𝒔(𝑗) from the grayscale-converted input image
𝒅(𝑗). The dual-frame U-Net is a convolutional neural network with an
hourglass structure. One of its unique features is that it subtracts the
features right before upsampling in the decoder from the features right
after pooling in the encoder at each level. The encoder in U-Net loses
the fine structure of an input image with each pooling operation while
processing the remaining coarse structure for feature extraction. The
dual-frame U-Net addresses this imbalance between the coarse and fine
structure, making it appropriate for learning foreground object with
fine structure.

It is important to note that the optimal number of channels and lay-
ers for our model may vary depending on the target application. Unlike
RPCA, our model can be designed to handle multiple channels of image
input, including color, providing greater flexibility and versatility for a
wider range of applications.

3.2. Training by inducing low-rankness and sparseness

We employ the U-Net-based model, shown in Fig. 1, to perform
foreground-background separation. Given a batch of training images,
denoted as {𝐝(𝑗)} with 𝑗 = 1,… , 𝑛, we construct matrices 𝐋,𝐒 ∈
R𝑚×𝑛 by using the corresponding batches of model outputs, {𝒍(𝑗)} and
{𝒔(𝑗)}, respectively, as their columns. Following the RPCA approach, we
optimize the model parameters 𝛩 by minimizing the objective function
in Eq. (2) as the loss function:

Minimize
𝛩

‖𝐋‖∗ + 𝜆‖𝐒‖1, (9)

where 𝐃 = 𝐋 + 𝐒 is guaranteed by the model’s architecture. The
minimization of nuclear norm and 𝓁1 norm encourages low-rankness
and sparseness of 𝐋 and 𝐒, respectively.

There are other proposed functions that promote sparsity. One such
function is the smoothly clipped absolute deviation (SCAD) (Fan and
Li, 2001), which connects the 𝓁1 and 𝓁0 norms as

𝑔(𝑥) =

⎧

⎪

⎨

⎪

𝜆|𝑥| (|𝑥| ≤ 𝜆)
𝑥2−2𝑎𝜆|𝑥|+𝜆2

2(𝑎−1) (𝜆 < |𝑥| ≤ 𝑎𝜆)
1 2

(10)
⎩ 2 (𝑎 + 1)𝜆 (𝑎𝜆 < |𝑥|)
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where 𝑎 ≈ 3.7 is recommended. The sparsity-inducing function 𝑔(𝑥)
erves as a substitute for the 𝓁1 norm in the optimization of model
arameters 𝛩:

inimize
𝛩

‖𝐋‖∗ +
𝑚
∑

𝑖=1

𝑛
∑

𝑗=1
𝑔(𝑆𝑖𝑗 ). (11)

ere, 𝑆𝑖𝑗 is the 𝑖𝑗-th entry of 𝐒. In contrast to the 𝓁1 norm, which
mploys the penalty function 𝑔(𝑥) = 𝜆|𝑥|, the SCAD function quantifies

the number of non-zero matrix entries rather than their magnitudes:
for any non-zero 𝑥 value exceeding 𝑎𝜆, the SCAD function 𝑔(𝑥) remains
constant disregarding the magnitude of 𝑥.

It is worth noting that the proposed approach is unsupervised learn-
ing, which does not require ground truth output for training. Although
it is theoretically reasonable to set 𝜆 = 1∕

√

max(𝑚, 𝑛) (Candès et al.,
011) in Eq. (2), we suggest performing cross-validation with ground
ruth evaluation to find the better value for 𝜆 in Eqs. (9) and (11), and
ther hyperparameters such as the number of channels in the U-Net.

For the sake of convenience, we have implemented the U-Net-based
odel as shown in Fig. 1, and optimize its parameters using an autodiff

ystem, PyTorch (Paszke et al., 2019) with the loss function defined in
q. (9). To introduce the nuclear norm, we use the SVD computation
hich is provided as an automatically differentiable function by the
utodiff system. However, the SVD computation is not required during
he inference stage after the model has been trained. Instead, the
odel simply computes the foreground image 𝒔 through the forward
ropagation of the dual-frame U-Net from any input image 𝐝. The input
oes not necessarily have to consist of multiple images, possess low-
ank or sparse characteristics, or be restricted to grayscale. Our model
s capable of producing 𝒔 on the basis of the learned features. Since the
onzero pixels of the output 𝒔 from the dual-frame U-Net indicate the
egions of foreground objects, the foreground segmentation is achieved
y simply binarizing the absolute values of 𝒔.

. Experimental evaluation

.1. Comparison with RPCA in background subtraction

We evaluated our unsupervised deep learning approach for online
ackground subtraction by comparing it with RPCA. We conducted the
valuation on the ‘‘airport’’ sequence (Li et al., 2004), which consists
f 3,584 color images of size 144 × 176, numbered from #1,000 to
4,583, depicting surveillance footage of pedestrians as foreground
bjects. For the fair comparison to RPCA, we converted the colors to
rayscale values ranging from 0 to 1 and randomly select 50 frames
rom #1,000 to #1,600 for training, ensuring that none of them include
edestrians that appear in the remaining frames for validation and
est. To evaluate the performance, we used 20 images with ground
ruth annotation of the foreground pedestrian regions. Ten of these
mages were used to validate hyperparameters, while the remaining ten
ere used to test the foreground segmentation performance. Another
xperiment with colored images is shown at later Section 4.3.

Our U-Net-based model has the same architecture as shown in
ig. 1, and treats the training images as a tensor of size 50×1×144×176.
o compute the loss function, the output tensors are organized into
atrices 𝐋 and 𝐒 with 𝑚 = 144 × 176 = 25,344 dimensions and 𝑛 = 50

olumn vectors of pixel values of corresponding output images. We used
dam optimizer (Kingma and Ba, 2015) to obtain the optimal model
arameters 𝛩 for the dual-frame U-Net. We trained two U-Net models
o minimize the loss function as shown in Eqs. (9) and (11). We refer
o these models as ‘‘U-Net-𝓁1’’ and ‘‘U-Net-SCAD’’, respectively.

We employed Optuna (Akiba et al., 2019) to adjust the hyperparam-
ters: the number of channels 𝑐 in the convolutional layers of the model,
he threshold used to binarize the nonzero pixels of the foreground
bject, the weight 𝜆 of the loss function, the learning rate of Adam,
nd the number of training epochs. We tuned these hyperparameters to

chieve the best Dice similarity coefficient (DSC) (Dice, 1945) between

4

Fig. 2. Box plot of evaluation scores for foreground segmentation results of test images
in the ‘‘airport’’ sequence. The red line and green diamond indicate the median and
mean scores. The Dice similarity coefficients (DSC) metric represents the harmonic
mean of precision and recall, which respectively evaluate over- and under-segmentation.
A higher DSC value indicates better segmentation performance. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

the segmentation result by binarization and the corresponding ground
truth of the validation images.

For the RPCA test result, we binarized the vector rejection in Eq. (8)
using the matrix of principal components, 𝐋, obtained by iterating
Eqs. (3), (4) and (5) with 𝜌 = 1 on the training images. We determined
the best hyperparameters, the binarization threshold and the weight 𝜆
n Eq. (2), using Optuna on the validation images in the same manner as
ith our model hyperparameters. Table 1 presents the hyperparameter
alues we found.

We performed 20 repetitions of model training and testing, and
resented the results of foreground segmentation performance on the
est images in Fig. 2. Both U-Net-𝓁1 and U-Net-SCAD demonstrate
imilar DSC scores, which are significantly better than those of vector
ejection. U-Net-SCAD achieves a balanced precision and recall, result-
ng in a slight improvement in the detection of missed foreground pixels
ompared to U-Net-𝓁1. Vector rejection, on the other hand, shows low
recision and is incapable of avoiding numerous false detections from
he background.
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a

Fig. 3. Example of background subtraction and foreground segmentation of a test image from the ‘‘airport’’ sequence. The top-left panel shows the input image, and the top-right
panel displays the ground truth foreground regions (pedestrians). Our models, U-Net-𝓁1 and U-Net-SCAD, were trained using 50 randomly chosen images from this sequence. We
lso computed the principal components using the same training set to obtain the vector projection 𝒅∥ and rejection 𝒅⟂. Although the test input image (frame #2,926) was not

part of the training set, RPCA used 50 successive images including this test frame to produce the results shown in the bottom row.
Fig. 3 shows an example of the background subtraction outcomes for
a test image in the sequence. The results demonstrate that our U-Net-
𝓁1 and U-Net-SCAD models identify almost all portions of individuals
in the scene as foreground objects represented by 𝒔, leaving behind
only faint silhouettes in the background represented by 𝒍 = 𝒅 − 𝒔. The
main difference between the two models lies in the pixel values of 𝒔.
Fig. 4 shows the distributions of the pixel values in the foreground
and background regions based on the ground truth. U-Net-𝓁1 tends to
underestimate the absolute values in the foreground regions, while U-
Net-SCAD provides high contrast foreground images and therefore the
foreground pixels are less likely to be missed.

On the other hand, background subtraction using principal compo-
nents has several drawbacks in capturing the foreground. The vector
projection 𝒅∥ shows a human silhouette at the upper center of the
image, that does not exist in the test image. This person was standing
still in many of the training images, and thus was represented by the
background’s principal components, affecting the vector rejection 𝒅⟂ =
𝒅 − 𝒅∥. Due to the inaccurate subtraction, binary thresholding of the
vector rejection 𝒅⟂ results in unavoidable false detections.

In the bottom row of Fig. 3, we also present the conventional RPCA
result obtained by directly applying the ADMM algorithm to a batch
of 50 successive frames including this test image. The hyperparameters
were adjusted to obtain the best DSC for the test image: The 𝓁1 regular-
ization coefficient 𝜆 was 7.7 × 10−3, and the binarization threshold was
0.08. Despite these adjustments, our models outperforms the RPCA in
terms of detecting foreground objects. For instance, the person with a
suitcase in the upper center and the person near the pillar in the upper
5

left corner of the test image are represented in the background 𝒍 by
RPCA due to their almost stationary nature, while our models can de-
tect them as foreground 𝒔. Furthermore, RPCA tends to detect isolated
pixels that do not form human shapes. This comparison indicates that
our model can learn the apparent shapes of sparse foreground objects
without the deed for annotation.

Our model detects pedestrians with similar appearance to those
in the training scene. Fig. 5 shows the detection results for the test
frame #3,434. Our model could detect almost all pedestrians but the
leftmost pedestrian in Fig. 5. This was because the training dataset did
not include such a pedestrian with gray appearance. RPCA was also
poor at detecting the two leftmost pedestrians because of their small
movement. The vector rejection could roughly detect all pedestrians
regardless of their appearance, but it suffers from the false positive
detection of a spurious human silhouette standing still in background.

An additional benefit of our approach is its computational effi-
ciency. We were able to train the U-Net-𝓁1 model in just two minutes,
using a single NVIDIA Tesla T4 GPU on Google Colaboratory. Moreover,
our models have achieved an output rate of around five hundred frames
per second, which is about twenty-four times faster than RPCA’s 𝑛 = 50
frame output time. As RPCA relies on SVD of O(𝑚𝑛2) complexity, our
U-Net-based models become increasingly advantageous for processing
large 𝑛 frames.

Our approach of learning foreground objects has a clear advantage
especially when the background changes are significant. Our U-Net-
based models have learned to estimate the foreground, allowing them

to generalize well and tolerate realistic changes in camera geometry.
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Fig. 4. Distribution of pixel values in the estimated foreground image represented by the model output 𝒔 for the test input 𝒅 (frame #2,926). The histograms were made separately
for the foreground and background regions based on the ground truth. The threshold for each model output was obtained via hyperparameter tuning, as shown in Table 1.
Fig. 5. Same as Fig. 3 for the test input image #3,434.
Table 1
Hyperparameters employed in the background subtraction of ‘‘airport’’ sequence. The number of channels in the convolutional layers are defined by 𝑐.

Model 𝜆 Binarization threshold 𝑐 Learning rate #epochs

U-Net-𝓁1 (Eq. (9)) 4.3 × 10−3 0.13 29 4.5 × 10−2 283
U-Net-SCAD (Eq. (11)) 2.3 × 10−2 0.07 23 2.0 × 10−2 363
Vector rejection 𝒅⟂ (Eq. (8)) 1.5 × 10−2 0.10 – – –
6
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Fig. 6. Background subtraction performed on a test image magnified by a factor of 1.2. The foreground regions were estimated with U-Net-𝓁1 and vector projection and rejection,
following the same techniques as demonstrated in Fig. 3.
Table 2
Hyperparameters used for training two distinct models, namely the unsupervised U-Net-𝓁1 model and the supervised dual-frame U-Net model, for the purpose of cell segmentation
on the ISBI 2014 dataset. The models were trained with different numbers 𝑁 of training images. The number of channels in the convolutional layers are defined by 𝑐.

Model 𝑁 𝜆 Binarization threshold 𝑐 Learning rate #epochs

U-Net-𝓁1 256 1.3 × 10−3 2.4 × 10−3 16 5.0 × 10−3 606
128 1.4 × 10−3 2.4 × 10−2 16 5.0 × 10−3 690
64 1.3 × 10−3 2.4 × 10−2 16 5.0 × 10−3 663
32 1.3 × 10−3 2.0 × 10−2 16 5.0 × 10−3 909

Supervised 256 – 0.5 (fixed) 16 5.0 × 10−3 744
128 – 0.5 (fixed) 16 5.0 × 10−3 744
64 – 0.5 (fixed) 16 5.0 × 10−3 643
32 – 0.5 (fixed) 16 5.0 × 10−3 452
As demonstrated in the first row of Fig. 6, when presented with a
slightly zoomed input image, the U-Net-𝓁1 model robustly detects the
foreground (DSC: 81%, precision: 91%, recall: 74%). In contrast, the
principal components of the original image sequence fail to represent
the background properly in the zoomed input image, leading to a
significant number of false-positive foreground pixels estimated from
the vector rejection 𝒅⟂ (DSC: 35%, precision: 22%, recall: 81%).

4.2. Learning with small numbers of images

Segmenting cell and nuclei in microscopic images is a fundamen-
tal task in biological and biomedical image processing. While deep
learning-driven techniques (Ronneberger et al., 2015; Zhou et al., 2018;
Jha et al., 2020) have displayed remarkable potential for automatic
segmentation, they necessitate substantial amounts of painstakingly
labeled training data utilizing pixel-by-pixel annotations by medical
experts in supervised learning frameworks.

We present an extensive analysis of our U-Net-𝓁1 model for unsu-
pervised cell segmentation, investigating the impact of the number of
training images on model performance. Our evaluation is conducted on
the widely used ISBI 2014 dataset (Lu et al., 2015, 2016), which is a
standard benchmark for cell segmentation in cervical cancer cytology.
This dataset comprises 945 synthetic grayscale cytology images of size
512 × 512, each annotated with segmentation masks. For the purpose of
this experiment, we modified the original dataset configuration by em-
ploying the 45 training images as a validation set for hyperparameter
tuning, and the 90 validation images as a test set to assess segmentation
quality with the Dice similarity coefficient (DSC). A subset of images
from the original 810 test images was used as a training set. For
statistical evaluation, we randomly sampled 𝑁 training images 10 times
with 𝑁 ranging from 32 to 256. We normalized all pixel values to
7

be in a range [0, 1] by simply divided by 255. On the training phase,
brightness of each training image were randomly augmented from 60%
to 100%.

By leveraging the low-rank and sparse properties of the dataset, we
built an unsupervised U-Net-𝓁1 model by minimizing the loss function
as presented in Eq. (9) on the training images. For comparison, we
also built a supervised U-Net model with the same architecture as the
dual-frame U-Net part of the model in Fig. 1. This supervised model
predicts a 512 × 512 probability map of cell regions from an input
image. Instead of nuclear and 𝓁1 norms, the supervised U-Net model
was trained with the binary cross-entropy (BCE) loss between the model
output and the ground truth of cell segmentation in the training images.
We used the Adam optimizer (Kingma and Ba, 2015) with a batch size
of 32. The other hyperparameters were tuned by Optuna (Akiba et al.,
2019) to maximize the DSC on the validation set. The best values of the
hyperparameters for each size 𝑁 of training set are shown in Table 2.

Fig. 7 shows the test DSC scores of the unsupervised U-Net-𝓁1 and
supervised U-Net models with respect to the number of training images
used. Without any supervision, the U-Net-𝓁1 model achieves the DSC
scores close to those of the supervised U-Net model. The low-rank
and sparse priors have potential to provide comparable information to
annotated large datasets.

We show some examples of cell segmentation test results in Fig. 8.
The U-Net-𝓁1 model trained with a small dataset tends to miss some
parts of cell regions with less features, which implies the model dis-
tinguishes by learned cell features. The supervised model, even trained
with a larger dataset, misidentifies a few faint spots in the background
that do not resemble cells. Since it is easy to determine the foreground
regions because of not being plain like the background, the supervised
model may not have actively learned the foreground cell features even
though the DSC scores are high.
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Fig. 7. Box plots of the Dice similarity coefficients (DSCs) for test images with
different numbers of training images. The red lines represent the median scores. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

We would like to note that the unsupervised model could always
provide stable test scores, while the supervised model suffered from
severe overfitting without the data augmentation on brightness. The
same would obviously apply to any supervised method with larger
architecture, making it more hard to avoid overfitting. While the super-
vised U-Net model was trained to output binary information indicating
foreground or background at each pixel, the U-Net-𝓁1 model is trained
as a regression model to encode and decode foreground objects. We
conjecture this promotes the U-Net-𝓁1 model to learn image features
more quantitatively from a training set.

4.3. Semantic segmentation of diverse foregrounds

We evaluated the performance of our model in automatically seg-
menting diverse foreground objects in both grayscale and color images
by using the BBBC038v1 image dataset from the Broad Bioimage
Benchmark Collection (Caicedo et al., 2019). This image dataset con-
sists of grayscale and color biological images of tens of thousands of
nuclei from different organisms treated and imaged under a variety
of conditions, such as fluorescent and histologic staining, different
magnifications and illuminations.

We instantiated the U-Net-𝓁1 model shown in Fig. 1 to accept an
input image with three color channels. Each input image is prepro-
cessed by resizing to 256 × 256 pixels. All pixel values are normalized
by dividing by 255. If bright pixels are dominant in an image, the
colors are inverted to have a dark background. All 670 images were
randomly split into 512 images for training, 88 images for validation,
and 70 images for testing. We set the number of channels 𝑐 = 17 in
 c
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the convolutional layers and used a 𝓁1 loss weight of 𝜆 = 4.1 × 10−3.
We trained the model for 192 epochs using Adam with a learning of
1.3×10−2. The binarization threshold for foreground segmentation was
set to 3.1×10−3. We utilized Optuna (Akiba et al., 2019) to optimize all
hyperparameters for maximizing the Dice similarity coefficient (DSC)
on the validation set, excluding the batch size of 16 due to GPU memory
constraints. It took only about four minutes to train the model on an
RTX 3090 GPU. Throughout the optimization process, the training loss
and validation loss were observed to decrease almost monotonically
until convergence.

On the test images, our unsupervised model achieved the average
DSC score of 84% with a standard deviation of 13%. The segmentation
results for the test images are illustrated in Fig. 9. As most of the sparse
foreground objects in the images are nuclei, it can be concluded that
our model has learned their shape and staining features sufficiently
from the training images. Our model effectively captures nuclei regions
in the test images, including those with less sparsity, multiple contrasts,
or low contrast, as depicted in Fig. 9(a), (b), and (c). Overall, the
unsupervised learning based only on the low-rank and sparse priors
enables us to develop a moderately performing model without any
supervision.

The low DSC score for the image in (d) indicates that the model has
learned to find foreground cells rather than nuclei inside them. Our
model also has another limitation in addressing pathological images
such as the one shown in (e) because the foreground nuclei and back-
grounds in a set of pathological images do not exhibit L+S structure. For
these situations, it is vital to incorporate the ground truth information
of cell nuclei. As demonstrated in the latest paper (Tomar et al., 2023),
supervised models achieved greater than 90% of F1 score,1 e.g., 92%
by FANet, although they have some drawbacks: expensive annotation
cost, intricate model architecture, larger computational demands, and
the risk of overfitting.

5. Conclusions

We have demonstrated that incorporating prior knowledge of the
linear dependence of training image backgrounds enables a deep neu-
ral network to recognize sparse foreground objects. In the proposed
framework, a U-Net-based model is trained to encode and decode
sparse foreground objects in batches of input images with low-rank
backgrounds by minimizing a sparsity-inducing norm together with the
nuclear norm.

Our unsupervised deep learning approach offers a more practical
and effective alternative to RPCA for capturing image features of inter-
est. Once the U-Net model has learned enough features common to the
foreground objects, it can robustly detect them from any single image
regardless of the low-rankness and sparseness. The U-Net also enables
online object segmentation with much less computational expense than
that of RPCA. We expect that our approach will help advance the
practicality and utility of the L + S model across various applications.

We have confirmed the advantages of our proposed framework
in the context of background subtraction in video surveillance. Ad-
ditionally, we showed that our method can build a well-generalized
cell segmentation model from only a few dozen unannotated training
images. As the experimental results indicate, our unsupervised deep
learning enable the detection of various foreground objects with dif-
ferent appearances, which opens up new possibilities for providing
pre-trained models in the context of transfer learning. Further research
should be conducted to explore this potential option.

1 The F1 score of pixel detection is equivalent to the DSC score in the
ontext of image segmentation.
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Fig. 8. Examples of segmentation test results on cervical cytology images. The first column displays the input image and ground truth cell regions. The second and third columns
how the foreground images predicted by the unsupervised U-Net-𝓁1 model and their corresponding segmentation results using binarization. Red and gray colors on binarization

results indicate false positive and false negative, respectively. The fourth and fifth columns depict the probability maps and their binarization predicted by the supervised U-Net
model. The number of images used for training the models is indicated by 𝑁 . (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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