
DOI:10.1587/transfun.2023VLP0017

Publicized:2023/08/31

 This article has been accepted and published on J-STAGE in advance of
copyediting. Content is final as presented.

IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x
1

PAPER
Pipelined ADPCM Compression for HDR Synthesis on an FPGA

Masahiro NISHIMURA†, Taito MANABE†, Nonmembers, and Yuichiro SHIBATA†, Member

SUMMARY This paper presents an FPGA implementation of real-time
high dynamic range (HDR) synthesis, which expresses a wide dynamic
range by combining multiple images with different exposures using image
pyramids. We have implemented a pipeline that performs streaming pro-
cessing on images without using external memory. However, implemen-
tation for high-resolution images has been difficult due to large memory
usage for line buffers. Therefore, we propose an image compression al-
gorithm based on adaptive differential pulse code modulation (ADPCM).
Compression modules based on the algorithm can be easily integrated into
the pipeline. When the image resolution is 4K and the pyramid depth is 7,
memory usage can be halved from 168.48 % to 84.32 % by introducing the
compression modules, resulting in better quality.
key words: FPGA, HDR synthesis, image compression

1. Introduction

HDR (High Dynamic Range) synthesis is one of the meth-
ods to cope with a narrow dynamic range of typical cameras.
Generally, HDR synthesis consists of two steps: image com-
position and tone mapping. The image composition is a pro-
cess to aggregate multiple SDR (Standard Dynamic Range)
images with different exposure times into a single HDR im-
age by estimating real-world luminance of each pixel. Then,
the output HDR image is converted into an SDR image with-
out blown-out highlights and blocked-up shadows through
the tone mapping process.

On the other hand, Mertens et al. proposed an HDR syn-
thesis method that directly combines images [1]. Mertens’
method does not require information on exposure time of
each image and the camera-specific response function. Mul-
tiple images are directly combined into a single image using
weighted average based on visual criteria, and no tone map-
ping process is required.

HDR synthesis has a wide range of applications, some
of which require real-time and low-latency processing, such
as autonomous driving. Hardware processing using an field-
programmable gate array (FPGA) is promising for such ap-
plications. However, most of the existing FPGA implemen-
tations of HDR synthesis adopted the two-stage approach
using image composition and tone mapping [2–7], which is
computationally complex and requires parameter tuning for
specific camera devices. Though FPGA-based HDR synthe-
sis based on the simplified Mertens’ method has been pro-
posed in [8], the implementation depends on external mem-
ory (DRAM) for buffering image frames, which inevitably

†Nagasaki University

Fig. 1: Description of image list 𝐼.

results in high latency and requires additional implementa-
tion area and costs.

On the other hand, our study group has implemented
Mertens’ method on FPGA with a fully pipelined architec-
ture that can greatly reduce latency. In the previous imple-
mentation by Katayama et al. [9], lack of BRAM resources
prevented implementation for high-resolution images. Since
resources other than BRAM were still available, the imbal-
ance in resource consumption needs to be alleviated. There-
fore, we propose improved HDR synthesis hardware that in-
corporates an image compression technology in the pipeline
and evaluate the impact of compression on resource usage
and HDR synthesis quality. This paper is an extended ver-
sion of [10] and describes the algorithm, architecture, and
evaluation results in more detail.

2. HDR Synthesis Methods

2.1 Mertens’ Method

In Mertens’ HDR synthesis method, weights are calculated
for pixel values of each of the 𝑁 input images. The weights
are then used to calculate a weighted average of the pixel
values at the same coordinates across the different images.
There are three types of weights:

• 𝐶𝑖 𝑗 ,𝑘 (Contrast): Edge strength by Laplacian filter
• 𝑆𝑖 𝑗 ,𝑘 (Saturation): Standard deviation of RGB values
• 𝐸𝑖 𝑗 ,𝑘 (Well-exposedness): Product of distances be-

tween RGB values and 0.5 weighted by Gaussian curve

Let us define the list of 𝑁 images as shown in Fig. 1 as 𝐼
and the value of any RGB color channel at coordinates (𝑖, 𝑗)
of the 𝑘-th image 𝐼𝑘 of 𝐼 as 𝐼𝑐,𝑖 𝑗,𝑘 (𝑐 ∈ {𝑟, 𝑔, 𝑏}, 0 ≤ 𝑘 < 𝑁 ,
0 ≤ 𝑖 < HEIGHT , 0 ≤ 𝑗 < WIDTH). HEIGHT and WIDTH
are the numbers of vertical and horizontal pixels in the input
image, respectively. The pixel value of 𝐼 is assumed to be
normalized to the range 0 ≤ 𝐼𝑐,𝑖 𝑗,𝑘 < 1.

Copyright © 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

The weight 𝐶𝑖 𝑗 ,𝑘 is obtained by grayscaling the image
𝐼𝑘 , applying an 8-nearest neighbor Laplacian filter 𝐿filter, and
taking the absolute value. This can be expressed as Eq. (1)
and (2). Note that the operator ∗ denotes convolution, and
application of the Laplacian filter does not change the image
size because padding of width 1 is applied in advance.

𝐿 (𝐼𝑘) = gray(𝐼𝑘) ∗ 𝐿filter (padding = 1) (1)
𝐶𝑖 𝑗 ,𝑘 = |𝐿 (𝐼𝑘)𝑖 𝑗 | (2)

Let us define 𝜇𝐼𝑖 𝑗,𝑘 as the average of RGB values at the
coordinates (𝑖, 𝑗) of the image 𝐼𝑘 . The weight 𝑆𝑖 𝑗 ,𝑘 is the
standard deviation of the RGB values, given by Eq. (3).

𝑆𝑖 𝑗 ,𝑘 =

√√√
1
3

𝑟 ,𝑔,𝑏∑
𝑐

(𝐼𝑐,𝑖 𝑗,𝑘 − 𝜇𝐼𝑖 𝑗,𝑘)2 (3)

In this paper, for simplicity of implementation, it is approx-
imated by the mean absolute error as in Eq. (4).

𝑆𝑖 𝑗 ,𝑘 =
1
3

𝑟 ,𝑔,𝑏∑
𝑐

|𝐼𝑐,𝑖 𝑗,𝑘 − 𝜇𝐼𝑖 𝑗,𝑘 | (4)

The weight 𝐸𝑖 𝑗 ,𝑘 is the product of distances between RGB
values and 0.5 weighted by a Gaussian curve. Therefore, the
weight 𝐸𝑖 𝑗 ,𝑘 is expressed as Eq. (5).

𝐸𝑖 𝑗 ,𝑘 =
𝑟 ,𝑔,𝑏∏
𝑐

exp

(
−

(
𝐼𝑐,𝑖 𝑗,𝑘 − 0.5

)2

2𝜎2

)
(𝜎 = 0.2) (5)

The three weights 𝐶𝑖 𝑗 ,𝑘 , 𝑆𝑖 𝑗 ,𝑘 , and 𝐸𝑖 𝑗 ,𝑘 are multiplied
together to obtain the weight 𝑊𝑖 𝑗 ,𝑘 , whose expression is
given as Eq. (6). 𝜔𝐶, 𝜔𝑆 and 𝜔𝐸 are parameters that deter-
mine which weight to emphasize. All the parameters are set
to 1 in our implementation to treat all the weights equally.

𝑊𝑖 𝑗 ,𝑘 = (𝐶𝑖 𝑗 ,𝑘)𝜔𝐶 × (𝑆𝑖 𝑗 ,𝑘)𝜔𝑆 × (𝐸𝑖 𝑗 ,𝑘)𝜔𝐸

(𝜔𝐶 = 𝜔𝑆 = 𝜔𝐸 = 1)
(6)

Since the image merging process takes a weighted average
across images, the sum of the weights 𝑊𝑖 𝑗 ,𝑘 at the same
coordinates must equal 1. The normalized weight is defined
as 𝑊̂𝑖 𝑗 ,𝑘 . The formula is shown in Eq. (7).

𝑊̂𝑖 𝑗 ,𝑘 =

[
𝑁−1∑
𝑘′=0

𝑊𝑖 𝑗 ,𝑘′

]−1

𝑊𝑖 𝑗 ,𝑘 (7)

Using the normalized weight, the result synthesized image
𝑅 is given as Eq. (8).

𝑅𝑖 𝑗 =
𝑁−1∑
𝑘=0

𝑊̂𝑖 𝑗 ,𝑘 𝐼𝑖 𝑗 ,𝑘 (8)

However, this naive algorithm is influenced easily by noise
and does not produce a synthesized image of sufficient qual-
ity. Therefore, Mertens et al. also proposed the technique
to solve this problem in [1], based on the image pyramid

Dilation = 1 Dilation = 2 Dilation = 4

Fig. 2: Dilated Convolution.

mechanism described in the next section.

2.2 Image Pyramid

An image pyramid consists of a set of images with multiple
resolutions from high to low. It is called an image pyramid
because it looks like a pyramid when stacked from the bottom
to the top, starting with the highest resolution image. Image
pyramids are often used to process the same image at various
resolutions.

There are two types of image pyramids: Gaussian pyra-
mids and Laplacian pyramids. In this paper, for simplicity
of explanation, the first level of the pyramid hierarchy is
represented as L1, the second level as L2, and so on, start-
ing from the highest-resolution image. When generating a
Gaussian pyramid, the L2 image is generated by applying a
Gaussian filter to the L1 image and downsampling the hori-
zontal and vertical resolutions by half, respectively. The L3
and coarser images can be generated in the same way. The
Laplacian pyramid can also be generated by taking the dif-
ference between the images of the Gaussian pyramid and the
upsampled images of their coarser neighbors. The last layer
of the Laplacian pyramid is the same image as the last layer
of the Gaussian pyramid. This results in the two pyramids
having the same number of layers.

The Laplacian pyramid has the property that the orig-
inal image can be reconstructed by repeatedly upsampling
the layer and adding it to the finer next layer, starting from
the last level. Mertens’ algorithm using image pyramids can
achieve high-quality HDR synthesis by generating a Lapla-
cian pyramid of the input image and a Gaussian pyramid of
the weights, calculating the weighted average using the two
pyramids, and reconstructing the result.

2.3 Dilated Convolution

The image pyramid described in Sec. 2.2 is complex to con-
trol in a pipelined implementation because the resolution
varies with the hierarchy. Therefore, we introduce dilated
convolution [11] to achieve the same effect as the image
pyramid described in Sec. 2.2 without changing the reso-
lution of each layer. Dilated convolution refers to the pro-
cess of performing convolution with spaces inserted between
kernel elements, as shown in Fig. 2. By increasing the dila-
tion rate (distance between the closest two elements) instead
of downsampling, dilated convolution can take account of
global features without reducing the size of the image. It

NISHIMURA et al.: PIPELINED ADPCM COMPRESSION FOR HDR SYNTHESIS ON AN FPGA
3

L1

Gaussian Pyramid

Laplacian Pyramid

Reconstructed Image

L2

L3

−

− ＋

＋

L1

L2

L3

Fig. 3: Image reconstruction from the image pyramids with con-
stant resolution using dilated convolution.

also has the advantage of preventing the loss of information
that occurs when reducing an image.

An example of reconstructing the original image from
the Laplacian pyramid generated using dilated convolution
is shown in Fig. 3. The Gaussian pyramid can be generated
using the same 3 × 3 Gaussian kernel and increasing the
dilation rate by a factor of 2 as the layer level increases. Since
all layers have the same resolution as L1, no upsampling is
required, and the original image can be recovered by simply
adding the layers of the Laplacian pyramid in order from the
last layer.

3. Real-Time Image Compression

Stream processing using a deep pipeline is an effective way
of real-time video processing on FPGA. In the stream pro-
cessing, stencil computations including convolutions can be
implemented using shift registers and line buffers (FIFOs).
When applying dilated convolutions, however, many block
memory resources (Block RAM, or BRAM) are used as the
line buffer. For example, memory size required to apply a
3×3 kernel with dilation = 8 (equivalent to a 17×17 kernel)
to 4K (3840 pixels in width) 24-bit RGB images amounts to
about 180 KiB. This is a burden to FPGAs, especially for
small ones equipped with less than 1 MiB of BRAM.

Introducing some image compression technique would
help reduce memory usage of line buffers. However, compli-
cated video codecs such as VP9 [12] and H.265/HEVC [13]
cannot be used here because of their high computational
cost and latency. Even the VESA Display Stream Com-
pression (DSC) [14], the low-latency image compression
standard for video interfaces, consumes tens of thousands
of LUTs [15, 16] and thus is not suitable for this purpose.

FIFO

Scale Value

FIFO

−

MAP

Quant.

Decode
Scale

Update

Avg.

Quantized Error

Pred. Error

Input Value

Predicted
Value

Base Quant. Step

2

Decoded Value

Fig. 4: Overview of the encoder module.

Therefore, we have developed a simple image compression
algorithm which can be easily integrated into a pipeline. La-
tency of the implemented encoder and decoder is 2 clock
cycles for each, LUT usage in total for a single color channel
is less than 500 when the quantization bit width is 2, and no
DSP block is required. Though the modules themselves con-
sume some block memory (equivalent to 2 horizontal lines
for each), a benefit of compression exceeds the overhead
when a dilation factor is large.

The algorithm is based on adaptive differential pulse-
code modulation (ADPCM), combining prediction-based
delta encoding and adaptive quantization. First, a value
of each input pixel is predicted from preceding pixels (intra-
frame prediction), then a difference (delta) between the pre-
dicted and actual values is calculated. The difference value
is then quantized using a quantization step size which varies
adaptively. Combining the two techniques brings both high
followability in a rapidly-changing area and high precision in
a slowly-changing area with low computational cost. Since
human perception is logarithmic, high visual quality can be
maintained even with a few quantization bits.

An overview of the encoder module is shown in Fig. 4,
and the detailed encoding algorithm is explained in the fol-
lowing sections. The decoding algorithm is almost the same
except that the quantized error 𝐶 is input from outside. Note
that the input image is assumed to be represented in an 8-bit
unsigned format in this section. For a signed input, we can
first convert it to unsigned by adding a bias before encoding
and then subtract the bias after decoding.

3.1 Prediction of a Pixel Value

Let the coordinates currently focused on be (𝑣, ℎ), where 𝑣
and ℎ are vertical and horizontal coordinates with the origin
placed at the top-left of an image, respectively. First, the
8-bit pixel value 𝐼 (𝑣, ℎ) is predicted from 3 adjacent pixels.
Since the actual pixel values are not available for the decoder,
the decoded values 𝑃𝐿 = 𝑃(𝑣, ℎ − 1), 𝑃𝑈 = 𝑃(𝑣 − 1, ℎ), and
𝑃UL = 𝑃(𝑣 − 1, ℎ − 1) are used in both the encoder and the
decoder. The predicted value 𝐼 ′ (𝑣, ℎ) is then given using the
median adaptive prediction (MAP) [17, 18], as follows:

4
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

FIFO

− ＋

Condition Check

Fig. 5: Prediction circuit of a pixel value.

𝐼 ′ (𝑣, ℎ) = median(𝑃𝐿 , 𝑃𝑈 , 𝑃𝐿 + 𝑃𝑈 − 𝑃UL) (9)

Values outside the image are regarded as 28−1 = 128.
The implemented pixel prediction circuit can be illus-

trated as Fig. 5. The decoded values can be obtained using
shift registers and a line buffer. To improve timing, the dif-
ference Δ = 𝑃𝑈 −𝑃UL in Eq. (9) is calculated in the previous
clock cycle and held in a register.

3.2 Prediction of a Base Quantization Step

In the proposed algorithm, the scale value 𝑆(𝑣, ℎ) is as-
signed to each of the pixels which have already been en-
coded, as explained later. From the 2 adjacent scale values
𝑆L = 𝑆(𝑣, ℎ − 1) and 𝑆UR = 𝑆(𝑣 − 1, ℎ + 1), the base quanti-
zation step size 𝐵(𝑣, ℎ) is predicted as follows:

𝐵(𝑣, ℎ) =
⌊
𝑆L + 𝑆UR + 1

2

⌋
(10)

If 𝑆𝐿 and/or 𝑆UR do not exist, the following values are used
instead. Note that𝑊 is the width of the image.

𝑆L =

{
16 (𝑣 = ℎ = 0)
𝑆UR (𝑣 ≠ 0, ℎ = 0)

(11)

𝑆UR =

{
𝑆L (𝑣 = 0)
𝑆U (𝑣 ≠ 0, ℎ = 𝑊 − 1)

(12)

This prediction algorithm can be easily implemented
using shift registers and a line buffer, as shown in Fig. 4.

3.3 Quantization

In the encoder, the prediction error 𝐷 (𝑣, ℎ) = 𝐼 (𝑣, ℎ) −
𝐼 ′ (𝑣, ℎ) is calculated and quantized based on the base quan-
tization step 𝐵(𝑣, ℎ). Given that the quantization bit width
is 𝑛 (≥ 2), the quantized error 𝐶 (𝑣, ℎ) (0 ≤ 𝐶 ≤ 2𝑛 − 1) is
calculated as follows:

𝐶 (𝑣, ℎ) = clip
(⌊

2𝑛−2𝐷 (𝑣, ℎ)
𝐵(𝑣, ℎ)

⌋
+ 2𝑛−1, 0, 2𝑛 − 1

)
(13)

Here, clip(𝑥, 𝑎, 𝑏) = min(max(𝑥, 𝑎), 𝑏) is the function to
clip the value range of 𝑥 into [𝑎, 𝑏]. This equation can be

0-1 1

0 1 2 3

-1.5 0-1 1 1.5-0.5 0.5

0 1 2 3 4 5 6 7

-1.75 1.750-1 1-0.5 0.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 6: Relationship among the prediction error 𝐷，the base quan-
tization step 𝐵, and the quantized error 𝐶. The bars corre-
spond to 𝑛 = 2, 3, 4 from top to bottom, respectively.

visualized as Fig. 6. As can be seen from the figure, the
actual size of quantization step is given as 𝐵(𝑣, ℎ)/2𝑛−2.

The division in Eq. (13) is difficult to implement di-
rectly. Considering that only 2𝑛 values are possible for 𝐶,
however, we can calculate all the threshold values of 𝐷 from
𝐵 in parallel. Then, 𝐶 can be calculated without a divider
by comparing 𝐷 with each of the thresholds.

3.4 Decoding

The decoded value 𝑃(𝑣, ℎ) is calculated based on the pre-
dicted value 𝐼 ′ (𝑣, ℎ), the base quantization step 𝐵(𝑣, ℎ), and
the quantized error 𝐶 (𝑣, ℎ), as follows:

𝑃(𝑣, ℎ) = clip (𝐼 ′ (𝑣, ℎ) + ⌊𝐵(𝑣, ℎ) × 𝜇⌋ , 0, 255) (14)

𝜇 =
2𝐶 (𝑣, ℎ) − 2𝑛 + 1

2𝑛−1 (15)

The product of 𝐵 and the scaling factor 𝜇, which corresponds
to the center of the distribution range in Fig. 6, is added to the
predicted value 𝐼 ′ as a correction value, yielding the decoded
value 𝑃(𝑣, ℎ).

Concurrently with the decoding, the scale value 𝑆(𝑣, ℎ)
is determined as follows:

𝑆(𝑣, ℎ) = clip (⌊𝐵(𝑣, ℎ) × 𝜇′ + 0.5⌋ , 𝑆min, 𝑆max) (16)

𝜇′ =

{
1 + 𝛼(|𝜇 | − 1) (|𝜇 | > 1)
1 + 𝛽(|𝜇 | − 1)/2𝑛 (|𝜇 | ≤ 1)

(17)

Eq. (17) means that the scale value is increased when the
absolute scaling factor |𝜇 | > 1, and decreased when |𝜇 | ≤ 1.
As can be seen in Fig. 6, a larger quantization bit width 𝑛
makes it possible to represent smaller errors even if the base
quantization step size is the same. Therefore, the scale factor
is decreased slowly when 𝑛 is large. 𝛼 = 1.5 and 𝛽 = 2 are
the pre-defined hyperparameters based on preliminary eval-
uation results. Using these values, Eq. (17) can be rewritten
as follows:

𝜇′ =

{
(3|𝜇 | − 1)/2 (|𝜇 | > 1)
1 + (|𝜇 | − 1)/2𝑛−1 (|𝜇 | ≤ 1)

(18)

To maintain the followability to an input and avoid an
overflow, the range of the scale value [𝑆min, 𝑆max] in Eq. (16)
is defined as follows:

NISHIMURA et al.: PIPELINED ADPCM COMPRESSION FOR HDR SYNTHESIS ON AN FPGA
5

Tree Adder

weight

lappyr gaupyr gaupyr lappyr

×

×

×

×

×

×

Fig. 7: hdr_top module.

𝑆min = 2𝑛−1, 𝑆max =

⌊
255 × 2𝑛−1

2𝑛 − 1

⌋
These values are set so that the product of 𝐵 and |𝜇 | is
restricted within the range of [1, 255].

In the hardware implementation, Eq. (14) and (16) are
calculated for all the possible values of 𝜇 in parallel to im-
prove timing. Then, one of the candidate results is chosen
using multiplexers after 𝐶 is prepared.

4. Hardware Design

This section describes details of the FPGA implementation
of the HDR synthesis method shown in Sec. 2 combined
with the image compression technique introduced in Sec. 3.

4.1 HDR Synthesis Module

An overview of the HDR synthesis module (hdr_top) is
shown in Fig. 7. The number of input images can be changed
using a parameter, and it is set to 2 in this paper. The module
takes as input the pixel values 𝐼0 (r, g, b) and 𝐼1 (r, g, b) of
two differently exposed images, calculates 10-bit weights for
both in the weightmodule, and generates image pyramids in
the gaupyr and lappyrmodules. Then, the synthesized im-
age 𝐼out (𝑟, 𝑔, 𝑏) is reconstructed from the weighted average
of the Laplacian pyramids using the tree adder.

4.2 Image Pyramid Generation Module

An overview of the Laplacian pyramid (lappyr) module is
shown in Fig. 8. The lappyr module applies the Gaussian
filter with dilated convolution in the dilated_conv mod-
ule, and then subtracts the output from the previous layer to
generate the Laplacian pyramid with the same resolution in
all the layers. In the last layer, the result of dilated_conv
is directly output, as explained in Sec. 2.2. Also, the gaupyr
module is the same as the lappyr module in Fig. 8 except

FIFO

−

FIFO

FIFO

−

dilated_conv

in_pixel

L1 L2 L_max-1 L_max

FIFO dilated_conv

FIFO dilated_conv

−

Fig. 8: lappyr module.

in_pixel

FIFOcomp

1

decomp

×

out_pixel

1 1

12

2

2

2

FIFO

decomp

4-bit Right Arithmetic Shift

Gaussian Filter

4

Fig. 9: dilated_conv module.

for the calculation of the difference, and generates the Gaus-
sian pyramid with the same latency. In both modules, an
appropriately-sized FIFO is placed just before the output of
each layer to match the output timings of all the layers.

4.3 Dilated Convolution Module

An overview of thedilated_convmodule is shown in Fig. 9
with the dilation rate of 2 to simplify the explanation. As de-
scribed in Sec. 2.3, the dilation rate doubles as the layer level
increases. This causes an exponential increase in BRAM
usage and restricts the maximum number of layers. In this
paper, we add the image compression and decompression
(comp/decomp) modules to FIFOs to reduce the amount of
BRAM usage. However, the comp/decomp module itself
also requires a FIFO for pixel value prediction. Considering
this overhead, the compression is used only after the fifth
layer, where the dilation rate is 8 or higher. Similarly, the

6
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

FIFO of the image pyramid generation module described in
Sec. 4.2 is also compressed only when the size exceeds the
threshold.

5. Evaluation and Discussion

In this section, we evaluate and discuss the HDR synthe-
sis system with the image compression technique shown
in Sec. 3 and Sec. 4. We first evaluate the effect of the
image compression on resource utilization, processing per-
formance, and image quality respectively in Sec. 5.1, 5.2,
and 5.3. Since the image compression allows the system to
have more layers, we also evaluate how the number of layers
affects the image quality in Sec. 5.4.

The target FPGA is a Zynq UltraScale+ MPSoC
XCZU9EG-FFVB1156-2-E, and the evaluation board is the
ZCU102 Evaluation Kit. The entire system is described in
RTL using SystemVerilog and is implemented using Vivado
2019.2. For the evaluation, we use simulation results from
Cadence Xcelium.

5.1 Resource Utilization

We evaluate how the compression affects resource utilization
of the hardware implementation of HDR synthesis. Table 1
and 2 show the resource utilization without and with the
compression, respectively. The amount of DSP utilization is
omitted because it was 6 (0.24 %) in all the configurations.
For configurations which cannot be implemented because of
overutilization of BRAM, we show estimated utilization after
the logic synthesis. The results show that in all the configu-
rations, the application of compression reduces the amount
of BRAM utilization, and the reduction rate increases as the
number of layers increases. For example, at 7 layers of 4K
(3840 × 2160), the amount of BRAM utilization could be
reduced from 168.48 % to 84.32 %. Utilization ratios of
LUT and FF increased from 11.16 % to 20.03 % and from
4.84 % to 7.48 %, respectively, due to the addition of the
compression and decompression modules. However, none
of the resource utilization rates exceeded that of BRAM, in-
dicating that compression improved the balance of resource
utilization, which had been a problem. As a result, the max-
imum number of layers is improved from 6 to 7 at 4K and
from 7 to 8 at Full HD (1920× 1080). We will evaluate how
this contributes to the HDR quality later in Sec. 5.4.

5.2 Processing Performance

We evaluate how the compression affects processing perfor-
mance of the hardware implementation of HDR synthesis.
Values of Fmax and latency for each configuration are shown
in Tables 1 and 2. We can find a tendency that Fmax de-
creases as the resolution and the number of layers increase.
However, almost all the configurations can achieve over 200
MHz of Fmax. In addition, the compression does not cause
clear degradation in Fmax. Specifically, Fmax is about 209.2
MHz even with 7 layers of 4K with compression, which is

equivalent to a frame rate of about 25 fps. At Full HD, a
frame rate reaches around 100 fps. On the other hand, la-
tency is almost proportional to the image width and almost
doubles as the number of layers increases. However, it is
not affected by the use of compression, either. For exam-
ple, the latency of the 7-layer 4K configuration is 245894
clock cycles, equivalent to about 1.2 𝜇s when operating at
the Fmax.

5.3 Image Quality with Compression

To evaluate how the image compression affects the image
quality, we calculated SSIM (Structural Similarity) [19] and
HDR-VDP 3.07 (PPD: 26.36) [20] of two synthesized images
with or without the compression using 2 test images (house,
dress). SSIM is a metric of similarity between two images.
Let 𝒙 and 𝒚 be a vector whose elements are pixel values, then
SSIM is represented by Eq. (19). 𝐾1 = 0.01, 𝐾2 = 0.03,
𝐿 = 255, 𝐶1 = (𝐾1𝐿)2, 𝐶2 = (𝐾2𝐿)2 are the pre-defined
parameters. 𝜇𝒙 and 𝜇𝒚 are the mean values of 𝒙 and 𝒚, 𝜎𝒙

and 𝜎𝒚 are the standard deviations of 𝒙 and 𝒚. 𝜎𝒙,𝒚 is the
covariance of 𝒙 and 𝒚, and the value range of SSIM is (0, 1].
The more similar the input images are, the larger the SSIM
becomes. If the SSIM is 0.98 or higher, it is indistinguishable
from the original image, and if it is 0.90 or lower, it is clearly
distinguishable from the original image.

SSIM (𝒙, 𝒚) =
(
2𝜇𝒙𝜇𝒚 + 𝐶1

) (
2𝜎𝒙𝒚 + 𝐶2

)(
𝜇2
𝒙 + 𝜇2

𝒚 + 𝐶1
) (
𝜎2
𝒙 + 𝜎2

𝒚 + 𝐶2
) (19)

HDR-VDP is a similar metric, but is based on a more com-
prehensive visual model for all luminance conditions. As
a result, HDR-VDP is compatible with not only SDR but
also HDR images, and shows good correlation to human
perception. The maximum quality value of HDR-VDP is 10,
and the value can be negative if the difference between two
images are very large.

For each number of layers from 5 to 8, we performed
HDR synthesis with and without the compression, and cal-
culated SSIM between the two results. For reference, we
also tested the result of the software implementation which
uses floating-point arithmetic and uses the non-approximated
saturation weight (Eq. (3)). The values of SSIM are sum-
marized in Table 3, and the result images as well as their
histograms of luminance are shown in Fig. 10 and 11.

Comparing the result values between with and with-
out the compression at each number of layers, we can find
that the values decrease as the number of layers increases.
This is thought to be due to the fact that compression is not
performed for small FIFOs, and as the number of layers in-
creases, the proportion of the compressed FIFOs increases.
However, the SSIM values exceed 0.95 even at 8 layers, in-
dicating that the image compression has almost negligible
impact on the image quality. Also, comparing the SSIM
values vs. the software implementation, it can be seen that
fixed-point arithmetic and the approximation of the satura-
tion weight has little impact on the image quality. Comparing

NISHIMURA et al.: PIPELINED ADPCM COMPRESSION FOR HDR SYNTHESIS ON AN FPGA
7

Table 1: Resource utilization in HDR synthesis without compression.
VGA (640×480) HD (1280×720) FHD (1920×1080) 4K (3840×2160)

Layers 6 7 8 6 7 8 6 7 8 6 7 8 Available

LUT 17622 21618 26899 18647 23521 29050 20147 26183 34989 22464 30599 71185 274080(6.43%) (7.89%) (9.81%) (6.80%) (8.58%) (10.60%) (7.35%) (9.55%) (12.77%) (8.20%) (11.16%) (25.97%)

LUT-RAM 1329 1766 2568 1323 1789 2696 1593 2105 3240 1597 2309 3323 144000(0.92%) (1.23%) (1.78%) (0.92%) (1.24%) (1.87%) (1.11%) (1.46%) (2.25%) (1.11%) (1.60%) (2.31%)

FF 19443 22869 26566 19685 23206 27977 20345 24012 30253 20672 26554 61630 548160(3.55%) (4.17%) (4.85%) (3.59%) (4.23%) (5.10%) (3.71%) (4.38%) (5.52%) (3.77%) (4.84%) (11.24%)

BRAM 150 292 588 265.5 541.5 1107 376.5 788.5 1664 721 1536.5 3282.5 912(16.45%) (32.02%) (64.47%) (29.11%) (59.38%) (121.38%) (41.28%) (86.46%) (182.46%) (79.06%) (168.48%) (359.92%)
Fmax 243.8 232.3 225.6 271.5 196.3 - 241.7 216.4 - 212.4 - - [MHz]

Latency 20596 41094 82124 41056 82054 164044 61536 123014 245964 122976 245894 491724 [clock cycles]

Table 2: Resource utilization in HDR synthesis with compression.
VGA (640×480) HD (1280×720) FHD (1920×1080) 4K (3840×2160)

Layers 6 7 8 6 7 8 6 7 8 6 7 8 Available

LUT 39137 50675 63367 39288 52338 65211 40280 53477 66949 42058 54903 69648 274080(14.28%) (18.49%) (23.12%) (14.33%) (19.10%) (23.79%) (14.70%) (19.51%) (24.43%) (15.35%) (20.03%) (25.41%)

LUT-RAM 1710 2005 2990 1440 2112 3141 1611 2328 3369 1755 2410 3553 144000(1.19%) (1.39%) (2.08%) (1.00%) (1.47%) (2.18%) (1.12%) (1.62%) (2.34%) (1.22%) (1.67%) (2.47%)

FF 30189 37928 46115 29548 39250 47882 30468 39934 48333 32306 40998 49840 548160(5.51%) (6.92%) (8.41%) (5.39%) (7.16%) (8.74%) (5.56%) (7.29%) (8.82%) (5.89%) (7.48%) (9.09%)

BRAM 131 198 378 225.5 399.5 585.5 277.5 434.5 674.5 510 769 1296.5 912(14.36%) (21.71%) (41.45%) (24.73%) (43.80%) (64.20%) (30.43%) (47.64%) (73.96%) (55.92%) (84.32%) (142.16%)
Fmax 230.0 222.0 230.3 235.2 232.5 196.6 219.4 227.3 200.7 228.5 209.2 - [MHz]

Latency 20596 41094 82124 41056 82054 164044 61536 123014 245964 122976 245894 491724 [clock cycles]

Table 3: Quality evaluation results.
SSIM HDR-VDP-3 MEF-SSIMd

software software w/o comp software software w/o comp
Image Layers w/o comp w/ comp w/ comp w/o comp w/ comp w/ comp software w/o comp w/ comp

house

5 0.998 0.981 0.979 9.965 9.494 9.523 0.957 0.958 0.939
6 0.998 0.975 0.974 9.935 9.362 9.398 0.965 0.965 0.945
7 0.998 0.969 0.968 9.913 9.257 9.301 0.973 0.972 0.951
8 0.997 0.962 0.961 9.812 9.124 9.212 0.969 0.970 0.946

dress

5 0.999 0.978 0.978 9.959 9.303 9.320 0.975 0.975 0.963
6 0.999 0.973 0.973 9.921 9.145 9.177 0.986 0.986 0.972
7 0.997 0.967 0.969 9.702 8.930 9.072 0.992 0.991 0.975
8 0.994 0.961 0.964 8.904 8.426 9.008 0.994 0.992 0.975

the respective histograms in Fig. 11, there is no significant
change caused by the compression. The above results show
that the application of image compression can reduce re-
source usage with little degradation in image quality.

5.4 Number of Layers and Image Quality

Fig. 10 and 11 show the evaluation results of the change in
HDR synthesis quality when the number of layers is var-
ied from 6 to 8. Fig. 11 shows that the 6-layer configura-
tion produces unnatural gradations (halo) at the boundary
between the building and the sky, but the 8-layer configu-
ration improves the gradations and produces more natural
results. For quantitative evaluation, we also show the values
of MEF-SSIMd [21,22], an image quality assessment metric
for multi-exposure fusion images based on the structural sim-
ilarity approach, in Table 3. According to the result, deeper
configurations give better quality in terms of MEF-SSIMd,
except for the slight decrease of the image house found in
the 8-layer configurations.

From the above, it is confirmed that the increase in the

maximum number of layers brought by the introduction of
image compression in this study contributes to the improve-
ment in quality. On the other hand, as the number of layers
increases, a thin band of noise is observed at the periphery
of the image. This is because the padding algorithm for the
Gaussian filtering in the hardware implementation is differ-
ent from that of the software to reduce hardware complexity.
As shown in Fig. 11, the band-shaped noise is more promi-
nent in the image dress, which explains the lower values of
HDR-VDP-3 when compared to the software implementation
at 8 layers.

6. Conclusion

We proposed a method to reduce BRAM usage by incor-
porating image compression technology into the pipeline of
FPGA-based real-time HDR synthesis hardware, and eval-
uated the impact of this method on resource utilization and
HDR synthesis quality. Since the image compression based
on ADPCM can be calculated using only the values of ad-
jacent pixels and does not require complex operations, the

8
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

image compression module can be compactly integrated into
the FIFO of the dilated convolution used for HDR synthesis
processing easily, thereby improving the balance of resource
consumption. Specifically, in the case of 4K (3840×2160)
and 7 layers, the resource usage of LUT and FF increased
from 11.16 % to 20.03 % and from 4.84 % to 7.48 %, while
the BRAM was reduced from 168.48 % to 84.32 %. As a re-
sult, the number of layers that can be implemented increased
from 6 to 7, yielding better visual quality. To achieve a higher
number of layers, it is essential to apply further resource re-
duction methods. Regarding the processing performance,
the frame rate reached about 25 fps at 4K and about 100 fps
at FHD. Based on these results, the system can be applied to
a wide range of applications.

References

[1] T. Mertens, J. Kautz, and F.V. Reeth, “Exposure Fusion,” Proc.
Pacific Conference on Computer Graphics and Applications, PG
’07, USA, p.382–390, 2007.

[2] F. Hassan and J.E. Carletta, “An FPGA-Based Architecture for a
Local Tone-Mapping Operator,” Journal of Real-Time Image Pro-
cessing, vol.2, pp.293–308, 2007.

[3] V. Popovic, E. Pignat, and Y. Leblebici, “Performance Optimiza-
tion and FPGA Implementation of Real-Time Tone Mapping,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol.61,
no.10, pp.803–807, 2014.

[4] P.J. Lapray, B. Heyrman, and D. Ginhac, “HDR-ARtiSt: An Adaptive
Real-time Smart Camera for High Dynamic Range Imaging,” Journal
of Real-Time Image Processing, vol.12, no.4, pp.747–762, 2016.

[5] P. Ambalathankandy, A. Horé, and O. Yadid-Pecht, “An FPGA Im-
plementation of a Tone Mapping Algorithm with a Halo-Reducing
Filter,” Journal of Real-Time Image Processing, vol.16, pp.1317–
1333, 2019.

[6] S. Nosko, M. Musil, P. Zemcik, and R. Juranek, “Color HDR Video
Processing Architecture for Smart Camera,” Journal of Real-Time
Image Processing, vol.17, pp.555–566, 2020.

[7] M. Ikebe, P. Ambalathankandy, and Y. Ou, “HDR Tone Mapping:
System Implementations and Benchmarking,” ITE Transactions on
Media Technology and Applications, vol.10, no.2, pp.27–51, 2022.

[8] M.A. Sangiovanni, F. Spagnolo, and P. Corsonello, “Hardware-
Oriented Multi-Exposure Fusion Approach for Real-Time Video
Processing on FPGA,” 2022 17th Conference on Ph.D Research in
Microelectronics and Electronics (PRIME), pp.129–132, 2022.

[9] T. Katayama, Y. Imamura, T. Manabe, and Y. Shibata, “Application
of Extended Convolution to High Dynamic Range Synthesis Process-
ing in FPGA,” IEICE Technical Report, vol.121, no.59, pp.50–55,
2021.

[10] M. Nishimura, Y. Imamura, T. Manabe, and Y. Shibata, “FPGA
Implementation of HDR Synthesis Processing with Image Compres-
sion Techniques,” Proc. 2022 International Conference on Field-
Programmable Technology (ICFPT), pp.1–2, 2022.

[11] F. Yu and V. Koltun, “Multi-Scale Context Aggregation by Dilated
Convolutions,” Proc. International Conference on Learning Repre-
sentations (ICLR), 2016.

[12] The WebM Project, “VP9 Video Codec Summary.” https://www.
webmproject.org/vp9/.

[13] International Telecommunication Union, “ITU-T Recommendation
H.265: High efficiency video coding.” https://www.itu.int/
rec/T-REC-H.265.

[14] Video Electronics Standards Association (VESA), “VESA Dis-
play Compression Codecs.” https://vesa.org/vesa-display-
compression-codecs/.

[15] Hardent Inc., “Display Stream Compression (VESA DSC) 1.2a En-

coder IP Core For Xilinx FPGAs.” https://www.xilinx.com/
products/intellectual-property/1-14a3qhz.html.

[16] Hardent Inc., “Display Stream Compression (VESA DSC) 1.2a De-
coder IP Core For Xilinx FPGAs.” https://www.xilinx.com/
products/intellectual-property/1-133tc21.html.

[17] S.A. Martucci, “Reversible Compression of HDTV Images Using
Median Adaptive Prediction and Arithmetic Coding,” Proc. IEEE In-
ternational Symposium on Circuits and Systems (ISCAS), pp.1310–
1313, 1990.

[18] M.J. Weinberger, G. Seroussi, and G. Sapiro, “LOCO-I: A Low Com-
plexity, Context-Based, Lossless Image Compression Algorithm,”
Proc. Data Compression Conference (DCC), pp.140–149, 1996.

[19] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image Quality
Assessment: From Error Visibility to Structural Similarity,” IEEE
Transactions on Image Processing, vol.13, no.4, pp.600–612, 2004.

[20] R.K. Mantiuk, D. Hammou, and P. Hanji, “HDR-VDP-3: A Multi-
Metric for Predicting Image Differences, Quality and Contrast Dis-
tortions in High Dynamic Range and Regular Content.” https:
//arxiv.org/abs/2304.13625, 2023.

[21] K. Ma, K. Zeng, and Z. Wang, “Perceptual Quality Assessment
for Multi-Exposure Image Fusion,” IEEE Transactions on Image
Processing, vol.24, no.11, pp.3345–3356, 2015.

[22] Y. Fang, H. Zhu, K. Ma, Z. Wang, and S. Li, “Perceptual Evalua-
tion for Multi-Exposure Image Fusion of Dynamic Scenes,” IEEE
Transactions on Image Processing, vol.29, pp.1127–1138, 2020.

Masahiro Nishimura Masahiro Nishimura
graduated from Nagasaki University, Japan, in
2022. Now he is a master student at the Graduate
School of Engineering, Nagasaki University. His
research interests include image processing with
an FPGA.

Taito Manabe Taito Manabe received the
B.E, M.E, and Ph.D. degrees from Nagasaki Uni-
versity, Japan, in 2016 and 2018, and 2021, re-
spectively. Now he is an assistant professor at
School of Information and Data Sciences, Na-
gasaki University. His research interests include
real-time processing with an FPGA.

Yuichiro SHIBATA Yuichiro Shibata re-
ceived the B.E. degree in electrical engineering,
the M.E. and Ph.D. degrees in computer science
from Keio University, Japan, in 1996, 1998 and
2001, respectively. Currently, he is a professor
at School of Information and Data Sciences, Na-
gasaki University. He was a Visiting Scholar at
University of South Carolina in 2006. His re-
search interests include reconfigurable systems
and parallel processing.

https://www.webmproject.org/vp9/
https://www.webmproject.org/vp9/
https://www.itu.int/rec/T-REC-H.265
https://www.itu.int/rec/T-REC-H.265
https://vesa.org/vesa-display-compression-codecs/
https://vesa.org/vesa-display-compression-codecs/
https://www.xilinx.com/products/intellectual-property/1-14a3qhz.html
https://www.xilinx.com/products/intellectual-property/1-14a3qhz.html
https://www.xilinx.com/products/intellectual-property/1-133tc21.html
https://www.xilinx.com/products/intellectual-property/1-133tc21.html
https://arxiv.org/abs/2304.13625
https://arxiv.org/abs/2304.13625

NISHIMURA et al.: PIPELINED ADPCM COMPRESSION FOR HDR SYNTHESIS ON AN FPGA
9

(a) 6 layers with compression (b) 6 layers without compression (c) 6 layers software (d) Histogram at 6 layers

(e) 7 layers with compression (f) 7 layers without compression (g) 7 layers software (h) Histogram at 7 layers

(i) 8 layers with compression (j) 8 layers without compression (k) 8 layers software (l) Histogram at 8 layers

Fig. 10: HDR synthesis results (house)

(a) 6 layers with compression (b) 6 layers without compression (c) 6 layers software (d) Histogram at 6 layers

(e) 7 layers with compression (f) 7 layers without compression (g) 7 layers software (h) Histogram at 7 layers

(i) 8 layers with compression (j) 8 layers without compression (k) 8 layers software (l) Histogram at 8 layers

Fig. 11: HDR synthesis results (dress)

