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Abstract: γδ T cells and natural killer (NK) cells have attracted much attention as promising effector
cell subsets for adoptive transfer for use in the treatment of malignant and infectious diseases, because
they exhibit potent cytotoxic activity against a variety of malignant tumors, as well as virus-infected
cells, in a major histocompatibility complex (MHC)-unrestricted manner. In addition, γδ T cells
and NK cells express a high level of CD16, a receptor required for antibody-dependent cellular
cytotoxicity. Adult T-cell leukemia–lymphoma (ATL) is caused by human T-lymphotropic virus type
I (HTLV-1) and is characterized by the proliferation of malignant peripheral CD4+ T cells. Although
several treatments, such as chemotherapy, monoclonal antibodies, and allogeneic hematopoietic stem
cell transplantation, are currently available, their efficacy is limited. In order to develop alternative
therapeutic modalities, we considered the possibility of infusion therapy harnessing γδ T cells and
NK cells expanded using a novel nitrogen-containing bisphosphonate prodrug (PTA) and interleukin
(IL)-2/IL-18, and we examined the efficacy of the cell-based therapy for ATL in vitro. Peripheral blood
samples were collected from 55 patients with ATL and peripheral blood mononuclear cells (PBMCs)
were stimulated with PTA and IL-2/IL-18 for 11 days to expand γδ T cells and NK cells. To expand
NK cells alone, CD3+ T-cell-depleted PBMCs were cultured with IL-2/IL-18 for 10 days. Subsequently,
the expanded cells were examined for cytotoxicity against ATL cell lines in vitro. The proportion
of γδ T cells in PBMCs was markedly low in elderly ATL patients. The median expansion rate of
the γδ T cells was 1998-fold, and it was 12-fold for the NK cells, indicating that γδ T cells derived
from ATL patients were efficiently expanded ex vivo, irrespective of aging and HTLV-1 infection
status. Anti-CCR4 antibodies enhanced the cytotoxic activity of the γδ T cells and NK cells against
HTLV-1-infected CCR4-expressing CD4+ T cells in an antibody concentration-dependent manner.
Taken together, the adoptive transfer of γδ T cells and NK cells expanded with PTA/IL-2/IL-18 is a
promising alternative therapy for ATL.

Keywords: adult T-cell leukemia–lymphoma; γδ T cell; infusion therapy; interleukin-2; interleukin-18;
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1. Introduction

Adult T-cell leukemia–lymphoma (ATL) is a mature peripheral CD4+ T-cell malignancy
caused by infection with human T-lymphotropic virus type I (HTLV-1) [1]. ATL was first
discovered in Japan, in 1977 [1,2]. HTLV-1 infections are endemic in some countries
and regions, including Japan, Latin America, southwestern Africa, and some areas of
Australia [3]. In Japan, there are more than one million carriers of HTLV-1 [4]; 4000 new
cases of HTLV-1 infection per year [5]; approximately 2600 cases of newly diagnosed ATL
within a 2 y period [6]; and 1000–1500 deaths from ATL annually [7]. ATL is usually
categorized into four subtypes based on clinical findings: acute, lymphoma, chronic, and
smoldering [8,9]. This classification is useful for making decisions concerning treatment.
According to the criteria used to diagnose ATL [8], the indolent subtypes (i.e., smoldering
and favorable chronic) are usually managed with watchful waiting until acute crisis [10],
and the aggressive subtypes (i.e., acute, lymphoma, and unfavorable chronic) are managed
using a variety of intensive chemotherapies followed by allogeneic hematopoietic stem
cell transplantation (allo-HSCT) depending on the age [11,12]. More recently, anti-CC
chemokine receptor 4 (CCR4) monoclonal antibody (mAb) (mogamulizumab) [13,14] and
lenalidomide [15] have also been used for treating relapsed or refractory ATL. However,
ATL generally exhibits a very poor prognosis. In fact, the recent 4-year survival rates (i.e.,
the median survival time, days) for acute-, lymphoma-, unfavorable chronic-, favorable
chronic-, and smoldering-subtype ATL in Japan were 16.8% (252), 19.6% (305), 26.6% (572),
62.1% (1937), and 59.8% (1851), respectively [16]. Moreover, the 3-year overall survival
rate for acute- or lymphoma-subtype ATL was reported to be 33% despite undergoing
allo-HSCT, which is considered to be the only curative treatment, but which frequently
causes severe adverse events [17]. It is, therefore, imperative to develop novel modalities
for the treatment of ATL.

In Japan, the median age at diagnosis of ATL is 68 years old (interquartile range: 60–75
years old) [18]. In general, ATL onset requires a long latency period of approximately 50–60
years, which indicates the involvement of multistep mechanisms for leukemogenesis in
HTLV-1-infected cells. The HTLV-1 proteins Tax and HBZ are involved in the alteration of
immune traits in HTLV-1-infected cells, escape from host immune surveillance systems, and
accumulation of genetic mutations [19–23]. It was reported that the frequencies of invariant
natural killer T (iNKT) cells, NK cells, and dendritic cells in the peripheral blood of ATL
patients were significantly decreased [24] and that NK cell activity was markedly low in
ATL patients [25]. Recently, the adoptive transfer of autologous NK cells was reported
to be effective and safe [26–30]. Immunotherapy is, therefore, considered to be a novel
therapeutic and prophylactic strategy against HTLV-1 infections.

The adoptive transfer of T cells and NK cells has attracted much attention as a new
strategy for cancer immunotherapy. Chimeric antigen receptor (CAR) T-cell therapy is a
revolutionary new pillar in the treatment of B-cell lymphoma and multiple myeloma [31,32].
There are, however, many problems related to CAR T-cell therapy, such as life-threatening
CAR T-cell-associated toxicities, limited efficacy against solid tumors, inhibition and re-
sistance in B-cell malignancies, antigen escape, limited persistence, poor trafficking and
tumor infiltration, and the immunosuppressive microenvironment [33]. With CAR NK
cells, it is generally difficult to expand a large number of highly active NK cells for infusion
therapies [26,29].

The aims of this study were to develop an efficient method for expanding autologous
innate immune effector cells and to confirm whether the expanded cells exhibit potent
cytotoxic activities against HTLV-1-infected cells in vitro. We focused on γδ T cells and
NK cells as innate immune effector cells and examined the expansion rate and cytotoxicity
against HTLV-1-infected cells.

γδ T cells are involved in an immune surveillance system against cancer, including
hematological diseases and solid tumors [34–45]. γδ T cells occupy 3–5% of peripheral
blood T cells, 50–75% of which express Vγ9 (also termed Vγ2)- and Vδ2-bearing T-cell
receptors (TCRs) in healthy adults [46]. We hereafter use the term “γδ T cells” for Vγ9–Vδ2-
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bearing γδ T cells. Most γδ T cells express neither CD4 nor CD8 and do not require conven-
tional antigen processing and presentation via major histocompatibility complex (MHC)
molecules for antigen recognition. In addition, the majority of γδ T cells fail to recognize
conventional peptide antigens. Instead, they recognize small phosphorylated metabolites,
such as isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), from the
mevalonate pathway, as self-antigens and (E)-4-hydroxy-3-methylbut-2-enyl diphosphate
(HMBPP) from the 2-C-methyl-D-erythritol 4-phosphate/1-deoxy-D-xylulose 5-phosphate
(MEP/DOXP) pathway as a foreign antigen in a butyrophilin (BTN) 3A1/2A1-dependent
manner [47,48]. Since the multifaceted properties of tumor cells depend on the spaciotem-
poral expressions of small G-proteins, such as Ras, Rap, and Rho, whose functions are
inexorably linked to farnesyl and/or geranylgeranyl-groups derived from metabolites
in the mevalonate pathway, tumor cells might contain an elevated level of IPP/DMAPP,
which can be recognized by γδ T cells [49].

γδ T cells derived from the peripheral blood of young, healthy donors (hereafter
referred to as HDs) can be efficiently expanded up to 95–99% for 10–11 days with tetrakis-
pivaloyloxymethyl 2-(thiazole-2-ylamino) ethylidene-1,1-bisphosphonate (PTA), a nitrogen-
containing bisphosphonate prodrug, and interleukin (IL)-2 [50]. Although IL-2 can expand
NK cells, the extent is not sufficient for practical use in clinical settings. The IL-18 receptor is
expressed on innate immune cells, such as γδ T cells and NK cells, and IL-18 could augment
the proliferation of γδ T cells and promote the expansion of NK cells in the presence of IL-2,
since IL-18 induces the expression of CD25, an IL-2 receptor α chain [51–53].

It is worth noting that a humanized anti-CCR4 mAb has been approved for the
treatment of ATL, in which the mAb acts on CCR4-expressing HTLV-1-infected CD4+

T cells [54–56]. The therapeutic effect of anti-CCR4 mAb is considered to be partially
dependent on antibody-dependent cellular cytotoxicity (ADCC) through FcγR IIIa (CD16)
expressed on effector cells, such as γδ T cells and NK cells [51,55,57–59]. It is, therefore,
intriguing to examine whether anti-CCR4 mAb enhances the cytotoxicity of γδ T cells and
NK cells against HTLV-1-infected cells in vitro.

Since γδ T cells and NK cells are not restricted by MHC in the recognition of malignant
cells, the allogeneic transfer of these innate immune cells is currently under investigation.
It is, however, evident that autologous cell therapies are safer than allogeneic cell therapies,
since residual αβ T cells might cause graft-versus-host diseases.

In this study, we examined the immunological properties of γδ T cells and NK cells
derived from HDs, elderly non-ATL patients and ATL patients in an attempt to explore the
possibility of the adoptive transfer of γδ T cells and NK cells in the treatment of ATL.

2. Materials and Methods
2.1. Derivation of γδ T Cells and NK Cells

γδ T cells were expanded from peripheral blood mononuclear cells (PBMCs) in Yssel’s
medium supplemented with 10% heat-inactivated human AB serum [60], as described in
Supplementary Figure S1. NK cells were prepared from CD3-depleted PBMC, as described
in Supplementary Figure S2.

2.2. Flow Cytometric Analysis

Cells were stained with fluorescent dye-conjugated Abs, as described in Supplemen-
tary Figures S1–S7, and analyzed using a FACS Lyric flow cytometer (Becton Dickenson,
Franklin, Lakes, NJ, USA). The cell population was visualized with FlowJo ver. 10.8.1
(FlowJo LLC, Ashland, OR, USA).

2.3. Patient Characterization and Outcome

This study was conducted in accordance with the Declaration of Helsinki and was
approved by the Institutional Review Board of Nagasaki University Hospital. Obligatory
written informed consent was obtained from each participant in accordance with the
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comprehensive prior consent given to the Departments of Hematology and Dermatology
(Approval No. 13022512 and UMIN000042835).

In this study, 16 HDs with no known medical history (12 males and 4 females) were
first enrolled. The median age at the time of blood sampling was 34 years (range: 27–58
years). γδ T cells and/or NK cells were expanded from the peripheral blood samples of
10 HDs, as shown in Supplementary Table S1. Then, 55 ATL patients were recruited in
this study. Patients’ characteristics are summarized in Supplementary Table S2 and the
Shimoyama classification at the first diagnosis and the outcome at blood sampling are
summarized in Supplementary Table S3. ATL patients were allocated to flow cytometric
analysis, PTA/IL-2-induced expansion of γδ T cells, PTA/IL-2/IL-18-induced expansion
of γδ T cells, and IL-2/IL-18-induced expansion of NK cells, which is summarized in
Supplementary Table S4. In addition, elderly non-ATL patients (8 males and 2 females)
were enrolled, as shown in Supplementary Table S5, since aging is reported to result in the
remodeling of T-cell immunity and to be associated with poor clinical outcomes in age-
related diseases [61]. They visited the Department of Dermatology, Nagasaki University
Hospital between December 2021 and July 2023 and had no history of malignancy, HTLV-1
infections, and use of immunosuppressants or prednisolones. The median age at the time
of blood sample collection was 71.5 years old (range: 66–92 years old), which is comparable
to that of the ATL patients.

2.4. Cytotoxicity Assay Using Time-Resolved Fluorescence Spectroscopy

The cytotoxic activity of γδ T cells and NK cells against HTLV-1-infected cells was
determined using a nonradioactive cellular cytotoxicity assay kit (Techno Suzuta Co., Ltd.,
Heiwa-machi, Nagasaki, Japan). The KK1 human ATL cell line was established in the
Department of Hematology, Nagasaki University, and the HuT102 human ATL cell line
was from American Type Culture Collection (ATCC, Manassas, VA, USA). The cell lines
were maintained in complete RPMI1640 medium at 37 ◦C with 5% CO2 overnight. As for
the ATL cell lines, 100 U/mL of IL-2 was added to the medium every other day. KK1 and
HuT102 were pretreated with anti-CCR4 mAb (Kyowa Kirin Co., Ltd., Chiyoda-ku, Tokyo,
Japan) (4 mg/mL stock solution in PBS) at final concentrations of 0.5 µg/mL and 10 µg/mL,
respectively. The tumor cell suspensions (1 × 106 cells in 1 mL of RPMI1640 medium) were
then pulsed with 25 µM bis (butyryloxymethyl) 4′-(hydroxymethyl)-2,2′:6′,2′′-terpyridine-
6,6′-dicarboxylate (BM-HT, Techno Suzuta Co., Ltd.) at 37 ◦C for 15 min. When BM-HT was
internalized in the tumor cells, the compound was hydrolyzed by intracellular esterases
to yield 4′-(hydroxymethyl)-2,2′:6′,2′′-terpyridine-6,6′′-dicarboxylate (HT). Afterward, the
cells were washed three times with 5 mL of complete RPMI1640 via centrifugation at
1700 rpm at 4 ◦C for 5 min. The tumor cell suspensions (5 × 103 cells/100 µL) were
dispensed into a 96-well round-bottom plate, to which was added 100 µL of a serial
dilution of γδ T cells and/or NK cells. The plate was briefly centrifuged at 500 rpm at room
temperature for 2 min and then incubated at 37 ◦C with 5% CO2 for 60 min. Detergent
(Techno Suzuta Co., Ltd.) was added to each well at a final concentration of 5 × 10−5 M
for maximum release, and the cell suspensions and the plate were incubated at 37 ◦C
with 5% CO2 for 20 more min. After the cell suspensions were mixed well, the plate was
centrifuged at 1700 rpm at 4 ◦C for 2 min. The supernatant, 25 µL each, was transferred
to a new 96-well round-bottom plate containing 250 µL of europium (Eu3+) solution in
0.3 M sodium acetate buffer at pH 4 (Techno Suzuta Co., Ltd.), from which 200 µL each
was transferred to Thermo Scientific 96-well plates. The time-resolved fluorescence (TRF)
was measured using a NIVO multiplate reader (Revvity, Yokohama, Kanagawa, Japan).
All measurements were performed in triplicate. The specific lysis (%) was calculated as
100 × (experimental release (counts) − spontaneous release (counts))/(maximum release
(counts) − spontaneous release (counts)).
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2.5. Statistical Analysis

Continuous data are presented as the median value, range, and interquartile range
(IQR), and they were compared using Wilcoxon rank-sum tests with GraphPad Prism
(version 10.0.2 for Windows, GraphPad Software, La Jolla, CA, USA). Categorical data
were compared using Fisher’s exact tests. A p-value of less than 0.05 was considered to be
statistically significant.

3. Results
3.1. Expansion of γδ T Cells and NK Cells Derived from HDs

We first expanded γδ T cells from PBMC of 10 HDs using PTA/IL-2, as shown in
Supplementary Table S1. Four representative results of the flow cytometric analyses
before and after expansion are shown in Supplementary Figure S1A. It is of note that a
large number of highly purified γδ T cells were obtained by using a PTA/IL-2 expansion
system [50], when the initial proportion of γδ T cells in the CD3+ lymphocyte fractions
was well above 1%. The stimulated cells started to form clusters 3 to 5 days following the
stimulation (Supplementary Figure S1B). NK cell-related cell surface markers [62–67], such
as natural killer group 2 member D (NKG2D), DNAX accessory molecule-1 (DNAM-1),
and CD16 (FcγRIIIA), were expressed on γδ T cells on day 11 (Supplementary Figure S1C).
By contrast, the expression of FasL (CD95L) and TRAIL (human TNF-related apoptosis-
inducing ligand) was marginal. PD-1 was expressed on γδ T cells to different degrees
depending on individuals, which was consistent with previous reports [68,69].

We next expanded NK cells using IL-2 and IL-18 from 10 HDs. As shown in Supple-
mentary Figure S2A, highly purified NK cells were obtained on day 10. The stimulated
cells started to form clusters 4 to 5 days after stimulation with IL-2/IL-18 (Supplementary
Figure S2B). The NK cells expanded for 10 days expressed high levels of NKG2D, DNAM-1,
and CD16, as shown in Supplementary Figure S2C. In addition, more than half of the
IL-2/IL-18-expanded NK cells expressed high levels of HLA-DQ [70] and CD86 [71].

3.2. Cytotoxicity Exhibited by γδ T Cells and NK Cells Derived from HDs against ATL Cell Lines
In Vitro

We next examined the cytotoxic activity exhibited by PTA/IL-2-expanded γδ T cells
against HTLV-1-infected cell lines with a time-resolved fluorescence (TRF)-based assay
system using a terpyridine derivative and europium [72]. We examined the effect of
anti-CCR4 mAb on the γδ T-cell-mediated cytotoxicity against KK1 and HuT102 HTLV-
1-infected cell lines. As shown in Figure 1 (left panels), the γδ T cells exhibited potent
cytotoxic activity against KK1 and HuT102 cells in an E/T ratio-dependent manner, with
the specific lysis reaching approximately 20% in 60 min at an E/T ratio of 1:200. When
10 µg/mL of anti-CCR4 mAb was added to the assay system, 40 to 80% of either KK1 or
HuT102 cells were killed by γδ T cells at an E/T ratio of 1:100, suggesting that the γδ T
cells exhibited a potent ADCC against HTLV-1-infected cells in the presence of anti-CCR4
mAb (Figure 1, middle and right panels).

Following this, we examined the direct cellular cytotoxicity of the NK cells against
HTLV-1-infected cells. As shown in Figure 2 (left panels), the specific lysis of NK cells
against KK1 or HuT102 reached 20% to 70% in 60 min at an E/T ratio of 1:100. It is worth
noting that the NK cells exhibited a more potent cellular cytotoxicity against HTLV-1-
infected cells than the γδ T cells. When 10 µg/mL of anti-CCR4 mAb was added to the
assay system, more than 40–80% of KK1 and HuT102 cells were killed by NK cells at an
E/T ration of 1:100. Taken together, innate immune cells, including γδ T cells and NK
cells derived from HDs, exhibited both a direct cellular cytotoxicity and ADCC against
HTLV-1-infected cells.
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Effect of anti-CCR4 mAb on the cytotoxic activity of γδ T cells against KK1 (A) and HuT102 (B). 
After HTLV-1-infected cell lines were pretreated with 0, 0.5, or 10 µg/mL of anti-CCR4 mAb for 15 
min, the sensitized cells were challenged with PTA/IL-2-stimulated/expanded γδ T cells derived 
from four HDs at E/T ratios of 3.90625:1, 7.8125:1, 15.625:1, 31.25:1, 62.5:1, 125:1, and 250:1 or 3.125:1, 
6.25:1, 12.5:1, 25:1, 50:1, 100:1, and 200:1 for 60 min, and the specific lysis was determined using a 
time-resolved fluorescence-based assay based on an europium–terpyridine derivative chelate. The 
various symbols depict the cytotoxic activity of γδ T cells from distinct HDs. 

 
Figure 2. Cytotoxic activity exhibited by NK cells derived from HDs against HTLV-1-infected cells. 
Effect of anti-CCR4 mAb on the cytotoxic activity of NK cells against KK1 (A) and HuT102 (B). After 
HTLV-1-infected cell lines were pretreated with 0, 0.5, or 10 µg/mL of anti-CCR4 mAb for 15 min, 
the sensitized cells were challenged with PTA/IL-2-stimulated/expanded γδ T cells derived from 
four HDs at E/T ratios of 2.5:1, 5:1, 10:1, 20:1, 40:1, 80:1, and 160:1 or 1.875:1, 3.75:1, 7.5:1, 15:1, 30:1, 
60:1, and 120:1 for 60 min, and the specific lysis was determined using a time-resolved fluorescence-
based assay based on an europium–terpyridine derivative chelate. The various symbols depict the 
cytotoxic activity of γδ T cells from distinct HDs. 

Figure 1. Cytotoxic activity exhibited by γδ T cells derived from HDs against HTLV-1-infected cells.
Effect of anti-CCR4 mAb on the cytotoxic activity of γδ T cells against KK1 (A) and HuT102 (B). After
HTLV-1-infected cell lines were pretreated with 0, 0.5, or 10 µg/mL of anti-CCR4 mAb for 15 min,
the sensitized cells were challenged with PTA/IL-2-stimulated/expanded γδ T cells derived from
four HDs at E/T ratios of 3.90625:1, 7.8125:1, 15.625:1, 31.25:1, 62.5:1, 125:1, and 250:1 or 3.125:1,
6.25:1, 12.5:1, 25:1, 50:1, 100:1, and 200:1 for 60 min, and the specific lysis was determined using a
time-resolved fluorescence-based assay based on an europium–terpyridine derivative chelate. The
various symbols depict the cytotoxic activity of γδ T cells from distinct HDs.
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Figure 2. Cytotoxic activity exhibited by NK cells derived from HDs against HTLV-1-infected cells.
Effect of anti-CCR4 mAb on the cytotoxic activity of NK cells against KK1 (A) and HuT102 (B). After
HTLV-1-infected cell lines were pretreated with 0, 0.5, or 10 µg/mL of anti-CCR4 mAb for 15 min, the
sensitized cells were challenged with PTA/IL-2-stimulated/expanded γδ T cells derived from four
HDs at E/T ratios of 2.5:1, 5:1, 10:1, 20:1, 40:1, 80:1, and 160:1 or 1.875:1, 3.75:1, 7.5:1, 15:1, 30:1, 60:1,
and 120:1 for 60 min, and the specific lysis was determined using a time-resolved fluorescence-based
assay based on an europium–terpyridine derivative chelate. The various symbols depict the cytotoxic
activity of γδ T cells from distinct HDs.
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3.3. Effect of IL-18 on the Expansion of γδ T Cells Derived from ATL Patients

We then examined the immunological properties of γδ T cells derived from ATL
patients. The frequency of Vδ2+ T cells in CD3+ T cells was significantly low in the
peripheral blood of 25 ATL patients compared to that of HDs, as shown in Figure 3A. When
PBMCs derived from ATL patients were stimulated/expanded with PTA/IL-2 for 11 days,
the γδ T cells proliferated well and the expansion rate was comparable to that of HDs, as
shown in Figure 3B, which indicates that the PTA/IL-2-mediated expansion of the γδ T
cells was not affected by age and HTLV-1 infection status in terms of the expansion rate.
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Figure 3. Comparison of the γδ T-cell expansions between ATL patients and HDs. (A) Proportion of
γδ T cells in CD3+ T cells before expansion. PBMCs from 25 ATL patients and 10 HDs were purified
from peripheral blood samples and stained with PE-conjugated anti-CD3 mAb and FITC-conjugated
anti-Vδ2 mAb, which were analyzed using a FACS Lyric flow cytometer. (B) Expansion rate of γδ
T cells in response to PTA/IL-2. After stimulation/expansion with PTA/IL-2 for 11 days, the cells
were stained and analyzed as in (A) and counted under a microscope to calculate the number of γδ T
cells. (C) Comparison of PTA/IL-2 and PTA/IL-2/IL-18 in the expansion of γδ T cells. PBMCs were
stimulated/expanded with either PTA/IL-2 or PTA/IL-2/IL-18, and the effect of IL-18 was examined
using flow cytometric analyses and the cell counting method.

In the studies on γδ T cells derived from HDs, it was difficult to obtain a large number
of highly purified γδ T cells when the initial proportion of γδ T cells in the CD3+ lymphocyte
fractions was too low, especially when the proportion was less than 1%. In the peripheral
blood of ATL patients, in fact, the initial frequency of γδ T cells was mostly less than 1%.
We therefore sought to develop a strategy to expand γδ T cells more efficiently even in the
case of ATL patients whose proportion of peripheral blood γδ T cells was markedly low.

It was previously demonstrated that the IL-18 receptor is expressed on immune effector
cells, such as NK cells, γδ T cells, and CD8+ killer T cells, and IL-18 could efficiently promote
the expansion of γδ T cells [52] and NK cells [53] with potent cytotoxicity. We therefore
expanded PBMCs derived from the same 25 ATL patients with PTA/IL-2/IL-18 for 11 days
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(under the same conditions, except for the addition of IL-18) and examined the proportion
of γδ T cells in CD3+ T cells. As shown in Figure 3C, PTA/IL-2/IL-18 successfully amplified
γδ T cells derived from 25 ATL patients, and the purity of the γδ T cells was higher than
that for those expanded with PTA/IL-2. In addition, the expansion rate of the γδ T cells
stimulated with PTA/IL-2/IL-18 was also greater than that for PTA/IL-2. We therefore
enrolled 30 additional ATL patients and analyzed the PTA/IL-2/IL-18-mediated expansion
of γδ T cells derived from a total of 55 ATL patients.

As shown in Supplementary Figure S3A, the initial proportion of γδ T cells was
markedly low, compared to that of HDs. It is worthy of note that some CD4+ T cells ex-
pressed a slightly low level of CD3. It is most likely that the CD3dimCD4+ T cell population
corresponds to ATL cells. A microscopic analysis revealed that the cells started to form
clusters 3 to 6 days after stimulation depending on individuals (Supplementary Figure
S3B). After expansion with PTA/IL-2/IL-18 for 11 days, the proportion of γδ T cells in
lymphocyte fractions failed to reach to the levels for HDs, whereas the expansion rate was
equivalent to that for HDs. It is intriguing that CD3dimCD4+ T cells mostly disappeared
from the cell culture, suggesting that they were killed by γδ T cells. In fact, essentially all
the expanded γδ T cells expressed NKG2D and DNAM-1, as shown in Supplementary
Figure S3C. They expressed CD16 and PD-1 to different degrees depending on individuals.
In addition, it is noteworthy that CD3−CD56+ cells were increased when the proportion of
γδ T cells was low on day 11. It is most likely that this CD3−CD56+ cell population is NK
cells, indicating that the ATL cells in the cell culture are also killed by NK cells.

Based on the above findings, it is essential to take the initial proportion of γδ T
cells and the expansion of NK cells into account when we further explore the possibility
of infusion therapy for ATL. As shown in Supplementary Figure S4, CD3−CD56+ cells
(corresponding to NK cells) were increased when γδ T cells failed to occupy the majority of
lymphocytes after stimulation/expansion with PTA/IL-2/IL-18 for 11 days. Even in such
cases, CD3dimCD4+ T cells (corresponding to ATL cells) disappeared after incubation for
11 days, strongly suggesting that PTA/IL-2/IL-18-expanded γδ T cells and NK cells could
exert potent anti-ATL activity.

Hence, the ATL patients were divided into two groups: one that exhibited an initial
frequency of γδ T cells in CD3+ T cells of less than 0.1% and one that was 0.1% or greater.
In the group with a γδ T-cell frequency of less than 0.1%, the purity of the γδ T cells after
expansion with PTA/IL-2/IL-18 for 11 days was significantly lower than that for the other
group, as shown in Figure 4A. It is worth noting that the group with a lower proportion of
γδ T cells tended to have a worse disease status, as determined using clinical indicators
such as sIL-2R (U/mL), LDH (IU/L), BUN (mg/dL), WBCs (×109/L), and Ab-Ly (%)
(Figure 4B). Using Fisher’s exact tests, the low-frequency group had significantly more
aggressive diagnoses (i.e., acute, lymphoma, and unfavorable chronic subtypes) based on
the Shimoyama classification at the time of blood sampling (10 out of the 16 patients in
this group, p = 0.0324), demonstrating that ATL patients with an aggressive-type diagnosis
according to the Shimoyama classification tended to exhibit poor expansion of γδ T cells
with PTA/IL-2/IL-18. In most cases, NK cells were expanded instead of γδ T cells after
incubation with PTA/IL-2/IL-18. In three ATL patients who did not respond to PTA/IL-
2/IL-18 at all, Ab-Ly occupied more than 90% of WBCs before expansion, and more than
90% of the cells remained ATL cells after expansion. However, such a poor expansion of γδ
T cells and NK cells was observed in only a small number of the ATL patients, indicating
that the development of infusion therapy using autologous γδ T cells and NK cells is
feasible with most of the ATL patients.
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Figure 4. Effect of the initial proportion of Vδ2+ T cells in CD3 cells on the expansion of γδ T cells and
comparison of blood test results between ATL patients with relatively high levels of initial Vδ2/CD3
ratio (greater than 0.1%) and those with low levels (less than 0.1%). (A) Proportion of Vδ2+ cells in
CD3 cells after expansion of PBMCs with PTA/IL-2/IL-18. After stimulation/expansion of PBMCs
derived from ATL patients with PTA/IL-2/IL-18, the cells were analyzed through a FACS Lyric flow
cytometer. (B) Comparison of blood test results stratified by the initial proportion of Vδ2+ T cells in
CD3 cells. Laboratory test results were compared based on the initial proportion of Vδ2+ T cells in
CD3+ T cells.

3.4. IL-2/IL-18-Mediated Expansion of NK Cells Derived from ATL Patients

Since NK cells derived from HDs exhibited a potent cellular cytotoxicity against ATL
cells and NK cells were expanded in the culture of ATL patient-derived PBMCs with a
low proportion of γδ T cells in the presence of PTA/IL-2/IL-18, we set out to examine
the effector functions of IL-2/IL-18-stimulated/expanded NK cells derived from 30 ATL
patients. However, two particular cases with high Ab-Ly counts and extremely low CD3−

T lymphocyte counts were excluded from analysis.
As shown in Supplementary Figure S5, the proportion of NK cells derived from ATL

patients after expansion with IL-2/IL-18 for 10 days was comparable to that from HDs,
whereas the expansion rate was significantly lower than that of HDs. The expression of
NKG2D, DNAM-1, CD16, HLA-DQ, and CD86 in NK cells derived from ATL patients after
expansion was equivalent to that of HDs.
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3.5. Effect of Aging on the Phenotype and Immunological Properties of γδ T Cells and NK Cells

Since most ATL patients are elderly, it is essential to examine the effect of aging on
the phenotype and immunological properties of γδ T cells and NK cells to distinguish the
effect of the HTLV-1 infection status and age. We obtained peripheral blood samples from
10 elderly non-ATL patients, whose median age was comparable to that of ATL patients.
After PBMCs were stimulated/expanded with PTA/IL-2/IL18 (see Supplementary Note
added to Result Section 3.5), we compared cell surface markers on γδ T cells before and
after expansion with PTA/IL-2/IL-18 between ATL patients and elderly non-ATL patients
(Figure 5). The proportions of Vδ2+ T cells in CD3+ T cells in the peripheral blood of ATL
patients were clearly low, possibly due to both aging and HTLV-1 infection status, while
the proportion of Vδ1+ cells in CD3+ T cells remained unchanged, regardless of age and
HTLV-1 infection status. However, with the exception of a few cases with extremely low
levels of Vδ2+ T cells in CD3+ lymphocyte fractions, the expansion rates of Vδ2+ T cells
from elderly, non-ATL patients were comparable to that of HDs and ATL patients (see also
Figure 3B). No significant differences in the expression levels of CD16, NKG2D, DNAM-1,
FasL, TRAIL, and PD-1 were observed between ATL patients and elderly non-ATL-patients.
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Figure 5. Comparison of PTA/IL-2/IL-18-mediated expansion of γδ T cells among ATL patients,
elderly non-ATL patients, and HDs. (A) Proportions of Vδ1+ T cells and Vδ2+ T cells in CD3+ T cells
before expansion; these initial proportions were compared among the three groups. (B) Proportion of
Vδ2+ T cells in CD3+ T cells after expansion with PTA/IL-2/IL-18, and the expansion rates of the
Vδ2+ T cells were compared between ATL patients and elderly non-ATL patients.
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We next stimulated CD3− PBMC fractions derived from elderly non-ATL patients
with IL-2/IL-18 for 10 days (see Supplementary Note added to Result Section 3.5), and
compared cell surface markers before and after expansion among ATL patients, elderly
non-ATL patients, and HDs (Figure 6). The proportions of NK cells in peripheral blood
remained unchanged regardless of age and/or HTLV-1 infection status. After expansion
with IL-2/IL-18, highly purified NK cells were obtained from CD3− PBMC fractions of
ATL patients, which was not influenced by age and/or HTLV-1 infection status. However,
the expansion rate of NK cells in ATL patients tended to be low, compared to that in HDs,
which might be due to aging and HTLV-1 infection status. No significant differences in the
expression of CD16, NKG2D, DNAM-1, and CD86 were found between ATL patients and
elderly patients.
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Figure 6. Comparison of NK cells among ATL patients, elderly non-ATL patients, and HDs. (A)
Initial proportion of NK cells before expansion. The initial proportions of CD56+ cells in PBMCs were
compared among the three groups. (B) Proportion of NK cells after expansion with IL-2/IL-18. After
the expansion, the proportions of CD56+ cells were compared among the three groups.

3.6. Cytotoxic Activity Exhibited by γδ T Cells and NK Cells Derived from ATL Patients against
ATL Cell Lines In Vitro

We next examined the cytotoxic activity of PTA/IL-2/IL-18-stimulated/expanded
PBMCs containing γδ T cells and NK cells against KK1 and HuT102 HTLV-1-infected cells.
After expansion of PBMCs derived from ATL patients with PTA/IL-2/IL-18, cell surface
expressions of CD3, CD56, CD16, and Vδ2 were examined. As shown in Supplementary
Figure S6, the proportions of γδ T cells, NK cells, and CD16-positive cells varied to different
degrees among ATL patients.
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When KK1 or HuT102 cells were challenged by PTA/IL-2/IL-18-stimulated/expanded
PBMCs containing various proportions of γδ T cells and NK cells, the specific lysis (%)
reached 30% to 80% in 60 min at an E/T ratio of 1:200 (Figure 7). By adding 0.5 or 10 µg/mL
of anti-CCR4 mAb, the specific lysis increased up to 40–80%, even at an E/T ratio of 1:100.
It was worthy of note that the effect of anti-CCR4 mAb on the cellular cytotoxicity was
associated with the proportion of γδ T cells, which was consistent with the observation
in Figs. 1 and 2. Although the cytotoxicity of NK cells is higher than that of γδ T cells,
the addition of anti-CCR4 mAb bolsters the cytotoxic activity of γδ T cells more efficiently,
resulting in similar levels of cytotoxicity exhibited by the PTA/IL-2/IL-18-expanded γδ

T cell and NK cell mixtures against HTLV-1-infected cells, even if the proportions of γδ T
cells and NK cells vary to different degrees.
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Figure 7. Cytotoxic activity exhibited by γδ T cells and NK cells derived from ATL patients
against HTLV-1-infected cells. Effect of anti-CCR4 mAb on the cytotoxic activity of γδ T cells
against KK1 (A) and HuT102 (B). After HTLV-1-infected cell lines were pretreated with 0, 0.5, or
10 µg/mL of anti-CCR4 mAb for 15 min, the sensitized cells were challenged with PTA/IL-2/IL-18-
stimulated/expanded γδ T cells and NK cells derived from patients ATL-P04 and ATL-P08-14 at E/T
ratios of 3.75:1, 7.5:1, 15:1, 30:1, 60:1, 120:1, and 250:1 or 3.125:1, 6.25:1, 12.5:1, 25:1, 50:1, 100:1, and
200:1 for 60 min, and the specific lysis was determined through a time-resolved fluorescence-based
assay based on an europium–terpyridine derivative chelate.

We next examined the cytotoxic activity of IL-2/IL-18-expanded NK cells derived
from ATL patients against HTLV-1-infected cells (Figure 8). Flow cytometric diagrams of
representative expansion patterns are depicted in Supplementary Figure S7. When KK1
and HuT102 were challenged by IL-2/IL-18-expanded NK cells derived from ATL patients,
the specific lysis reached to 20% to 80% in 60 min at an E/T ratio of 1:100. By addition of
0.5 or 10 µg/mL of anti-CCR4 mAb, the specific lysis was increased to 60–90% at an E/T
ratio of 1:100 as shown in Figure 8. On the basis of these results, NK cells derived from ATL
patients exhibited a highly potent and stable cytotoxicity against HTLV-1-infected cells, as
in the case of HDs. Taken together, it is most likely that the PTA/IL-2/IL-18-expanded γδ T
cells and NK cells are ideal immune effector cells for adoptive cell therapy against ATL.
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Figure 8. Effect of anti-CCR4 mAb on the cytotoxic activity of NK cells derived from ATL patients
against KK1 (A) and HuT102 (B). After HTLV-1-infected cell lines were pretreated with 0, 0.5, or
10 µg/mL of anti-CCR4 mAb for 15 min, the sensitized cells were challenged with IL-2/IL-18-
stimulated/expanded NK cells derived from patients ATL-P08-10 andATL-P12-13 at E/T ratios of
1.875:1, 3.75:1, 7.5:1, 15:1, 30:1, 60:1, and 120:1 or 2.5:1, 5:1, 10:1, 20:1, 40:1, 80:1, and 160:1 for 60 min,
and the specific lysis was determined using a time-resolved fluorescence-based assay based on an
europium–terpyridine derivative chelate.

4. Discussion

Although infusion therapies for ATL using innate immune cells, such as NK cells [26]
and CAR iNKT cells [73], have been developed extensively over the past few years, it is
still a long way off from clinical use in terms of their efficacy and cost. In this study, we
explored the possibility of the development of γδ T cells/NK cells-based adoptive transfer
therapy for ATL.

γδ T cells belong to both innate immunity and adaptive immunity and are involved
in the first line of defense against cancer including solid tumors [34–45] and lymphoid
malignancies [74]. Previous reports [50] and the present study demonstrated that γδ T cells
could be readily amplified in HDs and the expanded γδ T cells exhibited potent cytotoxicity
against HTLV-1-infected cells. ATL patients are, however, generally elderly and infected
with HTLV-1 viruses, and the immune system in ATL patients is mostly suppressed [24–26].
Thus, our primary question was how aging and the state of immunosuppression affect the
expansion and immunological properties of γδ T cells.

It was noteworthy that the proportion of peripheral blood γδ T cells from ATL patients
was extremely low, with the median proportion of γδ T cells being 0.29% (range: 0.0–7.41%).
In fact, the initial frequency of γδ T cells in CD3+ lymphocyte fractions was less than 0.1%
in 29.6% of ATL patients, whereas such a low frequency of γδ T cells was observed only in
10% of elderly non-ATL patients and 0% of HDs. On the basis of these findings, the low
proportion of peripheral blood γδ T cells seemed to be attributable to aging and the state of
immunosuppression. In fact, when the state of ATL disease was worse in terms of clinical
indicators and aggressive diagnoses in Shimoyama classification, the proportion of γδ T
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cells in the peripheral blood tended to be lower. It was, however, worthy of note that the
expansion rate of γδ T cells in ATL patients was comparable to that of HDs. Even if the
expansion rate is high enough, the initial proportion directly affects the number of γδ T
cells after expansion, leading to a difficulty in the preparation of a large number of γδ T
cells ex vivo. It is, therefore, prerequisite to develop a strategy to increase the number of γδ
T cells more efficiently.

It was previously demonstrated that IL-18 could efficiently augment the expansion
of γδ T cells and NK cells with potent cytotoxicity [51–53]. When PBMCs were incubated
with IL-18 in addition to PTA/IL-2, the expansion rate of the γδ T cells was significantly
greater than that with PTA/IL-2. In addition, NK cells were also expanded in the culture
due to the presence of IL-2/IL-18. Although NK cells increased in number with stimulation
using IL-2/IL-18, the expansion rate was generally low compared to that of the γδ T cells,
even in HDs. The present study demonstrated that NK cell proliferation, itself, tended to
reduce with aging, whereas the expressions of NKG2D, DNAM-1, CD16, HLA-DQ, and
CD86 remained unchanged.

Although γδ T cells failed to proliferate well even in the presence of PTA/IL-2/IL-18,
in some cases, an increase in the number of NK cells was observed, instead, in the culture,
suggesting that the NK cells were complementarily expanded when the initial proportion
of γδ T cells was extremely low. Since NK cells also exhibit anti-ATL activity, we should
consciously examine the expansion of NK cells in culture that is intended to expand γδ T
cells for use in adoptive cell therapy.

We next examined the cytotoxicity of the expanded innate immune effector cells
against HTLV-1-infected cells. When HTLV-1-infected cells were challenged by γδ T cells
and NK cells, the direct cytotoxicity exhibited by NK cells was much higher than that by γδ

T cells, suggesting that the NK cells were superior to the γδ T cells as effector cells in terms
of cytotoxicity. It is, however, difficult to prepare a large number of NK cells for use in
infusion therapy, compared to γδ T cells, indicating that γδ T cells are superior to NK cells
when it comes to the preparation of effector cells. There are advantages and disadvantages
to both cell types.

In studies on the effect of IL-18 on the anti-CD20 mAb-mediated regression of non-
Hodgkin lymphoma, it was demonstrated that IL-18 synergized with the mAb in the
lymphoma regression [75]. Since both NK cells and γδ T cells express CD16, it is intriguing
to examine whether ADCC plays a certain role in the regression. As for ATL, HTLV-1-
infected cells express a high level of CCR4, implicating that the inclusion of anti-CCR4
mAb might enhance the cytotoxic activity of NK cells and γδ T cells. When the cytotoxic
activity of the mixture of γδ T cells and NK cells derived from ATL patients was measured,
the immune effector cell mixtures exhibited high levels of cellular cytotoxicity against
HTLV-1-infected cells to different degrees. When anti-CCR4 mAb was added to the system,
the cytotoxicity was enhanced to different degrees, depending on the proportion of γδ T
cells. When the proportion of γδ T cells was relatively high, the add-on effect of the mAb
was more prominent, suggesting that ADCC mediated by γδ T cells was more efficient
than that by NK cells, since the direct killing of HTLV-1-infected cells by NK cells was
intrinsically high even in the absence of the ADCC pathway.

In this study, it was clearly demonstrated that HTLV-1-infected cells were susceptible
to the cytotoxic activity of γδ T cells in vitro, which was further enhanced by the addition
of anti-CCR4 mAb. In addition, NK cells exhibited potent cytotoxicity against HTLV-1-
infected cells even in the absence of mAbs. In order to move on to clinical trials, the present
in vitro findings should be confirmed in animal models using an immunocompromised
mouse model. In this study, three ATL patients failed to respond to PTA/IL-2/IL-18 at all.
In these patients, the proportion and the number of HTLV-1-infected cells were too high
and the cell culture for the expansion of NK cells and γδ T cells could not be appropriately
set up. It should be thus considered that the removal of HTLV-1-infected cells should be
included in the protocol for the expansion of NK cells and γδ T cells.
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Since the present study was only a preliminary investigation to evaluate the feasibility
of adoptive transfer therapy harnessing γδ T cells and NK cells, an autologous system was
considered, with the safety of the treatment being the most important issue. The adoptive
transfer of allogeneic γδ T cells is more practically promising, because it is much easier
to expand γδ T cells and NK cells derived from HDs. In fact, γδ T cells and NK cells
derived from HDs could be adoptively transferred into elderly and immunocompromised
ATL patients, because the γδ T cell- and NK cell-mediated cytotoxicity is not restricted
by the MHC molecules. It is, however, essential to conduct clinical trials carefully and
extensively for the development of such allogeneic innate immune effector cell-based
infusion therapy for ATL. Taken together, autologous γδ T cells and NK cells could be
utilized for the treatment of ATL. If the safety and efficacy of allogeneic γδ T cells and NK
cells is proven in clinical trials, γδ T cells and NK cells derived from HDs could be used
together with anti-CCR4 mAb for the treatment of ATL as an over-the-counter treatment in
the near future.

5. Conclusions

In this study, we have shown the potential of a new therapeutic strategy for ATL. In
the future, we would like to conduct in vivo studies in a clinical setting and create a system
that enables allogeneic γδ T cell transplantation.
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Supplementary Fig. 1. Expansion of γδ T cells from HDs with PTA/IL-2. (A) Flow cytometric

analyses of PTA/IL-2-mediated expansion of γδ T cells derived from HDs. Before and after

expansion for 11 days with PTA/IL-2, the cells were stained with phycoerythrin (PE)-labeled anti-CD3

mAb and fluorescein isothiocyanate (FITC)-labeled anti-Vδ2 mAb and analyzed through a FACS Lyric

flow cytometer. (B) PTA-mediated clustering of γδ T cells. After stimulation/expansion with PTA/IL-2,

cell clustering was monitored under a microscope equipped with a CCD camera.
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Supplementary Fig. 1. Expansion of γδ T cells from HDs with PTA/IL-2. (C) Flow cytometric

analyses of cell surface markers on PTA/IL-2-expanded γδ T cells. After stimulation/expansion with

PTA/IL-2 for 11 days, the cells were stained with PE-labeled anti-NKG2D, DNAM-1, CD16, or PD-1

mAb and FITC-labeled anti-Vδ2 mAb and analyzed through a FACS Lyric flow cytometer.



Materials and Methods for Supplementary Fig. 1.

(A) Preparation of PBMC: Peripheral blood samples (14 mL) were collected from HDs using heparin-

containing blood collection tubes and transferred into a 15 mL conical tube, which was centrifuged at

2,200 rpm for 10 min at room temperature. After removing the plasma, the cell pellets were diluted with

phosphate-buffered saline (PBS) to a volume of 20 mL. The diluted blood was loaded on 20 mL of

Ficoll-Paque Plus (Cytiva, Shinjuku-ku, Tokyo, Japan) in a 50 mL conical tube and centrifuged at 1,700

rpm (600×g) for 30 min at room temperature without acceleration and deceleration. Fluffy layers

(lymphocyte fractions) were collected and diluted with 35 mL of PBS in a 50 mL conical tube, which

was centrifuged at 2,200 rpm for 10 min at 4 oC. After the supernatant was discarded, the cell pellets

were dispersed with tapping and resuspension in 13 mL of PBS in a 15 mL conical tube. After

centrifugation at 1,700 rpm for 5 min at 4 oC, the cells were resuspended in 7.2 mL of Yssel’s medium

supplemented with 10% heat-inactivated human AB serum [60] to achieve a maximum cell

concentration of 1×10⁷ cells/mL. Of the PBMC suspension, 1.2 mL was used for the flow cytometric

analysis.

(B) Derivation of γδ T cells: The PBMC suspension (6 mL) was placed in 4 wells of a 24-well plate

(Corning Inc., Corning, NY), to which was added 1.5 µL each of 1 mM PTA stock solution (Techno

Suzuta Co., Ltd., Heiwa-machi, Nagasaki, Japan) in dimethyl sulfoxide (DMSO) (Nacalai Tesque Inc.,

Nakagyo-ku, Kyoto, Japan), resulting in a final concentration of 1 µM. The cells were observed under a

microscope (Nikon Corp., Minato-ku, Tokyo, Japan) every day during incubation. The plate was

incubated at 37 oC with 5% CO2 overnight, and IL-2 (Shionogi Pharmaceutical Co., Ltd., Chuo-ku,

Osaka, Japan) was added to each well, to obtain a concentration of 100 U/mL, from day 1 to day 9. On

day 2, the medium was replaced with fresh Yssel’s medium supplemented with 10% heat-inactivated

human AB serum to remove any residual PTA/DMSO that might affect the growth in γδ T cells.

Whenever the cell density increased to confluency, the cell suspensions were diluted 2-fold with Yssel’s

medium supplemented with heat-inactivated 10% human AB serum (when culturing in wells) or

complete RPMI1640 medium (when culturing in flasks) and split to new wells or flasks until day 9. The

γδ T cells were then harvested on day 11. After the flow cytometric analysis, the remaining cells were

resuspended in cryo-preservation media, placed at -80 oC, and stored in liquid nitrogen until used.

(C) Flow cytometric analysis: The cell suspensions, 110 µL each (ca. 1.0×10⁵ cells), were dispensed

into a 96-well round-bottom plate (Corning Inc.) and centrifuged at 1,700 rpm and 4 oC for 2 min. After

the supernatants were removed, the cell pellets were dispersed by vortexing. The cells were stained with

monoclonal antibodies (mAbs), 3 µL each, in 47 µL of PBS/2% fetal calf serum (FCS, Merk, Darmstadt,

Hessen, Germany). Immunohistochemical staining was performed using fluorescein isothiocyanate

(FITC)-conjugated anti-TCR Vδ2 mAb (Beckman Coulter Inc., Pasadena, CA); phycoerythrin (PE)-

conjugated anti-CD3 mAb (Thermo Fisher Scientific Inc.), and anti-NKG2D, anti-DNAM-1, and anti-

CD16 mAbs (BioLegend Japan, Bunkyo-ku, Tokyo, Japan), unlabeled anti-PD-1 mAb (Medical &

Biological Laboratories Co., Ltd., Minato-ku, Tokyo, Japan); and R-PE-conjugated anti-mouse

immunoglobulin Ab (Agilent Technologies, Santa Clara, CA). After the plate was incubated on ice for

15 min, the cells were centrifuged with 100 μL of PBS at 1,700 rpm for 2 min at 4 oC. After the

supernatants were removed, the cell pellets were dispersed by vortexing. The cells were, subsequently,

washed three times with 200 μL of PBS via centrifugation at 1,700 rpm for 2 min at 4 oC, and they were

resuspended in 200 µL of 1% paraformaldehyde in PBS. The cell suspensions were passed through a

mesh filter membrane and analyzed using a FACS Lyric flow cytometer (Becton Dickenson, Franklin,

Lakes, NJ). The cell population was visualized with FlowJo ver. 10.8.1 (FlowJo LLC, Ash-land, OR).



Results for Supplementary Fig. 1. Expansion of γδ T cells from HDs with PTA/IL-2.

(A) Flow cytometric analyses of PTA/IL-2-mediated expansion of γδ T cells derived from HDs. As

HDs,12 males and 4 females were enrolled in this study. The median age at the time of blood sampling

was 34 years (range, 27–58 years). PBMC were isolated through a standard Ficoll density centrifugation

procedure, of which 4 representative results of flow cytometric analyses are depicted in the upper panels.

The proportions of Vδ2-expressing γδ T cells (termed γδ T cells hereafter) in PBMC on day 0 were

1.06%, 4.96%, 5.39%, and 28.8% for HD01–04, respectively, and the median proportion of γδ T cells in

CD3+ lymphocyte fractions was 3.82% (range, 0.56%–39.4%).

After the PBMCs were stimulated with PTA, a nitrogen-containing bisphosphonate prodrug, and

IL-2 for 11 days, the proportions of γδ T cells increased to 95.7%, 96.9%, 99.4%, and 99.6% for HD01–

04, respectively, as shown in the lower panels. The median proportion of γδ T cells in CD3+ lymphocyte

fractions increased to 99.19%, with a range of 94.56%-99.92%. The median number of γδ T cells (per

mL of blood) before and after expansion was 6.3×104 (range: 6×103–4.75×105) and 1.04×108 (range:

4×106–2.03×108), respectively, and the median expansion rate of the γδ T cells was 1091-fold (range:

415–4835). Consistent with our previous results, a large number of highly purified γδ T cells were

obtained using the PTA/IL-2 stimulation/expansion system [50] when the proportion of γδ T cells in the

CD3＋ lymphocyte fractions was well above 1%.

(B) PTA-mediated clustering of γδ T cells. Microscopic analyses revealed that the cells started to form

clusters 3 to 5 days following PTA/IL-2 stimulation.

(C) Flow cytometric analyses of cell surface markers on PTA/IL-2-expanded γδ T cells. Since γδ T

cells are categorized into both innate immune cells and adaptive immune cells, we next examined the

cell surface expression of NK receptors [62-67], such as natural killer group 2 member D (NKG2D,

CD314), DNAX accessory molecule-1 (DNAM-1, CD226), and CD16 (FcγRIIIA), whose expressions

are inexorably linked to NK cells. Based on the flow cytometric analyses, essentially all of the PTA/IL-

2-expanded γδ T cells expressed NKG2D and DNAM-1, as shown in Supplementary Figure 1C. The

median proportions of NKG2D and DNAM-1 in the γδ T cells were 98.93% (range: 96.04%–99.96%)

and 98.97% (range: 96.5%–99.99%), respectively. On the contrary, the majority of γδ T cells failed to

express a high level of FasL (CD95L) and TRAIL (human TNF-related apoptosis-inducing ligand) (data

not shown). The median proportions of FasL and TRAIL in γδ T cells were 0.09% (range: 0.03%–

4.78%) and 0.19% (range: 0.03%–5.27%), respectively. γδ T cells expressed CD16 to different degrees

depending on the individual, and the median proportion of CD16-expressing γδ T cells was 38.9%

(range: 7.5%–70.9%). It has been reported that programmed death-1 (PD-1)+ γδ T cells could produce a

significantly higher level of IL-2 in response to (E)-4-hydroxy-3-methylbut-2-enyl diphosphate

(HMBPP) than PD-1- γδ T cells did, and the expression of PD-1 on γδ T cells generally attained the

maximum within 3 days after stimulation with pyrophosphomonoester antigens and gradually declined

thereafter [68-69]. We, thus, examined the level of PD-1 expression in γδ T cells after

stimulation/expansion with PTA/IL-2. It is of note that only a small portion of γδ T cells expressed a low

level of PD-1, and the median proportion of PD-1 in γδ T cells was 11.35% (range: 0.9%–59.4%).
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Supplementary Fig. 2. Expansion of NK cells from HDs with IL-2/IL-18. (A) Flow cytometric

analyses of IL-2IL-18-mediated expansion of NK cells derived from HDs. Before and after

expansion for 10 days with IL-2/IL-18, the cells were stained with PE-labeled anti-CD56 mAb and

FITC-labeled anti-CD3 mAb and analyzed through a FACS Lyric flow cytometer. (B) IL-2/IL-18-

mediated clustering of NK cells. After stimulation with IL-2/Il-18, the cell clustering was monitored

under a microscope equipped with a CCD camera.
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labeled anti-CD56 mAb and analyzed through a FACS Lyric flow cytometer.
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Materials and Methods for Supplementary Fig. 2.

(A) Derivation of NK cells: PBMCs were prepared as described in Supplementary Fig. 1. After 6 mL of

the PBMC suspension, in a 15 mL conical tube, was centrifuged at 1,700 rpm at 4 oC for 5 min, the

supernatant was removed and the cell pellets were dispersed by tapping and resus-pended in 200 μL of

PBS/0.5% BSA/2 mM EDTA. To the PBMC suspension was added 100 μL of anti-CD3 MACSBeads

(Miltenyi Biotech, Bergisch-Gladbach, Germany) and the tube was placed at 4 oC. After 15 min, 10 mL

of PBS/0.5% BSA/2 mM EDTA was added to the cell suspension. The tube was then centrifuged at

300×g for 10 min at 4 oC and the supernatant was removed. The cell pellets and beads were dispersed

by tapping and resuspended in 1 mL of PBS/0.5% BSA/2 mM EDTA. The cell/bead suspension was

loaded onto an LD Column (Miltenyi Biotech), which had been attached to a magnet holder and

equilibrated with 2 mL of PBS/0.5% BSA/2 mM EDTA. The CD3- cells were eluted with 2×1 mL of

PBS/0.5% BSA/2 mM EDTA into a 15 mL conical tube, to which was added 6 mL of Yssel’s medium

supplemented with 10% human AB serum. After the tube was centrifuged at 1,700 rpm for 5 min at 4 oC,

the CD3- cells were resuspended in 5 mL of Yssel’s medium supplemented with 10% heat-inactivated

human AB serum. Of the cell suspension, 1.5 mL was used for the flow cytometric analysis. The rest of

the cell suspension was centrifuged at 1,700 rpm for 5 min at 4 oC. After the supernatant was removed,

the cell pellets were dispersed by tapping and resuspended in 3 mL of Yssel’s medium supplemented

with 10% heat-inactivated human AB serum. The PBMC suspension (3 mL) was placed in 2 wells of a

24-well plate, to which was added 100 IU/mL IL-2 and 100 ng/mL recombinant human IL-18 (Techno

Suzuta Co., Ltd), expressed in E. coli from day 0 to day 8. Cell passages were conducted based on cell

confluency until day 8. Then, the NK cells were harvested on day 10 and analyzed using flow cytometry.

The NK cells were placed at -80 oC and then stored in a liquid nitrogen tank until used.

(B) Flow cytometric analysis: Immunohistochemical staining was performed using FITC-conjugated

anti-CD3 mAb (Thermo Fisher Scientific Inc.) and anti-CD56 mAb (BioLegend, San Diego, CA); and

phycoerythrin (PE)-conjugated anti-CD56, anti-NKG2D, anti-DNAM-1, anti-CD16, anti-HLA-DQ, and

anti-CD86 mAbs (BioLegend). The stained cells were analyzed using a FACS Lyric flow cytometer

(Becton Dickenson) and the cell population was visualized with FlowJo ver. 10.8.1 (FlowJo LLC) as

described in Supplementary Fig. 1.



Results for Supplementary Fig. 2. Expansion of NK cells from HDs with IL-2/IL-18.

(A) Flow cytometric analyses of IL-2IL-18-mediated expansion of NK cells derived from HDs.

PBMC were prepared from 10 HDs as described in Supplementary Fig. 1, then CD3+ cells were depleted

using anti-CD3 mAb-coated beads. Four representative results of flow cytometric analyses of the CD3-

depleted PBMCs (HD02, 05–07) are shown in the upper panels. The proportions of CD3-CD56 + NK

cells after treatment with anti-CD3 mAb beads were 77.7%, 53.0%, 16.2%, and 31.4%, respectively, and

the median proportion of NK cell fractions after CD3 removal was 49.9% (range: 31.4% – 92.3%).

After the CD3- PBMCs were stimulated/expanded with IL-2 and IL-18 for 10 days. The

proportion of NK cells increased to 91.1%, 95.2%, 95.9%, and 98.1%, for HD02, 05–07, respectively as

depicted in the lower panels. The median proportion of NK cells after expansion was 95.45%, with a

range of 71.4%–98.4%. The median number of NK cells (per mL of blood) before and after expansion

was 2.04×105 (range: 4.5×104–9.84×105) and 5×106 (range: 4×105–1.6×107), respectively. The

median expansion rate of the NK cells was 40-fold (range: 1.1–74.5). We, thus, obtained highly purified

NK cells using the IL-2/IL-18 expansion system. The expansion rate of the NK cells was, however,

significantly low compared to that of γδ T cells.

(B) IL-2/IL-18-mediated clustering of NK cells. Microscopic analyses revealed that cells started to

form clusters 4 to 5 days after stimulation with IL-2/IL-18.

(C) Flow cytometric analyses of cell surface markers on IL-2/IL-18-expanded NK cells. Based on

flow cytometric analyses of the cell surface markers after IL-2/IL-18 stimulation, essentially all of the

expanded NK cells expressed high levels of NKG2D, DNAM-1, and CD16, as shown in the upper

bivariate histograms. The median proportions of NKG2D and DNAM-1 in the NK cells were 99.65%

(range: 94.98%–99.86%) and 94.03% (range: 77.4%–99.04%), respectively. It is noteworthy that

essentially all NK cells expressed a high level of CD16, which is in contrast to γδ T cells; in fact, the

median proportion of CD16+ NK cells was 96.76% (range: 59.48%–99.85%).

It was previously reported that NK cells express cell surface molecules, typically expressed on

antigen-presenting cells, in response to IL-2/IL-18. In addition, the cytolytic functions of NK cells are

intricately controlled by activating and inhibiting receptors, including human leukocyte antigen (HLA)

molecules [70] and cluster of differentiation 86 (CD86, B7-2) [71]. We, thus, examined the expressions

of HLA-DQ and CD86 on the NK cells after stimulation/expansion with IL-2/IL-18. As shown in the

lower univariate histograms, more than half of the NK cells expressed high levels of HLA-DQ and

CD86; the median proportions of HLA-DQ+ and CD86+ cells in the IL-2/IL-18-stimulated NK cells was

63.78% (range: 27.89%–93.91%) and 92.25% (range: 75.72%–93.94%), respectively.
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Supplementary Fig. 3. Expansion with PTA/IL-2/Il-18 of γδ T cells and NK cells derived from ATL

patients. (A) Flow cytometric analyses of PTA/IL-2/IL-18-mediated expansion of γδ T cells and NK

cells derived from ATL patients. PBMCs were purified from peripheral blood derived from ATL

patients and stimulated/expanded with PTA/IL-2/IL-18, which were analyzed through flow cytometry.

(B) PTA/IL-2/IL-18-mediated clustering of γδ and NK cells. After stimulation with PTA/IL-2/IL-18,

the cell clustering was monitored under a microscope equipped with a CCD camera.
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Supplementary Fig. 3. Expansion with PTA/IL-2/Il-18 of γδ T cells and NK cells derived from ATL

patients. (C) Flow cytometric analyses of PTA/IL-2/IL-18-mediated expansion of γδ T cells and NK

cells derived from ATL patients. After stimulation/expansion of PBMCs derived from ATL patients

with PTA/IL-2/IL-18, the cells were stained with PE-conjugated anti-NKG2D, anti-DNAM-1, or anti-

CD16 mAb and FITC-conjugated anti-Vδ2 mAb, or anti-PD-1 plus RPE-conjugated anti-mouse Ig ab

plus FITC-conjugated anti-Vδ2 mAb and analyzed through a FACS Lyric flow cytometer.



Materials and Methods for Supplementary Fig. 3.

(A) Derivation of γδ T cells and NK cells from PBMC obtained from ATL patients: PBMC were

purified from ATL patients-derived PBMC as described in Supplementary Fig. 1, from which γδ T cells

and NK cells were prepared as described in Supplementary Figs. 1 and 2.

(B) Flow cytometric analysis: Immunohistochemical staining was performed using FITC-conjugated

anti-TCR Vδ2 mAb (Beckman Coulter Inc.) and anti-CD4 mAbs (FUJIFILM Wako Pure Chemical

Corp., Chuo-ku, Osaka, Japan); PE-conjugated anti-CD3 mAb (Thermo Fisher Scientific Inc.), and anti-

CD56, anti-NKG2D, anti-DNAM-1, and anti-CD16 mAbs (BioLegend), unlabeled anti-PD-1 mAb

(Medical & Biological Laboratories Co., Ltd); and R-PE-conjugated anti-mouse immunoglobulin Ab

(Agilent Technologies). The stained cells were analyzed using a FACS Lyric flow cytometer (Becton

Dickenson) and the cell population was visualized with FlowJo ver. 10.8.1 (FlowJo LLC) as described in

Supplementary Fig. 1.

Results for Supplementary Fig. 3. Expansion with PTA/IL-2/Il-18 of γδ T cells and NK cells

derived from ATL patients.

(A) Flow cytometric analyses of PTA/IL-2/IL-18-mediated expansion of γδ T cells and NK cells

derived from ATL patients. : PBMC derived from 55 ATL patients (initial 25 patients plus additional

30 patients) were stimulated/expanded with PTA/IL-2/IL-18, of which 4 representative flow cytometry

diagrams (ATL-P01–04) are depicted in the upper panels. The median proportion of γδ T cells in CD3＋ 

lymphocyte fractions before expansion was 0.29% (range: 0.0%–7.41%). After stimulation/expansion

with PTA/IL-2/IL-18 for 11 days, the median proportion of γδ T cells in CD3＋ lymphocyte fractions

increased to 87.99% (range: 0.55%–99.38%). The median number of γδ T cells (per mL of blood) before

and after expansion was 4.2×103 (range: 0.0–6.6×104) and 3.5×106 (range: 2×103–1.75×108),

respectively. The median expansion rate of the γδ T cells was 1998-fold (range: 4–32844). It is

intriguing that CD3-CD56+ cells (corresponding to NK cells) were increased when the proportion of γδ

T cells were low on day 11.

Since ATL is a mature peripheral CD3＋CD4＋ T-cell malignancy, we examined the proportion of

CD4＋ T cells in CD3＋ lymphocyte fractions. Four representative flow cytometry diagrams are shown in

the lower panels. The median proportions of CD4＋ T cells in CD3＋ lymphocyte fractions before and

after expansion with PTA/IL-2/IL-18 were 72.49% (range: 30.33%–99.5%) and 6.67% (range: 0.76%–

99.76%), respectively. The proportion of CD4＋ T cells in CD3＋ lymphocyte fractions was greatly

reduced in most cases after the expansion with for 11 days, suggesting that a combination of γδ T cells

and NK cells exhibited cellular cytotoxicity against HTLV-1-infected CD4+ T cells.

(B) PTA/IL-2/IL-18-mediated clustering of γδ and NK cells. : A microscopic analysis revealed that

the cells started to form clusters 3 to 6 days after stimulation.

(C) Flow cytometric analyses of PTA/IL-2/IL-18-mediated expansion of γδ T cells and NK cells

derived from ATL patients. After expansion with PTA/IL-2/IL-18, essentially all the expanded γδ T

cells expressed NKG2D and DNAM-1. The median proportions of NKG2D and DNAM-1 in the γδ T

cells were 97.40% (range: 82.81% – 99.9%) and 98.79% (range: 92.86%–99.91%), respectively. The γδ

T cells expressed CD16 to different degrees; in fact, the median proportion of CD16 in the γδ T cells

was 17.7% (range: 0.98%–89.94%). In addition, the γδ T cells expressed, to different degrees, a low

level of PD-1, and the median proportion of PD-1 in the γδ T cells was 29.87% (range: 2.76%–57.93%).
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Supplementary Fig. 4. Effect of PTA/IL-2/Il-18 on the expansion of γδ T cells derived from ATL

patients. Flow cytometric analyses of PTA/IL-2/IL-18-mediated expansion of γδ T cells and NK

cells derived from ATL patients. PBMCs were purified from peripheral blood derived from ATL

patients and stimulated/expanded with PTA/IL-2/IL-18, which were analyzed through flow cytometry.
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Materials and Methods for Supplementary Fig. 4.

(A) Derivation of γδ T cells from PBMC obtained from ATL patients: PBMC were purified from

ATL patients-derived PBMC as described in Supplementary Fig. 1. The PBMC suspension (6 mL) was

placed in 4 wells of a 24-well plate (Corning Inc., Corning, NY), to which was added 1.5 µL each of 1

mM PTA stock solution (Techno Suzuta Co., Ltd.) in DMSO (Nacalai Tesque) to give a final

concentration of 1 µM and IL-18 (Techno Suzuta Co., Ltd.) at a final concentration of 100 ng/mL. The

cells were observed under a microscope (Nikon Corp., Minato-ku, Tokyo, Japan) every day during

incubation. The plate was incubated at 37 oC with 5% CO2 overnight, and IL-2 (Shionogi

Pharmaceutical Co., Ltd.) and IL-18 (Techno Suzuta Co., Ltd.) were added to each well, to obtain a

concentration of 100 U/mL and 100 ng/mL, respectively, from day 1 to day 9. On day 2, the medium

was replaced with fresh Yssel’s medium supplemented with 10% heat-inactivated human AB serum to

remove any residual PTA/DMSO that might affect the growth in γδ T cells. Whenever the cell density

increased to confluency, the cell suspensions were diluted 2-fold with Yssel’s medium supplemented

with heat-inactivated 10% human AB serum (when culturing in wells) or complete RPMI1640 medium

(when culturing in flasks) and split to new wells or flasks until day 9. The γδ T cells were then harvested

on day 11. After the flow cytometric analysis, the remaining cells were resuspended in cryo-preservation

media, placed at -80 oC, and stored in liquid nitrogen until used.

(B) Flow cytometric analysis: Immuno-histochemical staining was performed using FITC-conjugated

anti-TCR Vδ2 mAb (Beckman Coulter Inc.) and anti-CD4 mAb (FUJIFILM Wako Pure Chemical

Corp.), and PE-conjugated anti-CD3 mAb (Thermo Fisher Scientific Inc.) and anti-CD56 mAb

(BioLegend) and analyzed using a FACS Lyric flow cytometer (Becton Dickenson). The stained cells

were analyzed using a FACS Lyric flow cytometer (Becton Dickenson) and the cell population was

visualized with FlowJo ver. 10.8.1 (FlowJo LLC) as described in Supplementary Fig. 1.

Results for Supplementary Fig. 4. Effect of PTA/IL-2/Il-18 on the expansion of γδ T cells derived

from ATL patients. Flow cytometric analyses of PTA/IL-2/IL-18-mediated expansion of γδ T cells

and NK cells derived from ATL patients. In some ATL patients, the proportions of γδ T cells were

extremely low before expansion. Flow cytometric diagrams of 4 representative ATL patients (ATL-P05–

08), with extremely low proportions of γδ T cells are shown, in which γδ T cells occupied only 0%–

0.18% of lymphocyte fractions. When the PBMCs were stimulated with PTA/IL-2/IL-18, only a

marginal level of γδ T cell expansion was observed. Instead, in three out of four patients (ATL-P06–08),

the CD56+CD3- populations (corresponding to NK cells) increased. In the case of ATL-P05, both γδ T

cells and NK cells failed to proliferate well in response to PTA/IL-2/IL-18. Among the 55 ATL patients,

3 did not respond at all to PTA/IL-2/IL-18, in which the populations of γδ T cells in CD3+ T cells from

their peripheral blood were less than 0.1% without exception. In fact, the initial frequency of γδ T cells

in the CD3＋ lymphocyte fractions was less than 0.1% in 16 of 54 ATL patients (one particular case with

CD3- HTLV-1-infected cells was excluded), whereas such a low frequency of γδ T cells was not

observed in HDs. Conversely, the initial frequencies of γδ T cells in CD3＋ lymphocyte fractions were

more than 1% in 12 of 54 ATL patients, whereas such conditions were met in 14 out of 16 HDs. In

addition, the proportion of CD3dimCD4＋ T cells in lymphocyte fractions was greatly reduced in most

cases after the expansion with PTA/IL-2/IL-18 for 11 days, suggesting that a combination of γδ T cells

and NK cells exhibited cellular cytotoxicity against HTLV-1-infected CD3dimCD4＋ T cells.
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Supplementary Fig. 5. Expansion with IL-2/IL-18 of NK cells from ATL patients. (A) Flow

cytometric analyses of IL-2/IL-18-mediated expansion of NK cells derived from ATL patients.

Before and after expansion with IL-2/IL-18, the cells were stained with PE-labeled anti-CD56 mAb and

FITC-labeled anti-CD3 mAb and analyzed through a FACS Lyric flow cytometer. (B) IL-2/IL-18-

mediated clustering of NK cells. After stimulation with IL-2/IL-18, the cell clustering was monitored

under a microscope equipped with a CCD camera. (C) Flow cytometric analysis of cell surface

markers on IL-2/IL-18-expanded NK cells. After expansion with IL-2/IL-18 for 10 days, the cells

were stained with PE-labeled anti-NKG2D, DNAM-1, CD16, HLA-DQ, or CD86 mAb and FITC-

labeled anti-CD56 mAb and analyzed through a FACS Lyric flow cytometer.

Materials and Methods for Supplementary Fig. 5.

(A) Derivation of NK cells from PBMC obtained from ATL patients: PBMC were purified from ATL 

patients-derived PBMC as described in Supplementary Fig. 1, from which NK cells were prepared as 

described in Supplementary Fig. 2.

(B) Flow cytometric analysis: Immunohistochemical staining was performed using FITC-conjugated 

anti-CD3 mAb (Thermo Fisher Scientific Inc.) and anti-CD56 mAb (BioLegend); and PE-conjugated 

anti-CD56, anti-NKG2D, anti-DNAM-1, anti-CD16, anti-HLA-DQ, and anti-CD86 mAbs (BioLegend). 

The stained cells were analyzed using a FACS Lyric flow cytometer (Becton Dickenson) and the cell 

population was visualized with FlowJo ver. 10.8.1 (FlowJo LLC) as described in Supplementary Fig. 2.

Results for Supplementary Fig. 5. Expansion with IL-2/IL-18 of NK cells from ATL patients.

(A)Flow cytometric analyses of IL-2/IL-18-mediated expansion of NK cells derived from ATL

patients. Four representative flow cytometry diagrams out of 28 ATL patients, ATL-P01–04. The

median proportion of CD56+CD3- NK cells after CD3+ T cell-depletion was 46.6% (range: 0.45%–

87.1%). The proportion of NK cells derived from ATL patients before expansion was comparable to that

of HDs. When CD3- PBMC fractions derived from 28 ATL patients were stimulated with IL-2/IL-18 for

10 days, the median proportion of NK cells increased to 92.3% (range: 12.1%–98.5%). The median

numbers of NK cells (per mL of blood) before and after expansion were 4.08×105 (range: 2.8×104–

3.52×106) and 4×106 (range: 4×104– 3.6×107), respectively. The median expansion rate of NK cells

was 11.6-fold (range: 0.1–78.8). Highly purified NK cells were obtained from ATL patients using the IL-

2/IL-18 stimulation/expansion system as in the case of HDs. The expansion rate of NK cells from ATL

patients was, however, significantly lower than that of HDs (p = 0.0235) (Not shown in the figure).

(B) IL-2/IL-18-mediated clustering of NK cells. Microscopic analysis revealed that NK cells derived

from ATL patients started to form clusters 4 to 5 days after stimulation with IL-2/IL-18 as in the case of

HDs.

(C) Flow cytometric analysis of cell surface markers on IL-2/IL-18-expanded NK cells. On flow

cytometric analysis, essentially all the expanded NK cells expressed NKG2D, DNAM-1 and CD16. The

median proportions of NKG2D and DNAM-1 in NK cells were 99.01% (range: 91.37%–99.88%) and

93.34% (range: 70.81%–99.19%), respectively. NK cells expressed a high level of CD16; in fact, the

median proportion of CD16 in NK cells was 95.08% (range: 70.54%–99.51%). The median proportion

of HLA-DQ and CD86 in NK cells was 46.78% (range: 13.57%–81.19%) and 80.38% (range: 52.07%–

94.75%), respectively. No significant differences in the expression of NKG2D, DNAM-1, CD16, HLA-

DQ, and CD86 were observed between ATL patients and HDs.



Supplementary Note added to Result section 3.5.

Expansion of γδ T cells derived from elderly non-ATL patients. Since most ATL patients are elderly,

it is essential to examine the effect of aging on the phenotype and immunological properties of γδ T cells

and NK cells to distinguish the effect of the HTLV-1 infection status and age. We obtained peripheral

blood samples from 10 elderly non-ATL patients, whose median age was comparable to that of ATL

patients.

PMBC derived from 10 elderly non-ATL patients were stimulated/expanded with PTA/IL-2/IL18.

The median proportion of γδ T cells in CD3＋ lymphocyte fractions before expansion was 0.64% (range:

0.13%–2.52%). None of the elderly non-ATL patients exhibited less than 0.1% of γδ T cells in CD3＋ 

lymphocyte fractions. After expansion of PBMCs with PTA/IL-2/IL-18 for 11 days, the median

proportion of γδ T cells in CD3＋ lymphocyte fractions increased to 92.90% (range: 72.27%–99.27%).

The median numbers of γδ T cells (per mL of blood) before and after expansion were 4×103 (range:

4×102–3.6×104) and 8.5×106 (range: 4×105–6×107), respectively. The median expansion rate of γδ

T cells was 2278-fold (range: 180–8089).

On flow cytometric analyses 11 days after stimulation/expansion with PTA/IL-2/IL-18, the

median proportions of NKG2D and DNAM-1 in γδ T cells were 97.43% (range: 89.3%–99.89%) and

97.86% (range: 93.5%–99.96%), respectively. γδ T cells expressed CD16 to different degrees; the

median proportion of γδ T cells expressing CD16 was 16.27% (range: 1.19%–86.18%). γδ T cells

expressed a low level of PD-1 to different degrees, and the median proportion of γδ T cells expressing

PD-1 was 15.31% (range: 2.44%–91.2%).

Expansion of NK cells derived from elderly non-ATL patients. CD3- PBMC derived from elderly

non-ATL patients were stimulated with IL-2/IL-18 for 10 days. The median proportion of CD56+CD3-

NK cell fractions after CD3+ T cell depletion was 40.55% (range: 2.61%–59.8%). After 10 days of

incubation, the median proportion of NK cells increased to 93.1% (range: 79.6%–98.5%). The median

numbers of NK cells (per mL of blood) before and after expansion were 2.86×103 (range: 2.4×104–

8.48×103) and 5×106 (range: 6×105–1.2×107), respectively. The median expansion rate of NK cells

was 26.1-fold (range: 1.2–72.5).

On flow cytometric analyses 10 days after IL-2/IL-18 stimulation/expansion, the median

proportions of NKG2D and DNAM-1 in γδ T cells were 99.13% (range: 98.35%–99.87%) and 94.34%

(range: 85.33%–99.69%), respectively. NK cells expressed a high level of CD16; in fact, the median

proportion of NK cells expressing CD16 was 95.52% (range: 85.1%–99.31%). The median proportions

of HLA-DQ and CD86 in NK cells were 59.71% (range: 35.29%–86.45%) and 81.55% (range: 46.32%–

98.95%), respectively.
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Supplementary Fig. 6. Expansion with PTA/IL-2/IL-18 of γδ T cells and NK cells derived from

ATL patients (ATL-P04, 08-14). PBMCs were purified from peripheral blood derived from ATL

patients and stimulated/expanded with PTA/IL-2/IL-18, which were stained with PE-conjugated anti-

CD3, anti-56 or anti-CD16 mAb and FITC-conjugated anti-Vδ2 mAb, and analyzed through a FACS

Lyric flow cytometer.
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Supplementary Fig. 6. Expansion with PTA/IL-2/IL-18 of γδ T cells and NK cells derived from

ATL patients (ATL-P04, 08-14). After stimulation/expansion of PBMCs derived from ATL patients

(ATL-P04, 08-14) with PTA/IL-2/IL-18, the cells were stained with PE-conjugated anti-cD3, anti-56 or

anti-CD16 mAb and FITC-conjugated anti-Vδ2 mAb, and analyzed through a FACS Lyric flow

cytometer.
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Supplementary Fig. 7. Expansion with IL-2/IL-18 of NK

cells derived from ATL patients (ATL-P08‐10, 12-13),

which were used for the cytotoxicity assay in Fig. 8.

PBMCs were purified from peripheral blood derived from

ATL patients and stimulated/expanded with IL-2/IL-18, which

were stained with PE-conjugated anti-CD56 or anti-CD16

mAb and FITC-conjugated anti-CD3 mAb, and analyzed

through a FACS Lyric flow cytometer.
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Young, health 

donors
FACS PTA/IL-2 PTA/IL-2/IL-18 IL-2/IL-18

HD01 ○ ○
HD02 ○ ○ ○
HD03 ○ ○
HD04 ○ ○
HD05 ○ 〇
HD06 ○ ○
HD07 ○ ○
HD08 ○ ○
HD09 ○ ○
HD10 ○ 〇
HD11 ○ 〇
HD12 ○ 〇
HD13 ○ 〇
HD14 ○ ○ ○
HD15 ○ ○ ○
HD16 ○ 〇 ○

Supplementary Table S1. Summary of flow cytometric analysis, PTA/IL-2-induced expansion of γδ T 
cells and IL-2/IL-18-induced expansion of NK cells in HDs.



Characteristic n = 55

Male sex, n (%) 29 (52.7)

Age at blood sampling, y, median (min, max, IQR) 72 (34, 86, 63.5-78)

Shimoyama classification at diagnosis, n (%)

Smoldering subtype 13 (23.6)

Favorable chronic subtype 9 (16.4)

Unfavorable chronic subtype 5 (9.1)

Lymphoma subtype 4 (7.3)

Acute subtype 24 (43.6)

Performance status (PS) 1 (0, 4, 0-1)

Previous treatments at the time of blood sampling, n (%)

Untreated (with no anticancer drugs) 31 (56.4)

Undergoing anticancer drug treatment 10 (18.2)

Post anticancer drug treatment 14 (25.5)

Breakdown of anticancer drug treatment, n (%)

Only chemotherapy 12 (21.8)

Only mogamulizumab 1 (1.8)

Chemotherapy + mogamulizumab 7 (12.7)

Chemotherapy + lenalidomide 1 (1.8)

Bexarotene 3 (5.5)

Use of PSL or immunosuppressants at the time of blood sampling

PSL 6 (10.9)

Immunosuppressants 1 (1.8)

Laboratory examinations, median (min, max, IQR)

sIL-2R (U/ml) 969 (60, 100000, 634.5-4379)

LDH (IU/L) 214 (94, 3882, 72-266)

Alb (g/dL) 4.1 (2.1, 4.7, 3.8-4.3)

BUN (mg/dL) 16 (7, 37, 13-20)

Corrected Ca (mg/dL) 9.5 (8.7, 11, 9.2-9.7)

WBCs (×109/L） 6.6 (2.8, 202.4, 4.825-10.15)

Ly (%) 28 (0, 84, 13-39)

Ab-Ly (%) 3 (0, 96, 0-12)

Supplementary Table S2. Summary of the clinical characteristics of 55 ATL patients. ATL, adult T-

cell leukemia–lymphoma; mogamulizumab, defucosylated anti-CCR4 monoclonal antibody; PSL, 
prednisolone; bexarotene, retinoid X receptor (RXR) agonist; lenalidomide, potent inhibitor of TNF-α; 
sIL-2R, soluble interleukin-2 receptor; LDH, lactate dehydrogenase; Alb, albumin; BUN, blood urea 
nitrogen; Ca, calcium; corrected Ca = serum Ca + 0.8*(normal albumin - patient albumin); WBCs, 
white blood cells; Ly, lymphocyte; Ab-Ly, abnormal lymphocyte; IQR, interquartile range.



Shimoyama Classification at Diagnosis
Patients Who 

Underwent Blood 
Sampling

Patients who 
Achieved CR

Patients who 
Achieved PR

Smoldering subtype (n=13) 3 0 3

Favorable chronic subtype (n=9) 3 2 0

Unfavorable chronic subtype (n=5) 1 0 0

Lymphoma subtype (n=4) 2 2 0

Acute subtype (n=24) 15 9 3

A total of 55 ATL patients (29 males and 26 females) in the Departments of Hematology and

Dermatology of Nagasaki University Hospital were enrolled in this study between April 2013 and

January 2023. We selected patients with a definitive diagnosis of ATL at the Department of Hematology

before blood sampling, using evidence of the monoclonal integration of HTLV-1 proviral DNA and

clinical and laboratory findings. Patient information was retrospectively collected, beginning at the time

the blood sampling was conducted. Clinical characteristics of 55 ATL patients are summarized in

Supplementary Table 2. The median age at the time of blood sampling was 72 years (range: 34 – 86

years). The most common subtype of ATL at first diagnosis, based on the Shimoyama classification [8],

was the acute subtype (43.6%). Patients who underwent hematopoietic stem cell transplantation were

excluded. The Shimoyama classification at the first diagnosis and the outcome at the time of the blood

sampling are summarized in Table 2. Among the ATL patients enrolled, 31 (56.4%) had not received

any anticancer drugs, and 24 (43.6%) had a history of anticancer drug use at the time of blood

collection. Of these, 6 patients were undergoing chemotherapy treatment and 4 patients were taking

lenalidomide or bexarotene internally. At the same time, the following laboratory tests were conducted,

all of which were previously established biomarkers for aggressive subtype factors of ATL: levels of

serum soluble interleukin-2 receptor (sIL-2R) (U/mL), lactate dehydrogenase (LDH, IU/L), albumin

(Alb. g/dL), blood urea nitrogen (BUN, mg/dL), corrected calcium (Ca, mg/dL), white blood cells

(WBCs ×10⁹/L), lymphocyte (Ly, %), and abnormal lymphocytes (Ab-Ly, %),.

ATL’s onset requires a long latency period of approximately 50 – 60 years after infection with

HTLV-1 in infants, and ATL, thus, occurs mostly in elderly HTLV-1-infected individuals. Aging is

reported to result in the remodeling of T-cell immunity and to be associated with poor clinical outcomes

in age-related diseases [61]. In addition, the immune system is also reported to be suppressed in ATL

patients [24-26]. It is, therefore, a prerequisite to examine the immunological properties of γδ T cells

and NK cells from ATL patients and the effects of aging and immunosuppression status associated with

HTLV-1 infections on the effector functions of innate immune cells. To examine the effect of aging on

γδ T-cell populations in PBMCs, 10 elderly non-ATL patients (8 males and 2 females) were enrolled in

this study; who suffered from epidermal cyst, atopic dermatitis, skin ulcer, alopecia, angioleiomyoma,

post-herpes zoster, and prurigo.

Supplementary Table S3. The Shimoyama classification at the first diagnosis and the outcome 
at the time of blood sampling. CR, complete response; PR, partial response.



ATL 

Patient
FACS

PTA/

IL-2

PTA/

IL-2/IL-18

IL-2/

IL-18

ATL 

Patient
FACS

PTA/

IL-2

PTA/

IL-2/IL-18

IL-2/

IL-18

ATL-P01 ○ ○ ○ ATL-P29 ○ ○ ○
ATL-P02 ○ ○ ○ ATL-P30 ○ ○ ○
ATL-P03 ○ ○ ○ ATL-P31 ○ ○ ○
ATL-P04 ○ ○ ○ ATL-P32 ○ ○ ○
ATL-P05 ○ excluded ○ ATL-P33 ○ ○ ○
ATL-P06 ○ ○ ○ ATL-P34 ○ ○ ○
ATL-P07 ○ ○ ○ ATL-P35 ○ ○ ○
ATL-P08 ○ ○ ○ ATL-P36 ○ ○ ○
ATL-P09 ○ ○ ○ ATL-P37 ○ ○ ○
ATL-P10 ○ ○ ○ ATL-P38 ○ ○ ○
ATL-P11 ○ ○ ○ ATL-P39 ○ ○ ○
ATL-P12 ○ ○ ○ ATL-P40 ○ ○ ○
ATL-P13 ○ ○ ○ ATL-P41 ○ ○ ○
ATL-P14 ○ ○ ○ ATL-P42 ○ ○ ○
ATL-P15 ○ ○ ○ ATL-P43 ○ ○ ○
ATL-P16 ○ excluded ○ ATL-P44 ○ ○ ○
ATL-P17 ○ ○ ○ ATL-P45 ○ ○ ○
ATL-P18 ○ ○ ○ ATL-P46 ○ ○ ○
ATL-P19 ○ ○ ○ ATL-P47 ○ ○ ○
ATL-P20 ○ ○ ○ ATL-P48 ○ ○ ○
ATL-P21 ○ ○ ○ ATL-P49 ○ ○ ○
ATL-P22 ○ ○ ○ ATL-P50 ○ ○ ○
ATL-P23 ○ ○ ○ ATL-P51 ○ ○ ○
ATL-P24 ○ ○ ○ ATL-P52 ○ ○ ○
ATL-P25 ○ ○ ○ ATL-P53 ○ ○ ○
ATL-P26 ○ ○ ○ ATL-P54 ○ ○ ○
ATL-P27 ○ ○ ○ ATL-P55 ○ ○ ○
ATL-P28 ○ ○ ○

Supplementary Table S4. Summary of flow cytometric analysis, PTA/IL-2-induced expansion of γδ T 
cells, PTA/IL-2/IL-18-induced expansion of γδ T cells and IL-2/IL-18-induced expansion of NK cells in 
ATL patients.



Elderly non-ATL patients FACS PTA/IL-2 PTA/IL-2/IL-18 IL-2/IL-18

Elderly-P01 ○ ○ ○
Elderly-P02 ○ ○ ○
Elderly-P03 ○ ○ ○
Elderly-P04 ○ ○ ○
Elderly-P05 ○ 〇 ○
Elderly-P06 ○ ○ ○
Elderly-P07 ○ ○ ○
Elderly-P08 ○ ○ ○
Elderly-P09 ○ ○ ○
Elderly-P10 ○ ○ ○

Supplementary Table S5. Summary of flow cytometric analysis, PTA/IL-2/IL-18-induced expansion 
of γδ T cells and IL-2/IL-18-induced expansion of NK cells in elderly non-ATL patients.
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