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Abstract

Epigenetics is an emerging field of research because of its involvement in susceptibility to dis-

eases and aging. Hypoxia and hyperoxia are known to be involved widely in various pathophysi-

ologies. Here, we compared the differential epigene expression pattern between Pleurodeles

waltl and Mus musculus (commonly known as Iberian ribbed newt and mouse, respectively)

exposed to hypoxia and hyperoxia. Adult healthy newts and mice were exposed to normobaric

hypoxia (8% O2) and hyperoxia (80% O2) for 2 hours. We collected the lungs and analyzed the

expression of hypoxia-inducible factor 1 alpha (Hif1α) and several key epigenes from DNA

methyltransferase (DNMT) family, histone deacetylase (HDAC) family, and methyl-CpG binding

domain (MBD) family. The exposure to hypoxia significantly increased the mRNA levels of DNA

methyltransferase 3 alpha (Dnmt3α), methyl-CpG binding domain protein 2 (Mbd2), Mbd3, and

histone deacetylase 2 (Hdac2) in lungs of newts, but decreased the mRNA levels of DNA

methyltransferase 1 (Dnmt1) and Dnmt3α in lungs of mice. The exposure to hyperoxia did not

significantly change the expression of any gene in either newts or mice. The differential epigene

expression pattern in response to hypoxia between newts and mice may provide novel insights

into the prevention and treatment of disorders developed due to hypoxia exposure.

Introduction

Epigenetics represents the machinery that regulates transcription of genes and is the result of

addition or deletion of epigenetic modifications [1]. The most basic epigenetic modifications

are methylation to DNA and core histone proteins. Beside methylation (addition of methyl

groups to the arginine or lysine residues), the histone proteins are also vulnerable to different

modifications including acetylation (incorporation of an acetyl group to lysine molecules

residing in the protruding tails), phosphorylation (addition of phosphate group to serine, thre-

onine, and tyrosine amino acid usually in the N-terminal tails), SUMOylation (covalently link-

ing a small ubiquitin-like modifier SUMO to a specific lysine amino acid), and ubiquitination
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(transportation of ubiquitin protein to the core histone). The aforementioned modifications

regulate chromatin accessibility to transcription factors and enzymes that are responsible for

transcription initiation [1]. Epigenetics is known to play key roles in the development of

organisms and diseases [2]. Environmental cues including temperature, oxygen level, chemical

pollutants, etc. have impact on epigenetics and disease susceptibility [3–5].

Hypoxia, the supply of lower amount of oxygen compared to required level, is detrimental

for most of the vertebrates, as it dramatically impairs cellular metabolic demand. Almost all

animals have the chance of being exposed to environmental hypoxia as it is a widely existing

environmental condition. On the other hand, hyperoxia is the supply of elevated level of oxy-

gen compared to the normal level. Supply of excess oxygen is common for patients undergoing

surgery after general anesthesia and those who are suffering from acute or life-threatening ill-

ness. Both of the hypoxia and hyperoxia induce severe oxidative stress in the lung [6–8]. Hyp-

oxia induces pulmonary hypertension, interstitial pulmonary fibrosis, acute respiratory

distress syndrome, and chronic obstructive pulmonary disease [7,9]. Elevated oxygen supply

to preterm infant induces bronchopulmonary dysplasia (BPD) [10]. Hyperoxia-induced BPD

has been reported due to acetylation of histone H3 lysine 27 (H3K27) and the subsequent tran-

scription activation of Cdkn1α [11]. Effective and rapid therapeutic intervention is an urgent

need to get rid of the pathophysiological complication induced by hypoxia and hyperoxia. As

epigenetic modifications are reversible, targeting epigenetic landmarks involved in a disease

process may offer novel approach to planning effective and rapid therapies. For example, inter-

mittent hypoxia-induced hypermethylation of CpG near the transcription start site of superox-

ide dismutase 2 (Sod2) gene suppresses its expression in mice and mitigation of this

transcription inhibition by treating with DNA methyltransferase (DNMT) inhibitor decitabine

has been reported [12]. Therefore, studying the epigenetics of hypoxia and hyperoxia tolerant

animals may offer clues to develop preventive measures or treatment options to get rid of hyp-

oxia- and hyperoxia-induced pathological conditions in human.

Compared to mammals, the ectothermic vertebrates (e.g. amphibians, fishes, and reptiles)

are more tolerant to hypoxia and hyperoxia [13–15]. Some fishes (Astronotus ocellatus, Caras-
sius carassius andHemiscyllium ocellatum) and turtles (Chrysemys picta and Trachemys scripta
elegans) can survive for several hours to days without any amount of oxygen [15–18]. For

instance, adult A. ocellatus can survive approximately 6 hours without oxygen [16], while

Chrysemys turtle can tolerate anoxia for more than 60 hours [17].

Pleurodeles waltl, member of Salamandridae family, is an ectothermic animal with excellent

organ regeneration capacity. P. waltl is generally called as newt. The regeneration capacity of

newts is age independent [19]. Another interesting property of newts is resistance to carcino-

genesis [20,21]. As they are semiaquatic animals, their life cycle follows three developmental

stages, such as larvae (aquatic) stage, juvenile (terrestrial) stage, and adult (semiaquatic) stage

[22]. Similar to having different developmental phases and habitats, they have different ways

of breathing. At larvae stage, they use their feathery gills to breathe under water. Following

metamorphosis, the larvae turn into juvenile stage and develop legs and lungs for surviving on

land. This respiratory transition process is unique to amphibians [23]. They live on land from

months to years to become adult from juvenile phase. After being adult, they can live both on

land and in water, representing them as semiaquatic. Except the lungless newts, the adult one

uses lungs for breathing on surface and commonly they follow cutaneous respiration in water.

In a previous article by our group, increased acetylation to histone H3 lysine 9 (H3K9),

H3K14, and H3K27 has been reported in the regenerating tail tissue of P. waltl [24]. It has

been reported that semiaquatic freshwater turtle T. scripta elegans develops tolerance to oxy-

gen starvation by harboring DNA hypermethylation and subsequent global transcription inhi-

bition [18]. Thus, we hypothesized that the epigenetics in salamander is different than in
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mammal and we designed this study to compare the differential epigene expression pattern in

lungs of newts and mice in response to hypoxia and hyperoxia exposures.

Materials and methods

Animal care

Iberian ribbed newts (P. waltl) and C57BL/6 mice (CLEA, Japan) were used in this study.

Newts were obtained from the Tottori University [25] and the Hiroshima University Amphib-

ian Research Center through a National BioResource Project (NBRP) of the Ministry of Educa-

tion, Culture, Sports, Science and Technology (MEXT), Japan. Nine male adult newts (4 to 5

years old) and nine male adult mice (12 to 14 weeks old) were used for this experiment. Newts

were kept in a temperature controlled room (25 ± 1.5˚C) with 12:12-h light–dark cycle. They

were housed in polypropylene cage filled with tap-water and equipped with continuous air

supply into the water. Water was changed three times in a week after feeding them catfish pel-

let food (Kyorin Food Industry Co., Ltd., Japan). Mice were housed in a pathogen-free and

temperature controlled room with 12:12-h light–dark cycle. Mice were accessed to food and

water ad libitum. Approval of this study was taken from Institutional Animal Care and Use

Committee, Nagasaki University (memo no. 2017–1). All animal procedures were executed

according to the institutional and national guidelines.

Exposing animals to hypoxia and hyperoxia

Newts and mice were exposed to modified oxygen in air. The incubators were maintained at

25 ± 0.5˚C temperature with 5% CO2 supply. Animals were exposed to 20% O2 (normoxia),

8% O2 (hypoxia), and 80% O2 (hyperoxia) for 2 hours. Exposing animals to modified oxygen

was performed individually following three replications. Then, they were sacrificed following

cervical dislocation and their lungs were collected and stored immediately at -80˚C.

Reverse transcription-quantitative polymerase chain reaction

RNA was isolated from lung tissue using Direct-zol™ RNA MiniPrep Kits (Zymo Research,

USA) following steps described in manufacturer’s protocol. Quality and quantity of RNA was

evaluated using a NanoDrop™ 2000/2000c spectrophotometer (Thermo Scientific). The iso-

lated RNA (2 μg) was reverse-transcribed using SuperScript™ VILO™ MasterMix (Invotrogen,

USA) in 20 μL reaction mixture. Quantitative polymerase chain reaction (qPCR) was per-

formed using THUNDERBIRD™ SYBR1 qPCR Mix (TOYOBO, Japan) on a Bio-Rad CFX96

real-time PCR detection system (Bio-Rad, USA). Complementary DNA (cDNA) equivalent to

50 ng RNA (except 12.5 ng forHif1α and corresponding Gapdh in case of mice) was used in

each 20 μL PCR reaction. Efficiency of PCR was confirmed based on parallelism of the geomet-

ric slops on the amplification plot. The melt curve analysis was performed according to the set

program on Bio-Rad CFX96 real-time PCR detection system (Bio-Rad, USA). Primers

(Table 1) used in this study were synthesized by Hokkaido System Science Co., Ltd. (Japan).

Of note, the primers for newt were designed based on the transcript database iNewt (http://

www.nibb.ac.jp/imori/main/) developed by Matsunami et al. [26]. We used the basic local

alignment search tool (BLAST) of that database using the corresponding transcript FASTA

sequence of mouse against the transcript dataset “Trinity_Pwal_v2.fasta” to find out the target

transcript. Thereafter, the best matched FASTA sequences were downloaded and used to

design primers utilizing the National Center for Biotechnology Information (NCBI) primer

designing tool. However, normalized fold change calculation was performed using endoge-

nous glyceraldehyde 3-phosphate dehydrogenase (Gapdh) gene based on ΔΔCq method [27].
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Statistical analysis

The results in this study are presented as the mean ± SD (standard deviation). The one-way

analysis of variance (ANOVA) with Dunnett’s multiple comparison test was performed on

GraphPad Prism (version 8) software.

Results

Hypoxia does not affect expression of hypoxia-inducible factor 1 alpha

(Hif1α) in newts and mice

Firstly, we checked expression of hypoxia-inducible factor 1 alpha (Hif1α) mRNA. Though the

change ofHif1α mRNA expression was not significant compared to normoxia, we observed an

increasing trend only in newts at hypoxia (Fig 1A). The level ofHif1α mRNA was not changed

among groups in mice (Fig 1B).

Table 1. List of primers.

Genes Primers Sequences (5’-3’)

Newt Mouse

Hif1α Forward GGTGAAGACCGAGCCAAGAA ACCTTCATCGGAAACTCCAAAG

Reverse CGAACTGTCGCTGGTGTTTG CTGTTAGGCTGGGAAAAGTTAGG

Dnmt1 Forward TGCTTACTGCGACCACTACC CCGTGGCTACGAGGAGAAC

Reverse AGAGAACGCTACCAAACGCA TTGGGTTTCCGTTTAGTGGGG

Dnmt3α Forward AACCCTACGTTCACGCAAGT GGCCGAATTGTGTCTTGGTG

Reverse TTATTGGGGACTGGGCTAGG CCATCTCCGAACCACATGAC

Dnmt3β Forward GCTGGATTGGGCATTTGGAG AGCGGGTATGAGGAGTGCAT

Reverse GTCGTTTAGGGAGTGGGCAG GGGAGCATCCTTCGTGTCTG

Mbd1 Forward GCACTTCCTCAGGAGCCAAT AAAGTTGAGCTGACTCGGTACT

Reverse AGAGCCCTACTGGGGAGAAG TCTTGGCTGGTTTAGAAGGCT

Mbd2 Forward ATCTCGACAACTGGGGCTTG AGAACAAGGGTAAACCAGACCT

Reverse CGGCAAAAGCGATGTCTACT ACTTCACCTTATTGCTCGGGT

Mbd3 Forward TGGTATATGGCGAAGAATGTTGC CCCCAGCGGGAAGAAGTTC

Reverse AGCCGTGTGCACTTCATTCA CGGAAGTCGAAGGTGCTGAG

Mecp2 Forward ACCAATCGTCAGGGGAGAGA ATGGTAGCTGGGATGTTAGGG

Reverse AGTGTGCAGTTCCAAGGCTC TGAGCTTTCTGATGTTTCTGCTT

Hdac1 Forward TGGAACTTGGCCTGGATTAGG TGAAGCCTCACCGAATCCG

Reverse TGCAGTTCAAGTCGTCTGGT GGGCGAATAGAACGCAGGA

Hdac2 Forward ACTGACCAACCCAGTAACCCA GCTTGCCATCCTCGAATTACT

Reverse GGCCAGTTCCGCTCACTACA GTCATCACGCGATCTGTTGTAT

Gapdh Forward CGGAATCAACGGATTTGG TGGCCTTCCGTGTTCCTAC

Reverse GCGTCCATGGGTAGAGTCAT GAGTTGCTGTTGAAGTCGCA

α-actin Forward TGGTCGTGACCTGACTGAT -

Reverse TCACGGACAATCTCACGTTC -

β-actin Forward AAGAAGGTTGGAAGAGCGCC -

Reverse TCTGGACTTCGAGCAGGAGA -

Taf6 Forward TTCACGAGCTGTCTGTGGAG -

Reverse CCTGGGAAGCATTTGGTAGA -

Ef1α Forward AACATCGTGGTCATCGGCCAT -

Reverse GGAGGTGCCAGTGATCATGTT -

mtRNA16s Forward CGTGCAGAAGCGGAGATAA -

Reverse TGTCGGGCTGTTGTAGGG -

https://doi.org/10.1371/journal.pone.0299661.t001
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Hypoxia up-regulates DNA methyltransferases (DNMTs) in newts, but

conversely down-regulates in mice

According to our results, DNA methyltransferase 1 (Dnmt1) expression was not changed sig-

nificantly at any condition of oxygen treatment in newts (Fig 2A). On the other hand, expres-

sion of Dnmt1 was decreased significantly (p<0.05) in mice at hypoxia, but not changed at

hyperoxia (Fig 2D). At hypoxic condition, expression of DNA methyltransferase 3 alpha

(Dnmt3α) was increased significantly (p<0.01) in newts (Fig 2B), but decreased significantly

(p<0.01) in mice (Fig 2E). Dnmt3α expression was not affected in any species due to hyperoxia

exposure (Fig 2B and 2E). No significant change was observed in Dnmt3β expression in any

animal exposed to hypoxia or hyperoxia (Fig 2C and 2F).

Hypoxia up-regulates methyl-CpG binding domains (MBDs) in newts, but

not in mice

No significant change was observed in methyl-CpG binding domain 1 (Mbd1) expression both

in newts and mice exposed to hypoxia or hyperoxia (Fig 3A and 3E). Expression of methyl-

CpG binding domain protein 2 (Mbd2) was increased significantly (p<0.01) by 1.60±0.17 fold

in newts exposed to hypoxia (Fig 3B). However, hyperoxia did not affect expression ofMbd2
in newts (Fig 3B). On the other hand,Mbd2 expression was not changed in mice exposed to

hypoxia and hyperoxia (Fig 3F). Methyl-CpG binding domain protein 3 (Mbd3) mRNA

expression was also elevated by 1.69±0.35 fold in newts only at hypoxia (p<0.05 vs. normoxia,

Fig 3C), but was not changed in mice (Fig 3G). The expression of methyl-CpG binding protein

2 (Mecp2) mRNA was not changed in both newts and mice exposed to hypoxia or hyperoxia

(Fig 3D and 3H).

Fig 1. Effect of hypoxia and hyperoxia on expression ofHif1α gene in newts (A) and mice (B). Data are presented as

mean ± SD. Experiments were done in triplicate.

https://doi.org/10.1371/journal.pone.0299661.g001
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Hypoxia up-regulates histone deacetylases (HDACs) in newts, but not in mice

We did not find change in expression of histone deacetylase 1 (Hdac1) in either newts or mice

exposed to hypoxia and hyperoxia (Fig 4A and 4C). However, histone deacetylase 2 (Hdac2)

mRNA level was increased significantly (p<0.01) only in newts at hypoxia (Fig 4B and 4D).

Hypoxia causes transcription inhibition in newts

Our prior results regarding normalized fold change of genes including Dnmt3α,Mbd2,Mbd3,

andHdac2 elevation suggest increased de novomethylation and subsequent transcription inhi-

bition in newt lungs. Thus, we recalculated our data for evaluating relative (to control) expres-

sion of genes and found that all transcripts in newts were decreased dramatically but the extent

of suppression is different (Fig 5A). In contrast, the relative gene expression in mice (Fig 5B)

showed trends similar to normalized fold change.

Discussion

Although we conducted a comparative study between newts and mice after exposing them to

hypoxia and hyperoxia, we found differences in epigene expression patterns only under

Fig 2. Effect of hypoxia and hyperoxia on genes that encode DNA methyltransferases (DNMTs) in newts (A, B, and

C) and mice (D, E, and F). A and D = DNA methyltransferase 1 (Dnmt1), B and E = DNA methyltransferase 3 alpha

(Dnmt3α), C and F = DNA methyltransferase 3 beta (Dnmt3β). Data are presented as mean ± SD. Experiments were

done in triplicate. *p<0.05, **p<0.01.

https://doi.org/10.1371/journal.pone.0299661.g002
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hypoxic condition. Hypoxia is detrimental to most animals and stimulates a complex tissue-

specific microenvironment for oxygen homeostasis. Oxygen homeostasis under hypoxic con-

dition is regulated by hypoxia-inducible factor 1 (HIF1) proteins [28]. There are two HIF1 sub-

units: HIF1α and HIF1β. Under normoxic and hyperoxic conditions, HIF1 proteins are

degraded by prolyl hydroxylases (PHDs) [29]. Hypoxia protects HIF1 from degradation by

PHDs. Thus, HIF1 proteins become stabilized and start its function as a transcription factor.

This protein induces transcription of more than 60 genes which are involved in numerous

pathways including but not limited to amino acid metabolism, angiogenesis, apoptosis, cell

proliferation, cell survival, cytoskeletal structure remodeling, drug resistance, epithelial

homeostasis, erythropoiesis, extracellular matrix metabolism, glucose metabolism, mainte-

nance of vascular tone, motility of cells, nucleotide metabolism, and pH regulation [30]. Hyp-

oxia not only stabilizes HIF1 protein but also induces expression of mRNA [31–33], which is

later translated into protein to compensate for degraded protein for oxygen homeostasis.

Here, we found an insignificant but slight elevation in mRNA level ofHif1α in newts exposed

to hypoxia, but no change was observed in mice. Wiener et al. [31] showed thatHif1α mRNA

synthesis was maximized in mouse at 1 hour and returned to basal level at 4 hours of exposure

to 7% O2. In this study, we exposed mice to 8% O2 for 2 hours and did not find an elevation of

Hif1α mRNA. We speculate that the mRNA level returned to basal state within 2 hours. This

reversion ofHif1α mRNA to the basal level might be due to the stabilization of enough HIF1α
proteins.

Fig 3. Effect of hypoxia and hyperoxia on genes that encode methylated CpG binding domain proteins (MBDs) in newts (A, B, C, and D) and

mice (E, F, G, and H). A and E = methyl-CpG binding domain protein 1 (Mbd1), B and F = methyl-CpG binding domain protein 2 (Mbd2), C

and G = methyl-CpG binding domain protein 3 (Mbd3), D and H = methyl-CpG binding protein 2 (Mecp2). Data are presented as mean ± SD.

Experiments were done in triplicate. *p<0.05, **p<0.01.

https://doi.org/10.1371/journal.pone.0299661.g003
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Generally, HIF1α, as a transcription factor, begins its role upon binding to the hypoxia

response elements (HREs) on DNA. The core HRE sequence on DNA is CGTG, where meth-

ylation of cytosine occurs and initiates subsequent epigenetic regulation in response to hypoxia

[34]. Upon binding to the HREs, HIF1α recruits histone acetyltransferases and promotes tran-

scription of target genes [34]. Additionally, HIF1α proteins promote the upregulation of his-

tone demethylase enzymes and cooperatively control gene expression [34].

However, the elevated expression of DNA methyltransferase 3 alpha (Dnmt3α) suggests

increased de novomethylation at CpG sites on DNA in newts exposed to hypoxia [18,35]. Ele-

vated DNA methylation is an indication of tolerance to oxygen starvation [18]. Methylated

CpG sites at the promoter region directly hinder transcription factors from bind to the pro-

moter region and impair transcription [18]. The methylated CpG sites attract nucleosome

remodeling and histone deacetylation (NuRD) complex molecules, inducing subsequent tran-

scription inhibition [18,36,37]. Interestingly, we found enhanced expression of NuRD complex

protein-coding genes, including methyl-CpG binding domain protein 2 (Mbd2),Mbd3, and

histone deacetylase 2 (Hdac2), in the lungs of newts exposed to hypoxia. MBD2 and MBD3

inhibit transcription indirectly by binding to methylated CpG sites at the promoter regions

Fig 4. Effect of hypoxia and hyperoxia on genes that encode histone deacetylases (HDACs) in newts (A and B) and

mice (C and D). A and C = histone deacetylase 1 (Hdac1), B and D = histone deacetylase 2 (Hdac2). Data are presented

as mean ± SD. Experiments were done in triplicate. **p<0.01.

https://doi.org/10.1371/journal.pone.0299661.g004
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Fig 5. Relative (to control) mRNA level in lungs of newts (A) and mice (B) after hypoxia exposure. Data are presented as mean ± SD.

Experiments were done in triplicate.

https://doi.org/10.1371/journal.pone.0299661.g005
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[18], while HDAC2 participates in removing acetyl groups from histones to form heterochro-

matin and negatively regulates transcription of certain genes [37]. Strikingly, enhancedHdac2
expression supports hypoxia tolerance [38] since it attenuates inflammation [39,40].

On the other hand, we found a reduction in Dnmt1 and Dnmt3α mRNA in mice exposed to

hypoxia. Reduced DNMTs expression resembles reduced methylation on DNA [41]. Accord-

ing to growing evidence, hypoxia decreases Dnmt1 expression in mammals [41,42]. Loss of

Dnmt1 indicates a loss of control in maintaining the pre-existing physiological methylation

pattern, leading to cell death at mitosis stage and genome instability [18,43]. It has been

reported that deletion of Dnmt3α is lethal [44]. Collectively, the decreased expression of

Dnmt1 and Dnmt3α due to hypoxia is detrimental for mice [18,35,43,44].

Of note, using Gapdh as an internal control might be questionable as Gapdh itself is known

as a target of HIF1α. Previous studies have shown that Gapdh expression in alveolar epithelial

cells remains stable even after three hours at 0% O2 [45,46]. It has also been reported that

Gapdh is not involved in hypoxia habituation in lung fibroblasts or smooth muscle cells [46].

In this study, hypoxia (8% O2) treatment for two hours did not affect Gapdh expression in

mice lung (S1 Table), which is consistent with prior reports [45,46]. However, we observed

unstable Gapdh expression (larger Cq values) in newts after exposure to hypoxia (S1 Table),

which seems unusual compared to observations in mammals. The Cq values for the target epi-

genes were also unstable but parallel to the Cq values of Gapdh. Thus, we used Gapdh as an

internal control because the data normalized by Gapdh showed the smallest individual varia-

tion. We also checked several other housekeeping genes, such as α-actin, β-actin, elongation

factor 1 alpha (Ef1α), mitochondrial RNA 16S (mtRNA16s), and TATA-box binding protein

associated factor 6 (Taf6), which are well-used as internal controls; however, all of them

resulted in expression trends similar to Gapdh. Additionally, the Cq values for the later-men-

tioned housekeeping genes were also unstable but had parallelism to Cq value of Gapdh of the

corresponding sample (S1 Table) and yielded higher individual variation among the data

points.

To our surprise, the consecutive enhanced expression of Dnmt3α,Mbd2,Mbd3, andHdac2
suggests global transcription inhibition in lungs of newts [18]. Wijenayake and Storey [18]

reported DNA hypermethylation and subsequent transcription inhibition in a tissue-specific

manner in the semiaquatic turtle T. scripta elegans after exposure to anoxia. Due to anoxia

exposure, enhanced DNMT1, DNMT2, MBD1, and MBD2 in liver and DNMT3α, DNMT3β,

and MBD1 in white muscle of T. scripta elegans were observed [18]. Recently, global hyper-

methylation and subsequent transcription inhibition in brain and heart of goldfish due to

chronic hypoxia exposure have also been reported [47]. Therefore, to prove the hypothesis of

global transcription inhibition in lungs of our newt model, we performed relative (to control)

gene expression analysis and found a dramatic decrease in all transcripts in newts. Transcrip-

tion is one of the energetically expensive processes and requires a certain amount adenosine

triphosphate (ATP). InhibitedmtRNA16s indicates suppression of oxidative phosphorylation

(OXPHOS) [48]. As a consequence, a metabolic switch from OXPHOS to glycolysis is

expected for energy homeostasis. Interestingly, we found a dramatic decrease in Gapdh
mRNA, a glycolytic gene, instead of its elevation. Therefore, the decreased expression of

mtRNA16s and Gapdh suggests metabolic suppression in newts. Additionally, the suppressed

expression of a transcription factor Taf6 is an indication of transcription inhibition. Such tran-

scriptional inhibition in newt lungs indicates metabolic suppression, suggesting an adaptive

mechanism for efficient hypoxia survival [13,18,47].

The limitation of this study lies in the fact that we did not optimize the ideal hypoxic condi-

tion for P. waltl by subjecting them to varying oxygen level, as mice from the same cohort used

in this experiment died when exposed to less than 8% oxygen (data not shown). Strikingly,
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Sheafore et al. [49] studied the effects of hypoxia on Desmognathus fuscus, a lungless salaman-

der species. They observed increased buccal activity in D. fuscus exposed to oxygen levels rang-

ing from 5 to 8%, while there was no change in groups exposed to 10% or even 2% oxygen

supply [49]. Though heart rate significantly increased at 10, 8, 6.5, and 5% oxygen exposure

conditions, 2% oxygen exposure did not affect heart rate [49]. In addition to the heart rate, the

apnea period was not impaired at 2% oxygen exposure, while apnea period was shortened in

all other conditions (10, 8, 6.5, and 5% oxygen) [49]. Based on the findings by Sheafor et al.

[49], optimizing an ideal hypoxia condition for newt might be challenging. Therefore, we

chose to create a hypoxic environment at 8% oxygen based on findings by Sheafor et al. [49]

and considering the hypoxia tolerance threshold (8% oxygen) observed in the mice from the

same cohort.

In conclusion, we found opposite epigene expression patterns in lungs of newts and mice

after hypoxia exposure. In the case of newts, the transcription inhibition or metabolic suppres-

sion in response to hypoxia might be another excellence of salamanders in addition to regener-

ation [24,50] and resistance to long-term starvation stress [51], senescence [52], and

carcinogens [20,21] which are not well developed in adult mice. To make this differential epi-

gene expression pattern clinically translational, further study to elucidate the specific mecha-

nism of action involved in hypoxia tolerance of P. waltl is a prerequisite.
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