1	Regular paper
2	Fields: Cell
3	
4	Compounds in cigarette smoke induce EGR1 expression via the AHR, resulting in
5	apoptosis and COPD
6	Naoko Hattori ^{1, 2, 5, *} , Takeya Nakagawa ^{1, 2, *} , Mitsuhiro Yoneda ^{1, 2, *} , Hiromi Hayashida ^{1, 2} , Kaori
7	Nakagawa ^{1, 2} , Kazuo Yamamoto ⁴ , Myo Win Htun ^{1, 3} , Yasuaki Shibata ^{1, 3} , Takehiko Koji ^{1, 3} , and
8	Takashi Ito ^{1, 2, **}
9	
10	¹ Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
11	² Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
12	³ Department of Histology and Cell Biology, Nagasaki University School of Medicine,
13	Nagasaki, Japan
14	⁴ Biomedical Research Support Center, Nagasaki University School of Medicine, Nagasaki,
15	Japan
16	⁵ Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences,
17	Nagasaki, Japan.
18	*These authors contributed equally to this manuscript.
19	N.H. initiated and planned this research; T. N. and Y. M. performed a significant number of
20	experiments.
21	**Corresponding author
22	1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan TEL: 81-95-819-7037, 7038
23	E-mail: <u>tito@nagasaki-u.ac.jp</u> 1

25 Running title: CS induces EGR1 expression via the AHR, resulting in apoptos	25	Running title:	CS induces EGR1	expression via t	he AHR, resulting	g in apoptosis
--	----	----------------	-----------------	------------------	-------------------	----------------

26

27	Abbreviations:	AHR, a	iryl h	ydrocarbon recep	ptor; ANOV	A, analy	sis of	variance;	ARNT.	, AHR
----	----------------	--------	--------	------------------	------------	----------	--------	-----------	-------	-------

28 nuclear translocator; BALF, bronchoalveolar lavage fluid; celiprolol, celiprolol hydrochloride;

- 29 COPD, chronic obstructive pulmonary disease; CS, cigarette smoke; CYP1A1, cytochrome
- 30 p450 1A1; DMSO, dimethyl sulfoxide; EGR1, early growth response 1; FICZ, 6-
- 31 formylindolo[3,2-b] carbazole; HCI, Health Canada Intense; HNB, heat-not-burn; H&E,
- 32 hematoxylin and eosin; propranolol, propranolol hydrochloride; RPMI, Roswell Park Memorial
- 33 Institute; NGFI-A, nerve growth factor-induced protein A; NNK, 4-(methylnitrosamino)-1-(3-
- 34 pyridyl)-1-butanone; NNN, N-nitrosonornicotine; SR1, stemregenin1; TCDD, 2,3,7,8-
- 35 tetrachlorodibenzo-p-dioxin; TPM, total particulate matter; 5, 6-DMB, 5,6-
- 36 dimethylbenzimidazole

37 Abstract

38 Chronic obstructive pulmonary disease (COPD) is a major cause of mortality 39 worldwide, and pulmonary epithelial cell apoptosis is regarded as one of the most important 40 factors in its pathogenesis. Here we examined the molecular mechanisms of apoptosis caused by 41 cigarette smoke (CS). In the normal bronchial epithelium cell line BEAS-2B, a CS extract 42 markedly induced apoptosis together with transient early growth response 1 (EGR1) protein 43 expression, which is activated over time via the aryl hydrocarbon receptor (AHR). The CS 44 extract induced apoptosis and decreased cell count of BEAS-2B cells and was significantly 45 reversed by knockdown of either EGR1 or AHR. In vivo, the CS extract caused alveolar wall 46 destruction, mimicking COPD, 1 week after intrathoracic injection. Bronchoalveolar lavage 47 fluid (BALF) from the CS extract-treated mice contained massive numbers of apoptotic 48 epithelial cells. Furthermore, it was found that aminoanthracene induced EGR1 expression and 49 cell apoptosis. By contrast, the AHR antagonist stemregenin 1 (SR1) restored apoptosis upon 50 CS treatment. These results suggest that aryl hydrocarbons, such as aminoanthracene, induce 51 EGR1 expression via the AHR, resulting in cell apoptosis and that this can be prevented by 52 administration of an antagonist of AHR. 53

- 54 Key words: AHR, apoptosis, COPD, cigarette smoke, EGR1
- 55

56 Introduction

57 COPD is a major cause of mortality worldwide (1). Since it has been reported that 58 COPD contributes to the progression of COVID-19, the treatment of COPD is now in the 59 spotlight (2). COPD is a chronic respiratory disease that is caused by an inflammatory response 60 of the lungs to noxious particles or gasses, resulting in chronic bronchiolitis and emphysema, 61 which causes obstructive airflow (1). Among miscellaneous environmental and genetic risk 62 factors, CS is regarded to be one of the most important in the pathogenesis of COPD (3). 63 Among several mechanisms of COPD pathogenesis, the apoptosis of airway epithelial cells of 64 the lung is regarded as one of the most important. An increase in apoptotic alveolar epithelial 65 and endothelial cells observed in the lungs of COPD patients suggests that apoptosis has a role 66 in the destruction of lung tissue and the development of emphysema and COPD (4).

In order to reduce noxious particles or gasses, tobacco-containing vapor products have
been developed worldwide. Heat-not-burn (HNB) products, in which the tobacco is heated
without being combusted, have been reported to emit lower levels of harmful compounds than
conventional CS (5) (6). CS induces abnormal gene expression, characterized as elevated
EGR1 expression, and apoptosis, and the reduction of potentially harmful compounds in HNB
products decreased EGR1 responses as well as apoptosis (7).

73 The EGR1 gene was first identified as nerve growth factor-induced protein A (NGFI-74 A), and it was subsequently determined that it is an early growth response gene under various 75 forms of stimulation (8) (Milbrandt, 1987). EGR1 expression is regulated by a myriad of 76 secreted molecules and stress factors through numerous regulatory elements located upstream of 77 the EGR1 coding sequence (9) (Havis and Duprez, 2020). This gene was previously identified 78 as a potential novel target of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in human lung 79 epithelial cells. EGR1 protein levels were increased by TCDD, which has a high affinity for the 80 AHR (10) (Martinez et al., 2004).

81	The AHR is a transcription factor that was identified as a TCDD-binding receptor
82	protein that regulates xenobiotic metabolism (11) (Murray et al., 2014). The AHR also binds
83	various aryl hydrocarbons, such as indoles, polyphenols, and phenazines, and is involved in the
84	regulation of various biological processes (12) (13) (14) (Bjeldanes et al., 1991) (Amakura et
85	al., 2008) (Moura-Alves et al., 2014). Upon binding of a ligand to the AHR, it translocates from
86	the cytoplasm to the nucleus, dimerizes with AHR nuclear translocator (ARNT), and binds to
87	xenobiotic-responsive elements, resulting in transcriptional activation of target genes (15)
88	(Nebert, 2017). The classical target gene encodes for the drug-metabolizing monooxygenase
89	cytochrome P450 1A1 (CYP1A1) (16). (Ye et al., 2019).
90	In this report, we determined that CS, but not Ploom TECH or Ploom TECH+ HNB
91	products, induces EGR1 expression via the AHR, resulting in apoptosis in vitro. CS, but not
92	Ploom TECH or Ploom TECH+ HNB products, induces apoptosis of epithelial cells in BALF
93	and causes alveolar wall destruction. The representative aryl hydrocarbons 1-aminoanthracene
94	and 2-aminoanthracene were found to induce EGR1 expression and apoptosis. Finally, we
95	identified AHR antagonists that decrease the expression of EGR1 and restore apoptosis by CS
96	exposure.

98 Material and Methods

99 Smoke and aerosol generation

100 Smoking extracts were prepared as previously described (5) (Takahashi et al., 2018). 101 Briefly, 3R4F cigarettes were obtained from the Kentucky Tobacco Research and Development 102 Center at the University of Kentucky (Lexington, KY, USA). Two HNB products, Ploom 103 TECH and its flavored version, Ploom TECH+, were obtained from Japan Tobacco Inc. (Tokyo, 104 Japan). Untreated 3R4F CS and aerosols from Ploom TECH or Ploom TECH+ HNB products 105 were generated by machine smoking using Health Canada Intense (HCI) puffing conditions (55 106 mL puff volume, 2-s duration, 30-s puff interval, and a bell-shaped puff profile). The 3R4F 107 cigarette was smoked until the remaining butt length was 35 mm. For the HNB products, the 108 total puff number for each aerosol collection per tobacco capsule was set at 70, which was based 109 on the product specification. Aerosols were dissolved in dimethyl sulfoxide (DMSO) at a 110 concentration of 40 mg/ml for 3R4F extract and 100 mg/ml for both Ploom TECH and Ploom 111 TECH+ extracts. 112 113 Cell culture 114 BEAS-2B cells were cultured in a humidified chamber (37°C, 5% CO₂ in air) with 115 Roswell Park Memorial Institute (RPMI) medium, and the cells were supplemented with 10 116 µg/ml gentamicin and 10% fetal calf serum (Life Technologies). 117 118 siRNA treatment 119 To determine cell count, BEAS-2B cells were typically seeded into 24-well plates at a

- 120 density of 0.4×10^4 cells/well. The cells were then transfected with 12 nM siRNAs using
- 121 Lipofectamine RNAi MAX reagents (Thermo Fisher Scientific).
- 122 For the annexin V–PE assay, BEAS-2B cells were seeded into 6-well plates at a density
- 123 of $1.0 \ge 10^5$ cells/well. The cells were then transfected with 14 nM siRNAs using

124 Lipofectamine RNAiMAX reagents. After 44 hours, the cells were treated with 0.1% 3R4F 125 extract. After 50 hours, the cells were collected for analysis. To examine whether knockdown 126 of EGR1 was successful, we used 1% 3R4F to induce EGR1 before knockdown (Fig. 3A). 127 The EGR1 expression increased in accordance with the concentration of 3R4F added (Fig. 128 S1G), and the effect of knockdown was unclear using 0.1% 3R4F. For RT-qPCR, BEAS-2B 129 cells were seeded into 6-well plates at a density of 0.6×10^4 cells/well. After 20 hours of 130 incubation, the cells were transfected with 14 nM siRNAs using Lipofectamine RNAiMAX 131 reagents. After 48 hours, the cells were collected for analysis. 132 133 Western Blotting 134 BEAS-2B cells were seeded into 6-well plates at a density of 2.0×10^5 cells/well. 135 After 16–20 hours of incubation, the cells were treated with a DMSO or 0.5% 3R4F extract. 136 The cell lysates were prepared using a sodium dodecyl sulfate (SDS) buffer and 2–12 hours 137 later, separated by SDS-PAGE (12%), transferred to a nitrocellulose membrane (Bio-Rad), and 138 blocked with 3% BSA in Tris-buffered saline containing 0.05% Tween-20 (TBST). To detect 139 EGR1, the membranes were incubated with anti-EGR1 antibodies (cat. no. S-25; Santa Cruz 140 Biotechnology, Inc.; Santa Cruz, CA), washed, and incubated with anti-mouse peroxidase (cat. 141 no. 04-18-18; SeraCare Life Sciences, MA), and the subsequent chemiluminescence was 142 obtained using the ChemiDoc Touch MP imaging system (BIO-RAD, CA). To detect histones, 143 the membranes were incubated with anti-core histone antibodies (17), followed by washing and 144 subsequent incubation with protein A conjugated with Alexa Fluor[™] 647 (Thermo Fisher 145 Scientific, Waltham, MA, cat. no. p21462). Fluorescence signals were captured by employing a

- 146 TyphoonTM_FLA 9000 imager (GE Healthcare) to scan the probed membranes, with the PMT
- 147 setting set at 1000 V.
- 148
- 149

150 Plasmid vectors and transfection

151	The pCMV-SPORT6-EGR1 plasmid was obtained from RIKEN BRC (Tokyo, Japan) (18-
152	21). (Itoh et al., 2006; Kimura et al., 2006; Ota et al., 2004; Otsuki et al., 2005). Plasmid
153	pCDNA3 was obtained from Invitrogen, MA. BEAS-2B cells were seeded at $0.7 \ge 10^6$
154	cells/well into 10-cm dishes. After 16-20 hours of incubation, plasmid mixtures containing 12
155	$\mu g \text{ pCDNA3}$ and 12 $\mu g \text{ pCMV-SPORT6-EGR1}$ were transfected by Xfect TM Transfection
156	Reagent (Takara Bio company, Shiga, Japan) according to the manufacturer's protocol. After
157	48 hours, the cells were analyzed by TUNEL assay.
158	
159	Cell Count
160	Typically, one day before counting, BEAS-2B cells were seeded at $0.56 \ge 10^4$
161	cells/well into 24-well plates. After 20 hours of incubation, the cells were treated with a
162	control solvent (DMSO or MeOH), 0.1% 3R4F extract, or 100 nM to 10 μ M compounds, and
163	the day was designated as day 0. From each well, four images were collected on days 0 and 3.
164	The cells were counted within a 1-mm ² square for each image, the day-3 cell counts were
165	normalized to day-0 cell counts, and the relative count level was calculated. Cells were
166	transfected with siRNAs two days in advance of the day indicated, basically as previously
167	described (22).
168	
169	RT-qPCR

Typically, BEAS-2B cells were seeded at 2.0 x 10⁵ cells/well into 6-well plates. After
20 hours of incubation, the cells were treated with control solvent (DMSO), 0.1% 3R4F extract,

172 or 100 nM to 10 μ M compounds. Cells were transfected with siRNAs two days in advance of

- 173 the day indicated, as previously described. After 1–6 hours, RNA was isolated, and cDNA was
- 174 generated from 0.3-0.5 µg total RNA in the presence of an oligo(dT) primer (Life
- 175 Technologies), random hexamers (Takara), and SuperScriptTM III Reverse Transcriptase

- 176 (Invitrogen) or PrimeScriptTM Reverse Transcriptase (Takara). Using SYBR green and
- appropriate master-mix reagents, real-time RT-PCR was performed with a QuantStudio[™] 12K
- 178 Flex Real-Time PCR System (Thermo Fisher Scientific). Target gene expression levels were
- 179 normalized to *GAPDH* expression, and the relative expression level was calculated by
- 180 comparing with the DMSO control. The PCR primers used were:
- 181 *EGR1*
- 182 (forward) 5`-AGGCGGCGATTTTTGTATGT-3`,
- 183 (reverse) 5`-GGGCAATAAAGCGCATTCAA-3`;
- 184 *AHR*
- 185 (forward) 5`-TTCAGATTATCAACAGCAAC-3`,
- 186 (reverse) 5'- TGCTGTGGCTCCACTACTAC-3';
- **187** *GAPDH*
- 188 (forward) 5'-GGAGCGAGATCCCTCCAAAAT-3',
- 189 (reverse) 5'- GGCTGTTGTCATACTTCTCATG -3'.
- 190

191 TUNEL assay and FACS analysis

- **192** BEAS-2B cells were seeded into a 10-cm dish at a density of 1.0×10^6 cells/dish.
- 193 After 20 hours of incubation, the cells were treated with 0.5% DMSO, Ploom TECH extract,
- 194 Ploom TECH+ extract, or 3R4F extract. Six or 24 hours after treatment, the cells were subjected
- 195 to a TUNEL assay according to the manufacturer's instructions (DeadEnd Fluorometric TUNEL
- 196 System, Promega). The cells were then incubated with anti-EGR1 antibodies (cat. no. S-25;
- 197 Santa Cruz Biotechnology, Inc.; Santa Cruz, CA), washed, incubated with protein A conjugated
- 198 with Alexa FluorTM 647 (cat. no. p21462; Thermo Fisher Scientific, Waltham, MA,), and
- 199 analyzed using a FACS Canto II flow cytometer (BD Biosciences). Twenty thousand cells were
- 200 counted, and 10,000 cells were displayed.
- 201

202 Annexin V–PE assay and FACS analysis

203 BEAS-2B cells were seeded into 6-well plates at a density of 2.0 x 10⁵ cells/well. 204 After 20 hours of incubation, the cells were treated with 1 μ M staurosporine, 0.1–0.3% 3R4F 205 extract, or 100nM-10 µM compounds. Six or 24 hours later, the cells were subjected to an 206 Annexin V-PE assay according to the manufacturer's instructions (Annexin V-PE Apoptosis 207 detection kit, Biovision) and analyzed using a FACS Canto II flow cytometer. Ten thousand 208 cells were counted, and 10,000 cells were displayed in Figs. 1, 6, and S2; 20,000 cells were 209 counted, and 20,000 cells were displayed in Fig. 5. In Fig. 6H, six independent assays for each 210 condition were performed, followed by duplicate flow cytometer detection. Ten thousand cells 211 were counted for each detection. 212 Forty-four hours after transfection the siRNA-treated cells were treated with 0.1%

3R4F extract. Six hours later, the cells were subjected to an annexin V–PE assay and analyzed
using a FACS Canto II flow cytometer. Twelve independent assays for each condition were
performed, followed by quadruplicate flow cytometer detection. Ten thousand cells were
counted for each detection.

217

218 Histological analysis

219 BALB/c mice were injected with 100 µL of 6% DMSO, 6% Ploom TECH extract, 6% 220 Ploom TECH+ extract, or 6% 3R4F extract into their intrathoracic cavity (n=4 mice per group). 221 Twenty-four hours later, the tracheas from eight mice (n=2 mice per group) were surgically 222 exposed and a 23-G needle inserted. BALF was obtained by intratracheal instillation of 1 ml 223 PBS into the lung. BALF 200- μ L aliquots were centrifuged at 300 x g for 10 min. Cells in 224 BALF were stained with annexin V–PE (1 μ L/100 μ L) and Hoechst stain (1/5000). Cytospin 225 preparations of stained BALF were centrifuged at 700 rpm for 10 min onto glass slides using a 226 CytospinTM 4 Cytocentrifuge (Thermo Scientific). Glass slides prepared by this technique were 227 observed with an Olympus fluorescence microscope (cat. no. BX53). After observation, the

228	cells were stained with Giemsa stain solution (MUTO PURE CHEMICALS). For quantitative
229	analyses, stained images were taken with the same laser settings, and the fluorescence intensity
230	was quantified using Image J software with the same parameters. The integrated density of three
231	annexin V-PE-stained pictures was used for the statistical analysis, as previously described
232	(23).
233	After seven days, 8 mice (n=2 mice per group) were anesthetized and euthanized. The
234	lungs were infiltrated with 4% paraformaldehyde, embedded in paraffin, and stained with
235	hematoxylin and eosin (H&E). For quantitative analysis, an area within 50 randomly selected
236	alveoli in each H&E-stained image was measured and averaged. Four sets of averages for each
237	condition were used for statistical analysis.
238	
239	Statistics
240	Data are shown as means \pm SD. Levels of significance for comparison between
241	samples were determined by one-way analysis of variance (ANOVA), followed by Dunnett's
242	test. P-values of <0.05 were considered statistically significant. Graph-Pad Prism v7 software
243	was used for analysis.
244	
245	Study approval
246	Animal care and experiment was done in accordance with the Guidelines for Animal
247	Experimentation of Nagasaki University and with approval of the Institutional Animal Care and
248	Use Committee (approval no. 2109061743).
249	
250	Data Availability Statement
251	The data that support the findings of this study are available in the methods and
252	material of this article.

253 Results

254 3R4F extract, but not Ploom TECH or Ploom TECH+ extracts, induce activation of the

255 EGR1 gene and apoptosis of BEAS-2B cells.

256 We report here that 0.5% of conventional CS 3R4F extract but not the same

257 concentration of extract from the two HNB products, Ploom TECH and Ploom TECH+, induced

258 elevated transcription of the *EGR1* gene and cell apoptosis in BEAS-2B cells. To elucidate the

connection between *EGR1* gene expression and cell apoptosis, we analyzed EGR1 expression

260 with anti-EGR1 antibodies and apoptosis by performing a TUNEL assay, followed by flow

261 cytometry. The same percentage of (0.5%) DMSO, Ploom TECH extract, Ploom TECH+

extract, or 3R4F extract were applied to BEAS-2B cells to determine whether they cause

apoptosis. Six hours after treatment of BEAS-2B cells with 3R4F, 2.5% became EGR1-positive,

and 77.1% had undergone apoptosis; after 24 hours, the number of EGR1-positive cells

decreased to 0.4%, and 96.4% had undergone apoptosis. There was no change in the proportion

266 of apoptotic cells or EGR1-positive cells treated with Ploom TECH extract or Ploom TECH+

extract compared with the DMSO control. (Fig. 1A–H)

268 In addition to the DeadEnd Fluorometric TUNEL assay, we performed an annexin V–PE assay,

269 which can detect early apoptosis and is considered to be highly sensitive (24). The sensitivity to

apoptosis was tested with diluted 3R4F extract, using staurosuporine as a positive control,

271 which is known to induce apoptosis in cultured cells (25). Apoptosis was observed in 100% of

272 0.1-0.5% 3R4F-treated cells after 6 or 24 hours. (Fig. 1K–P). We plotted EGR1 expression over

time (Fig. 2A). It is an early-response gene (26), and its transient peak expression is 2–4 hours

after exposure to 3R4F. Downregulation after the transient peak is probably due to proteasomal

degradation of the expressed EGR1, rather than due to 3R4F instability (27). Even if EGR1

276 plays a role in apoptosis, most cells exposed to 3R4F became EGR1-negative within 24 hours.

277 Therefore, the EGR1-negative and TUNEL assay-positive population detected via flow

278 cytometer might be positive for EGR1 expression transiently during the course of the

279 experiment. Therefore, apoptotic cells need not be EGR1-positive all the time over the course of 280 the experiment, even if EGR1 plays a role in this process. The 2.5% positive rate of EGR1 281 expression at 6 hours is low; however, it may be dependent on the strength of the antibody. To 282 further confirm the involvement of EGR1 expression in apoptosis, we introduced CMV 283 promoter-driven EGR1 into BEAS-2B cells. Apoptotic cells detected by TUNEL assay 284 increased from 0.1% to 3.5% by EGR1 overexpression (Fig. 2B, C). Since apoptosis is induced 285 in 9.7% of cells that overexpressed EGR1 ([Q2/Q2+Q4] x 100), it is possible that additional 286 downstream regulators of the AHR are needed or that transient rather than continuous 287 overexpression is important. These results suggest that EGR1 is involved in the apoptosis 288 induced by 3R4F. 289 290 3R4F causes apoptosis via EGR1, which is regulated through the AHR. 291 In order to clarify the molecular mechanisms that connect 3R4F, EGR1, and apoptosis 292 we investigated regulation of the AHR and EGR1 in BEAS-2B cells, since AHR agonists 293 increase EGR1 expression through post-transcriptional mechanisms in human lung epithelial 294 cells (10). To examine whether knockdown of EGR1 can be achieved, we used 1% 3R4F to 295 induce EGR1 before knockdown (Fig. 3A). EGR1 expression increased in accordance with the 296 concentration of 3R4F added (supplementary Fig. 1F, G), and the effect of knockdown was 297 unclear following induction with 0.1% 3R4F. We treated BEAS-2B cells with two different 298 siRNAs for both AHR and EGR1 to exclude off-target effects. Expression of the AHR and 299 EGR1 as determined by RT-qPCR confirmed the efficiency of their knockdown. In addition, 300 knockdown of the AHR decreased the expression of EGR1, while the knockdown of EGR1 did 301 not decrease expression of the AHR (Fig. 3A). This result indicates that the AHR is an upstream 302 regulator of EGR1 expression, consistent with a previous report (10). Mechanistically, it has 303 been suggested that 3R4F extract activates the AHR and transcriptional upregulation of genes, 304 including EGR1, resulting in apoptosis. The effect of EGR-1 or AHR knockdown on apoptosis

305	was directly examined by annexin V-PE assay. BEAS-2B cells treated with siEGR1-2, siEGR1-
306	3, or siAHR-1 showed a significant decrease in the intensity of annexin V-PE staining
307	compared with siControl, suggesting a diminished apoptotic cell population due to the
308	knockdown of these genes (Fig. 3B). The corresponding histogram is shown in Fig. S1. The
309	effect of EGR-1 or AHR knockdown on the intensity of annexin V-PE staining was significant
310	but not strong. Together with the fact that overexpression of CMV promoter-driven EGR1 in
311	BEAS-2B cells induces apoptosis (Fig. 2B, C), these results suggest that EGR1 is involved in
312	3R4F-induced apoptosis.
313	Moreover, we examined the changes in cell count of BEAS-2B cells with the
314	knockdown of AHR or EGR1, in addition to treatment with 3R4F extract. Changes in cell count
315	on day 3 are influenced by cell death, including apoptosis, and proliferation of the remaining
316	cells (28-30). Knockdown of either the AHR or EGR1 in BEAS-2B cells restored cell count on
317	day 3 to a statistically significant degree (Fig. 3C, D). Therefore, we suggest that the 3R4F
318	extract induces apoptosis through the AHR and subsequent EGR1 expression.
319	
320	3R4F but not Ploom TECH or Ploom TECH+ extracts induce apoptosis in mouse respiratory
321	epithelial cells and thereby destroy alveolar walls.

322 To investigate whether 3R4F extract also induces apoptosis in vivo, 100 µL of

323 6% DMSO, 6% Ploom TECH extract, 6% Ploom TECH+ extract, or 6% 3R4F extract were

324 injected into the thoracic cavity of BALB/c mice, and pulmonary histology was performed (Fig.

325 4A-H). Alveolar cell destruction and air space enlargement were observed only in lungs treated

326 with 3R4F (Fig. 4G, H) and not in lungs treated with other extracts (Fig. 4A-F). Four sets of 50

327 randomly selected alveoli in each condition were measured, and their sizes compared. (Fig.

- 328 S2A–D). The area was larger in the 3R4F-treated lung than in the other lungs (Fig. 4Y). As an
- 329 animal model of emphysema, Gross et al. described the first reliable animal model, which was
- 330 created by injecting the proteinase papain intratracheally in rats (31). However, these models

331 involved a single massive injury incurred by administration of papain, which is unusual in 332 human trachea and might not reflect the pathogenesis of the human disease, which is produced 333 over decades (32). As a more physiological model, animals were exposed to CS in a smoking 334 apparatus. However, this model requires a long period of observation under undefined 335 conditions, as in mainstream or sidestream applications (33). While our model with a single 336 massive injury via concentrated chemicals does not appear to simulate a physiological injury, 337 we could obtain clear results with standardized research-grade cigarettes from the University of 338 Kentucky that are commonly used for research (http://www.ca.uky.edu/refcig/) and with a 339 defined dose of total particulate matter (TPM). 340 Because alveolar cell destruction was completed 1 week after injection of the 3R4F extract, the 341 BALF was examined within 24 hours. In the 3R4F extract-treated BALF, annexin V-PE 342 fluorescence staining-positive clumps of apoptotic alveolar epithelial cells were detected (Fig. 343 4L, P). However, no clumps of alveolar epithelial cells were detected, and no Annexin V-PE 344 fluorescence-stained positive cells were observed in the BALF treated with DMSO, Ploom 345 TECH extract, or Ploom TECH+ extract. (Fig. 4I-K, M-O). Subsequent May Grunwald-346 Giemsa staining showed the morphology (Fig. 4Q–T), and higher-magnification images are 347 shown (Fig. 4U-X). Annexin V-PE fluorescence-stained positive clumps of cells were identified 348 as alveolar epithelial cells by the presence of cilia (Fig. 4T, X). The integrated density was 349 significantly higher in the BALF of 3R4F-treated lung (Figs. 4Z and S3). This result indicates 350 that 3R4F extract also causes apoptosis of alveolar cells and subsequent destruction of the 351 alveolar wall in vivo.

352

353 *N-Nitrosonornicotine (NNN), 1-aminoanthracene, and 2-aminoanthracene induce activation*

354 *of the EGR1 gene and apoptosis in BEAS-2B cells.*

355 Representative aromatic hydrocarbons and compounds in common tobacco were

356 examined for their effects on cell proliferation of BEAS-2B cells in order to identify the

357	substances that cause apoptosis. (Fig. 5A, B). Most of the compounds did not affect cell count
358	(Fig. 5A); however, NNN, 1-aminoanthracene, and 2-aminoanthracene decreased cell counts
359	significantly, and 1-aminopyrene and 2-aminofluorene also decreased cell counts, although not
360	significantly (Fig. 5B). RT-qPCR was performed to determine whether the expression of EGR1
361	was upregulated when these compounds were added to the cells. All five compounds showed
362	upregulation of EGR1 (Fig. 5C, D). To confirm whether the decrease of cell count was due to
363	apoptosis, we performed an Annexin V-PE assay and found that 1-aminoanthracene and 2-
364	aminoanthracene induced apoptosis of BEAS-2B cells, while apoptosis could not be detected in
365	NNN, 1-aminopyrene, and 2-aminofluorene treated cells (Fig. 5E-L). 2-aminoanthracene-
366	induced apoptosis occurred more strongly than with 1-aminoanthracene; however, the cell count
367	on day 3 after treatment with 1-aminoanthracene was lower than after treatment with 2-
368	aminoanthracene. Because cell counts on day 3 reflect apoptosis and surviving-cell growth, 1-
369	aminoanthracene might affect surviving-cell growth in addition to apoptosis. NNN (10 μ M)
370	decreased cell count on day 3, which reflected both cell death from apoptosis and surviving-cell
371	growth, but 10 μ M 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) or 10 μ M
372	benzo[a]pyrene did not affect cell count. Since 10 µM NNN did not cause apoptosis, as detected
373	by annexin V–PE assay, the decreased cell count on day 3 via 10 μ M NNN might be due to cell
374	death that was not annexin V-PE assay-positive or was due to diminished residual cell growth.
375	Based on the previous report, 0.1% 3R4F contains 1.42 nM NNN, 1.36 nM NNK, and 50 pM
376	benzo[a]pyrene. It is known that over 8000 chemicals are included in 3R4F, and it is assumed
377	that NNN, NNK, and benzo[a]pyrene are not major contributors to apoptosis. 1-, 2-
378	aminoanthracene (10 μ M) causes apoptosis; however, its concentration is greater than that of
379	individual chemicals, such as NNN, NNK, or benzo[a]pyrene, that are included in 3R4F.
380	
381	Antihypertensive drugs restored the decreased cell count by 3R4F extract, and

celiprolol suppressed EGR1 activation by this extract.

383	Drugs that antagonize the AHR and prevent apoptosis have the potential to contribute to
384	COPD treatment. Therefore, we investigated the effect of available drugs with aromatic
385	hydrocarbon structures on the number of BEAS-2B cells reduced by 0.1% 3R4F extract
386	treatment (Fig. 6A, B). At day 3 after 0.1% 3R4F treatment, most drugs had no effect on cell
387	counts (Fig. 6A); however, antihypertensive drugs including propranolol hydrochloride
388	(propranolol), celiprolol hydrochloride (celiprolol), candesartan, and amlodipine significantly
389	restored cell count, which had been decreased by treatment with 0.1% 3R4F extract (Fig. 6B).
390	RT-qPCR was performed to determine whether the expression of EGR1 was downregulated
391	when these drugs were added to the cells. Celiprolol significantly downregulated EGR1
392	expression, and propranolol showed downregulation of EGR1, although not significantly (Fig.
393	6C). We assume that the drugs restore apoptosis caused by 3R4F, and we performed Annexin V
394	assay. However, no assurance could be obtained that the apoptosis was recovered by these
395	drugs. These antihypertensive drugs are well characterized and widely used for the treatment of
396	hypertension(34, 35). It has been suggested that these drugs decrease cell death or protect
397	residual cells, resulting in cell growth. It is noteworthy that well-known antihypertensive drugs
398	might protect alveolar cells from damage by smoking. The detailed mechanism will be
399	elucidated in the future.

401 *AHR antagonists suppressed the apoptosis induced by 3R4F extract.*

402 We tested whether an AHR antagonist, such as CH-223191 or SR1 (36, 37), inhibits apoptosis

403 of BEAS-2B cells by 3R4F. Treatment with 3R4F (0.1%) caused 79.0% of cells to become

404 apoptotic compared with the control (Fig. 6D, E), and the addition of 1 µM CH-223191 reduced

405 the number of apoptotic cells to 76.2% (Fig. 6F). Similarly, the addition of 1 µM SR1 reduced

- 406 the number of apoptotic cells to 71.0% (Fig. 6G). Statistically, the addition of 1 μ M SR1
- 407 reduced annexin V–PE median and mean values significantly compared with 0.1% 3R4F
- 408 treatment (Fig. 6H). This result indicates that the apoptosis caused by 0.1% 3R4F is inhibited by

409	the AHR inhibitor SR1. RT-qPCR was performed to determine whether the expression of EGR1
410	was downregulated by AHR inhibitors. The addition of 10 μ M SR1 reduced EGR1 expression
411	compared with 0.1% 3R4F (Fig. 6I). These results suggest that 3R4F-mediated apoptosis is
412	inhibited as a result of AHR inhibition and downregulation of EGR1 by SR1.
413	
414	
415	Discussion
416	In this paper we clarified the molecular mechanisms of CS-induced apoptosis. Our
417	findings are consistent with previous observations that 0.5% extracts of conventional CS, 3R4F,
418	but not of the commercially available HNB products, Ploom TECH and Ploom TECH+, induce
419	BEAS-2B cell apoptosis (7) and with the additional observation that this phenomenon is
420	accompanied by transient EGR1 protein expression over time. Since EGR1 is considered to be a
421	novel target for AHR agonists in human lung epithelial cells (10) , we focused on the AHR and
422	confirmed that it is involved in an apoptotic signaling cascade. Furthermore, it is noteworthy
423	that 1-aminoanthracene and 2-aminoanthracene, which are aryl hydrocarbons, may be
424	implicated in CS extract-induced EGR1 expression and cell apoptosis.
425	For in vivo models of COPD, the general procedure is that animals are exposed to CS
426	using a smoking apparatus. However, the disadvantages of this procedure are that diverse
427	factors, including whether a mainstream or sidestream configuration is used, different times of
428	exposure, and different types of chambers, make the evaluation and comparison of results
429	difficult (33, 38). On the other hand, a simple emphysema mouse model was successfully
430	established by intraperitoneal injection of CS extract (39). We established a similar emphysema
431	mouse model by direct intrathoracic injection of 3R4F CS extract. In order to determine the
432	concentration of 3R4F, we injected 100 μl of 3R4F or DMSO diluted with PBS to 1, 2, 4, or 8%
433	directly into the intrathoracic cavity. After a week the lungs were examined by H&E staining.
434	We determined that the concentration range for 3R4F that causes alveolar cell wall destruction

435 is 4–8%. The observation that the 3R4F extract induces apoptosis and destruction of the

436 alveolar wall *in vivo* compared with the control over a short time period has the advantage of

437 avoiding diverse factors that would be a concern with a smoking apparatus.

438 CS is a complex mixture, containing over 8000 chemicals, many of which have been reported as

439 bioactive substances generated during the process of tobacco combustion (40). Because we

440 found that the AHR affects apoptosis in BEAS-2B cells, we focused on chemicals that have an

441 aryl hydrocarbon skeleton, including the tobacco-specific nitrosamines NNK and NNN, which

442 are classified as group 1 carcinogens (5, 41-43). The aryl hydrocarbons reported in Fig. 5A,

443 including NNK, did not affect cell count. Other tobacco-specific nitrosamines, such as NNK,

444 decreased cell count and elevated EGR1 expression moderately but did not cause cell apoptosis,

445 as detected by annexin V–PE assay. 1-aminopyrene and 2-aminofluorene elevated EGR1

446 expression but did not decrease cell count significantly and did not cause apoptosis. Only 1-

447 aminoanthracene and 2-aminoanthracene decreased cell count, elevated EGR1 expression, and

448 caused cell apoptosis. As shown in Fig. 2C, 9.7% of cells that overexpressed EGR1

449 ([Q2/Q2+Q4] x 100) underwent apoptosis. It has been suggested that EGR1 plays a role in the

450 apoptosis of 10% of the cells overexpressing EGR1. Therefore, additional factors might be

451 required to induce apoptosis in the other 90% of cells. It is assumed that 1-aminoanthracene and

452 2-aminoanthracene satisfy this requirement.

453 In *in vitro* experiments, we tested several drugs having an aryl hydrocarbon skeleton

454 and found that celiprolol restored the cell count depressed by 3R4F and decreased the

455 expression of EGR1. Unfortunately, it was not clear that celiprolol restores apoptosis caused by

456 3R4F. However, SR1, which is a known antagonist of anti-AHR antibodies, decreased

457 apoptotic cells, as detected by annexin V–PE assay.

458 Our *in vitro* and in vivo results have suggested our conclusion that aryl hydrocarbons,459 which are components of CS, but at lower levels in HNB products, induce EGR1 expression via

- the AHR, resulting in apoptosis and COPD. We also speculate that COPD can be prevented by
- 461 administration of AHR inhibitor as summarized in Fig. 7.

465	Acknowledgments
-----	-----------------

466	We thank Dr. Yoshihide Hayashizaki of RIKEN, the Biotechnology Development
467	Technology Research Association, and Professor Sumio Kanno of the University of Tokyo for
468	their support.
469	
470	Funding
471	This work was supported by the Japan Society for the Promotion of Science (JSPS)
472	under the Grant-in-Aid for Scientific Research JSPS KAKENHI, grant numbers JP20K07574
473	(to M. Y.), JP20K06489 (to T. N.), JP24118003 (to T. I.), and JP17H04044 (to T. I.) from the
474	Ministry of Education, Culture, Sports, Science, and Technology.
475	
476	Conflicts of interest
477	The authors declare that they have no conflicts of interest for this article.

478 References

479	(1)	Pauwels, R.A., and Rabe, K.F. (2004) Burden and clinical features of chronic
480		obstructive pulmonary disease (COPD). Lancet. 364, 613-620
481	(2)	Zhao, Q., Meng, M., Kumar, R., Wu, Y., Huang, J., Lian, N., Deng, Y., and Lin, S.
482		(2020) The impact of COPD and smoking history on the severity of COVID-19: A
483		systemic review and meta-analysis. J Med Virol. 92, 1915-1921
484	(3)	Barnes, P.J. (2000) Chronic obstructive pulmonary disease. N Engl J Med. 343, 269-
485		280
486	(4)	Demedts, I.K., Demoor, T., Bracke, K.R., Joos, G.F., and Brusselle, G.G. (2006) Role
487		of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir Res. 7,
488		53
489	(5)	Takahashi, Y., Kanemaru, Y., Fukushima, T., Eguchi, K., Yoshida, S., Miller-Holt, J.,
490		and Jones, I. (2018) Chemical analysis and in vitro toxicological evaluation of aerosol
491		from a novel tobacco vapor product: A comparison with cigarette smoke. Regul Toxicol
492		<i>Pharmacol.</i> 92 , 94-103
493	(6)	Sakaguchi, C., Kakehi, A., Minami, N., Kikuchi, A., and Futamura, Y. (2014) Exposure
494		evaluation of adult male Japanese smokers switched to a heated cigarette in a controlled
495		clinical setting. Regul Toxicol Pharmacol. 69, 338-347
496	(7)	Hattori, N., Nakagawa, T., Yoneda, M., Nakagawa, K., Hayashida, H., and Ito, T.
497		(2020) Cigarette smoke, but not novel tobacco vapor products, causes epigenetic
498		disruption and cell apoptosis. Biochem Biophys Rep. 24, 100865
499	(8)	Milbrandt, J. (1987) A nerve growth factor-induced gene encodes a possible
500		transcriptional regulatory factor. Science. 238, 797-799
501	(9)	Havis, E., and Duprez, D. (2020) EGR1 Transcription Factor is a Multifaceted
502		Regulator of Matrix Production in Tendons and Other Connective Tissues.
503		International journal of molecular sciences. 21,

504	(10)	Martinez, J.M., Baek, S.J., Mays, D.M., Tithof, P.K., Eling, T.E., and Walker, N.J.
505		(2004) EGR1 is a novel target for AhR agonists in human lung epithelial cells. Toxicol
506		<i>Sci.</i> 82 , 429-435
507	(11)	Murray, I.A., Patterson, A.D., and Perdew, G.H. (2014) Aryl hydrocarbon receptor
508		ligands in cancer: friend and foe. Nat Rev Cancer. 14, 801-814
509	(12)	Bjeldanes, L.F., Kim, J.Y., Grose, K.R., Bartholomew, J.C., and Bradfield, C.A. (1991)
510		Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-
511		carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin.
512		Proc Natl Acad Sci U S A. 88, 9543-9547
513	(13)	Amakura, Y., Tsutsumi, T., Sasaki, K., Nakamura, M., Yoshida, T., and Maitani, T.
514		(2008) Influence of food polyphenols on aryl hydrocarbon receptor-signaling pathway
515		estimated by in vitro bioassay. Phytochemistry. 69, 3117-3130
516	(14)	Moura-Alves, P., Fae, K., Houthuys, E., Dorhoi, A., Kreuchwig, A., Furkert, J.,
517		Barison, N., Diehl, A., Munder, A., Constant, P., Skrahina, T., Guhlich-Bornhof, U.,
518		Klemm, M., Koehler, A.B., Bandermann, S., Goosmann, C., Mollenkopf, H.J., Hurwitz,
519		R., Brinkmann, V., Fillatreau, S., Daffe, M., Tummler, B., Kolbe, M., Oschkinat, H.,
520		Krause, G., and Kaufmann, S.H. (2014) AhR sensing of bacterial pigments regulates
521		antibacterial defence. Nature. 512, 387-392
522	(15)	Nebert, D.W. (2017) Aryl hydrocarbon receptor (AHR): "pioneer member" of the basic-
523		helix/loop/helix per-Arnt-sim (bHLH/PAS) family of "sensors" of foreign and
524		endogenous signals. Prog Lipid Res. 67, 38-57
525	(16)	Ye, W., Chen, R., Chen, X., Huang, B., Lin, R., Xie, X., Chen, J., Jiang, J., Deng, Y.,
526		and Wen, J. (2019) AhR regulates the expression of human cytochrome P450 1A1
527		(CYP1A1) by recruiting Sp1. FEBS J. 286, 4215-4231
528	(17)	Aihara, H., Nakagawa, T., Yasui, K., Ohta, T., Hirose, S., Dhomae, N., Takio, K.,
529		Kaneko, M., Takeshima, Y., Muramatsu, M., and Ito, T. (2004) Nucleosomal histone 23

530	kinase-1 phosphorylates H2A Thr 119 during mitosis in the early Drosophila embryo.
531	Genes Dev. 18, 877-888

- 532 (18) Itoh, M., Yasunishi, A., Imamura, K., Kanamori-Katayama, M., Suzuki, H., Suzuki, M.,
 533 Carninci, P., Kawai, J., and Hayashizaki, Y. (2006) Constructing ORFeome resources
 534 with removable termination codons. *Biotechniques.* 41, 44, 46, 48 passim
- 535 (19) Kimura, K., Wakamatsu, A., Suzuki, Y., Ota, T., Nishikawa, T., Yamashita, R.,
- 536 Yamamoto, J., Sekine, M., Tsuritani, K., Wakaguri, H., Ishii, S., Sugiyama, T., Saito,
- 537 K., Isono, Y., Irie, R., Kushida, N., Yoneyama, T., Otsuka, R., Kanda, K., Yokoi, T.,
- 538 Kondo, H., Wagatsuma, M., Murakawa, K., Ishida, S., Ishibashi, T., Takahashi-Fujii,
- A., Tanase, T., Nagai, K., Kikuchi, H., Nakai, K., Isogai, T., and Sugano, S. (2006)
- 540 Diversification of transcriptional modulation: large-scale identification and
- 541 characterization of putative alternative promoters of human genes. *Genome Res.* 16, 55542 65
- 543 (20) Otsuki, T., Ota, T., Nishikawa, T., Hayashi, K., Suzuki, Y., Yamamoto, J., Wakamatsu,
- 544 A., Kimura, K., Sakamoto, K., Hatano, N., Kawai, Y., Ishii, S., Saito, K., Kojima, S.,
- 545 Sugiyama, T., Ono, T., Okano, K., Yoshikawa, Y., Aotsuka, S., Sasaki, N., Hattori, A.,
- 546 Okumura, K., Nagai, K., Sugano, S., and Isogai, T. (2005) Signal sequence and
- 547 keyword trap in silico for selection of full-length human cDNAs encoding secretion or
- 548 membrane proteins from oligo-capped cDNA libraries. *DNA Res.* 12, 117-126
- 549 (21) Ota, T., and Suzuki, Y., and Nishikawa, T., and Otsuki, T., and Sugiyama, T., and Irie,
- 550 R., and Wakamatsu, A., and Hayashi, K., and Sato, H., and Nagai, K., and Kimura, K.,
- and Makita, H., and Sekine, M., and Obayashi, M., and Nishi, T., and Shibahara, T.,
- and Tanaka, T., and Ishii, S., and Yamamoto, J., and Saito, K., and Kawai, Y., and
- Isono, Y., and Nakamura, Y., and Nagahari, K., and Murakami, K., and Yasuda, T., and
- Iwayanagi, T., and Wagatsuma, M., and Shiratori, A., and Sudo, H., and Hosoiri, T.,
- and Kaku, Y., and Kodaira, H., and Kondo, H., and Sugawara, M., and Takahashi, M.,

556	and Kanda, K., and Yokoi, T., and Furuya, T., and Kikkawa, E., and Omura, Y., and
557	Abe, K., and Kamihara, K., and Katsuta, N., and Sato, K., and Tanikawa, M., and
558	Yamazaki, M., and Ninomiya, K., and Ishibashi, T., and Yamashita, H., and Murakawa,
559	K., and Fujimori, K., and Tanai, H., and Kimata, M., and Watanabe, M., and Hiraoka,
560	S., and Chiba, Y., and Ishida, S., and Ono, Y., and Takiguchi, S., and Watanabe, S., and
561	Yosida, M., and Hotuta, T., and Kusano, J., and Kanehori, K., and Takahashi-Fujii, A.,
562	and Hara, H., and Tanase, T.O., and Nomura, Y., and Togiya, S., and Komai, F., and
563	Hara, R., and Takeuchi, K., and Arita, M., and Imose, N., and Musashino, K., and
564	Yuuki, H., and Oshima, A., and Sasaki, N., and Aotsuka, S., and Yoshikawa, Y., and
565	Matsunawa, H., and Ichihara, T., and Shiohata, N., and Sano, S., and Moriya, S., and
566	Momiyama, H., and Satoh, N., and Takami, S., and Terashima, Y., and Suzuki, O., and
567	Nakagawa, S., and Senoh, A., and Mizoguchi, H., and Goto, Y., and Shimizu, F., and
568	Wakebe, H., and Hishigaki, H., and Watanabe, T., and Sugiyama, A., and Takemoto,
569	M., and Kawakami, B., and Yamazaki, M., and Watanabe, K., and Kumagai, A., and
570	Itakura, S., and Fukuzumi, Y., and Fujimori, Y., and Komiyama, M., and Tashiro, H.,
570 571	Itakura, S., and Fukuzumi, Y., and Fujimori, Y., and Komiyama, M., and Tashiro, H., and Tanigami, A., and Fujiwara, T., and Ono, T., and Yamada, K., and Fujii, Y., and
571	and Tanigami, A., and Fujiwara, T., and Ono, T., and Yamada, K., and Fujii, Y., and
571 572	and Tanigami, A., and Fujiwara, T., and Ono, T., and Yamada, K., and Fujii, Y., and Ozaki, K., and Hirao, M., and Ohmori, Y., and Kawabata, A., and Hikiji, T., and
571 572 573	and Tanigami, A., and Fujiwara, T., and Ono, T., and Yamada, K., and Fujii, Y., and Ozaki, K., and Hirao, M., and Ohmori, Y., and Kawabata, A., and Hikiji, T., and Kobatake, N., and Inagaki, H., and Ikema, Y., and Okamoto, S., and Okitani, R., and
571 572 573 574	and Tanigami, A., and Fujiwara, T., and Ono, T., and Yamada, K., and Fujii, Y., and Ozaki, K., and Hirao, M., and Ohmori, Y., and Kawabata, A., and Hikiji, T., and Kobatake, N., and Inagaki, H., and Ikema, Y., and Okamoto, S., and Okitani, R., and Kawakami, T., and Noguchi, S., and Itoh, T., and Shigeta, K., and Senba, T., and
571 572 573 574 575	and Tanigami, A., and Fujiwara, T., and Ono, T., and Yamada, K., and Fujii, Y., and Ozaki, K., and Hirao, M., and Ohmori, Y., and Kawabata, A., and Hikiji, T., and Kobatake, N., and Inagaki, H., and Ikema, Y., and Okamoto, S., and Okitani, R., and Kawakami, T., and Noguchi, S., and Itoh, T., and Shigeta, K., and Senba, T., and Matsumura, K., and Nakajima, Y., and Mizuno, T., and Morinaga, M., and Sasaki, M.,
571 572 573 574 575 576	and Tanigami, A., and Fujiwara, T., and Ono, T., and Yamada, K., and Fujii, Y., and Ozaki, K., and Hirao, M., and Ohmori, Y., and Kawabata, A., and Hikiji, T., and Kobatake, N., and Inagaki, H., and Ikema, Y., and Okamoto, S., and Okitani, R., and Kawakami, T., and Noguchi, S., and Itoh, T., and Shigeta, K., and Senba, T., and Matsumura, K., and Nakajima, Y., and Mizuno, T., and Morinaga, M., and Sasaki, M., and Togashi, T., and Oyama, M., and Hata, H., and Watanabe, M., and Komatsu, T.,
571 572 573 574 575 576 577	and Tanigami, A., and Fujiwara, T., and Ono, T., and Yamada, K., and Fujii, Y., and Ozaki, K., and Hirao, M., and Ohmori, Y., and Kawabata, A., and Hikiji, T., and Kobatake, N., and Inagaki, H., and Ikema, Y., and Okamoto, S., and Okitani, R., and Kawakami, T., and Noguchi, S., and Itoh, T., and Shigeta, K., and Senba, T., and Matsumura, K., and Nakajima, Y., and Mizuno, T., and Morinaga, M., and Sasaki, M., and Togashi, T., and Oyama, M., and Hata, H., and Watanabe, M., and Komatsu, T., and Mizushima-Sugano, J., and Satoh, T., and Shirai, Y., and Takahashi, Y., and
571 572 573 574 575 576 577 578	and Tanigami, A., and Fujiwara, T., and Ono, T., and Yamada, K., and Fujii, Y., and Ozaki, K., and Hirao, M., and Ohmori, Y., and Kawabata, A., and Hikiji, T., and Kobatake, N., and Inagaki, H., and Ikema, Y., and Okamoto, S., and Okitani, R., and Kawakami, T., and Noguchi, S., and Itoh, T., and Shigeta, K., and Senba, T., and Matsumura, K., and Nakajima, Y., and Mizuno, T., and Morinaga, M., and Sasaki, M., and Togashi, T., and Oyama, M., and Hata, H., and Watanabe, M., and Komatsu, T., and Mizushima-Sugano, J., and Satoh, T., and Shirai, Y., and Takahashi, Y., and Nakagawa, K., and Okumura, K., and Nagase, T., and Nomura, N., and Kikuchi, H.,

582	(22)	Aihara, H., Nakagawa, T., Mizusaki, H., Yoneda, M., Kato, M., Doiguchi, M.,
583		Imamura, Y., Higashi, M., Ikura, T., Hayashi, T., Kodama, Y., Oki, M., Nakayama, T.,
584		Cheung, E., Aburatani, H., Takayama, K.I., Koseki, H., Inoue, S., Takeshima, Y., and
585		Ito, T. (2016) Histone H2A T120 Phosphorylation Promotes Oncogenic Transformation
586		via Upregulation of Cyclin D1. Mol Cell. 64, 176-188
587	(23)	Ichise, M., Sakoori, K., Katayama, K.I., Morimura, N., Yamada, K., Ozawa, H.,
588		Matsunaga, H., Hatayama, M., and Aruga, J. (2022) Leucine-Rich Repeats and
589		Transmembrane Domain 2 Controls Protein Sorting in the Striatal Projection System
590		and Its Deficiency Causes Disturbances in Motor Responses and Monoamine
591		Dynamics. Frontiers in molecular neuroscience. 15, 856315
592	(24)	Godard, T., Deslandes, E., Lebailly, P., Vigreux, C., Sichel, F., Poul, J.M., and
593		Gauduchon, P. (1999) Early detection of staurosporine-induced apoptosis by comet and
594		annexin V assays. Histochem Cell Biol. 112, 155-161
595	(25)	Chae, H.J., Kang, J.S., Byun, J.O., Han, K.S., Kim, D.U., Oh, S.M., Kim, H.M., Chae,
596		S.W., and Kim, H.R. (2000) Molecular mechanism of staurosporine-induced apoptosis
597		in osteoblasts. Pharmacol Res. 42, 373-381
598	(26)	Lau, L.F., and Nathans, D. (1987) Expression of a set of growth-related immediate early
599		genes in BALB/c 3T3 cells: coordinate regulation with c-fos or c-myc. Proc Natl Acad
600		<i>Sci U S A</i> . 84 , 1182-1186
601	(27)	Bae, M.H., Jeong, C.H., Kim, S.H., Bae, M.K., Jeong, J.W., Ahn, M.Y., Bae, S.K.,
602		Kim, N.D., Kim, C.W., Kim, K.R., and Kim, K.W. (2002) Regulation of Egr-1 by
603		association with the proteasome component C8. Biochim Biophys Acta. 1592, 163-167
604	(28)	Evan, G.I., Brown, L., Whyte, M., and Harrington, E. (1995) Apoptosis and the cell
605		cycle. Curr Opin Cell Biol. 7, 825-834
606	(29)	Meikrantz, W., and Schlegel, R. (1995) Apoptosis and the cell cycle. J Cell Biochem.
607		58 , 160-174 26

608	(30)	O'Connor, L., Huang, D.C., O'Reilly, L.A., and Strasser, A. (2000) Apoptosis and cell
609		division. Curr Opin Cell Biol. 12, 257-263
610	(31)	Gross, P., Pfitzer, E.A., Tolker, E., Babyak, M.A., and Kaschak, M. (1965)
611		Experimental Emphysema: Its Production with Papain in Normal and Silicotic Rats.
612		Arch Environ Health. 11, 50-58
613	(32)	Campbell, E.J. (2000) Animal models of emphysema: the next generations. J Clin
614		Invest. 106, 1445-1446
615	(33)	Leberl, M., Kratzer, A., and Taraseviciene-Stewart, L. (2013) Tobacco smoke induced
616		COPD/emphysema in the animal model-are we all on the same page? Front Physiol. 4,
617		91
618	(34)	Williams, B., Mancia, G., Spiering, W., Agabiti Rosei, E., Azizi, M., Burnier, M.,
619		Clement, D.L., Coca, A., de Simone, G., Dominiczak, A., Kahan, T., Mahfoud, F.,
620		Redon, J., Ruilope, L., Zanchetti, A., Kerins, M., Kjeldsen, S.E., Kreutz, R., Laurent,
621		S., Lip, G.Y.H., McManus, R., Narkiewicz, K., Ruschitzka, F., Schmieder, R.E.,
622		Shlyakhto, E., Tsioufis, C., Aboyans, V., Desormais, I., and Group, E.S.C.S.D. (2018)
623		2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J.
624		39 , 3021-3104
625	(35)	Whelton, P.K., Carey, R.M., Aronow, W.S., Casey, D.E., Jr., Collins, K.J., Dennison
626		Himmelfarb, C., DePalma, S.M., Gidding, S., Jamerson, K.A., Jones, D.W.,
627		MacLaughlin, E.J., Muntner, P., Ovbiagele, B., Smith, S.C., Jr., Spencer, C.C., Stafford,
628		R.S., Taler, S.J., Thomas, R.J., Williams, K.A., Sr., Williamson, J.D., and Wright, J.T.,
629		Jr. (2018) 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA
630		Guideline for the Prevention, Detection, Evaluation, and Management of High Blood
631		Pressure in Adults: Executive Summary: A Report of the American College of
632		Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.
633		Hypertension. 71, 1269-1324

634	(36)	Kim, S.H., Henry, E.C., Kim, D.K., Kim, Y.H., Shin, K.J., Han, M.S., Lee, T.G., Kang,
635		J.K., Gasiewicz, T.A., Ryu, S.H., and Suh, P.G. (2006) Novel compound 2-methyl-2H-
636		pyrazole-3-carboxylic acid (2-methyl-4-o-tolylazo-phenyl)-amide (CH-223191)
637		prevents 2,3,7,8-TCDD-induced toxicity by antagonizing the aryl hydrocarbon receptor.
638		Mol Pharmacol. 69, 1871-1878
639	(37)	Boitano, A.E., Wang, J., Romeo, R., Bouchez, L.C., Parker, A.E., Sutton, S.E., Walker,
640		J.R., Flaveny, C.A., Perdew, G.H., Denison, M.S., Schultz, P.G., and Cooke, M.P.
641		(2010) Aryl hydrocarbon receptor antagonists promote the expansion of human
642		hematopoietic stem cells. Science. 329, 1345-1348
643	(38)	Tanner, L., and Single, A.B. (2020) Animal Models Reflecting Chronic Obstructive
644		Pulmonary Disease and Related Respiratory Disorders: Translating Pre-Clinical Data
645		into Clinical Relevance. J Innate Immun. 12, 203-225
646	(39)	Chen, L., Luo, L., Kang, N., He, X., Li, T., and Chen, Y. (2020) The Protective Effect
647		of HBO1 on Cigarette Smoke Extract-Induced Apoptosis in Airway Epithelial Cells. Int
648		J Chron Obstruct Pulmon Dis. 15, 15-24
649	(40)	Rodgman, A., and Perfetti, T.A. (2013) The Chemical Components of Tobacco and
650		Tobacco Smoke, CRC Press,
651	(41)	Gunduz, I., Kondylis, A., Jaccard, G., Renaud, J.M., Hofer, R., Ruffieux, L., and
652		Gadani, F. (2016) Tobacco-specific N-nitrosamines NNN and NNK levels in cigarette
653		brands between 2000 and 2014. Regul Toxicol Pharmacol. 76, 113-120
654	(42)	Hoffmann, D., and Hoffmann, I. (1998) Tobacco smoke components. Beiträge zur
655		Tabakforschung International. 18, 49-52
656	(43)	Humans, I.W.G.o.t.E.o.C.R.t. (2007) Smokeless tobacco and some tobacco-specific N-
657		nitrosamines. IARC Monogr Eval Carcinog Risks Hum. 89, 1-592
658	(44)	Safe, S., Lee, S.O., and Jin, U.H. (2013) Role of the aryl hydrocarbon receptor in
659		carcinogenesis and potential as a drug target. <i>Toxicol Sci.</i> 135 , 1-16 28

660	(45)	Mulero-Navarro, S., and Fernandez-Salguero, P.M. (2016) New Trends in Aryl
661		Hydrocarbon Receptor Biology. Front Cell Dev Biol. 4, 45
662		

665 *Table 1. Chemical compounds used in experiments summarized in Figure 4.*

666

- 667 Table 2. Drugs used in the experiments summarized in Figure 5.
- 668
- 669 Figure legends
- 670 Figure 1. 3R4F extract, but not Ploom TECH or Ploom TECH+ extracts, increased EGR1
- 671 *expression by 6 hours and induced cell apoptosis over time.*
- 672 (A–H) BEAS-2B cells were treated with 0.5% DMSO (A, B), 0.5% Ploom TECH
- 673 extract (C, D), 0.5% Ploom TECH+ extract (E, F), or 0.5% 3R4F extract (G, H). After 6 or 24
- hours, the cells were analyzed by flow cytometer. Y-axis, TUNEL assay using FITC; X-axis,
- detection with anti-EGR1 antibody and anti-mouse antibody labeled with Alexa Fluor[™] 647.
- 676 (I–P) BEAS-2B cells were treated with 1 μM staurosporine (J), 0.5% 3R4F extract (K,
- 677 L), 0.3% 3R4F extract (M, N), 0.1% 3R4F extract (O, P), or untreated (I). After 6 or 24 hours,
- 678 cells were analyzed by an annexin V–PE assay and by flow cytometer.
- 679 PT, Ploom Tech; PT+, Ploom Tech+.
- 680
- 681 Figure 2. 3R4F induces an early EGR1 response.
- 682 (A) BEAS-2B cells treated with 0.5% DMSO or 0.5% 3R4F were analyzed by western
- blotting for EGR1 and histones at the time points indicated. Both long and short exposure
- 684 conditions are shown for EGR1.
- 685 (B, C) pCDNA3 (B), or pCMV-SPORT6-EGR1 (C) were transfected into BEAS-2B
- 686 cells. After 48 hours, the cells were subjected to flow cytometer analysis. Y-axis, TUNEL assay
- using FITC; X-axis, detection with anti-EGR1 antibody and anti-mouse antibody labeled with
- $688 \qquad \text{Alexa Fluor}^{\text{TM}} 647.$
- 689

690 Figure 3. 3R4F induces apoptosis through AHR regulation of EGR1.

691	(A) Knockdown of EGR1 and AHR, using two different siRNAs for each gene, was
692	performed using BEAS-2B cells. After 24 hours, 1% 3R4F extract was added and incubated for
693	another 24 hours. Forty-eight hours after knockdown, cell extracts were analyzed by RT-qPCR.
694	Target gene expression levels were normalized to GAPDH expression.
695	(B) Knockdown of EGR1 and AHR using two different siRNAs for each gene was
696	performed using BEAS-2B cells. After 24 hours, 0.1% 3R4F extract was added and incubated
697	for another 24 hours. Forty-eight hours after knockdown, the cells were analyzed using a flow
698	cytometer after performing an annexin V-PE assay. The annexin V-PE mean and median
699	fluorescence intensities are shown.
700	(C) Knockdown of EGR1 and AHR using two different siRNAs for each gene was
701	performed using BEAS-2B cells, as indicated. After 48 hours, 0.1% DMSO or 0.1% 3R4F
702	extract was added, and that time point was designated as day 0. The cells were counted on day
703	0 and day 3.
704	(D)The relative increase in cell count was calculated by dividing the number of cells
705	on day 3 by the number of cells on day 0.
706	(B, D) One-way ANOVA, followed by Dunnett's test. *P<0.05, **P<0.01,
707	****P<0.0001.
708	
709	Figure 4. 3R4F extract induces destruction of the alveolar wall and apoptosis of alveolar
710	epithelial cells in BALF.
711	(A–H) H&E staining of 6% DMSO (A, B), 6% Ploom TECH extract (C, D), 6%
712	Ploom TECH+ extract (E, F), or 6% 3R4F extract (G, H) injected mice lung.
713	(I-X) Cells in BALF of 6% DMSO (I, M, Q, U), 6% Ploom TECH extract (J, N, R,
714	V), 6% Ploom TECH+ extract (K, O, S, W), or 6% 3R4F extract (L, P, T, X) injected mice were
715	stained with Hoechst (I–L) and Annexin V-PE (M–P) stains. After fluorescence observation, the
716	cells were stained with May Grunwald-Giemsa (Q–X). The small rectangles within Q, R, S, and

717 T are enlarged and shown in U, V, W, and X, respectively. Scale bars, 50 µm (A–T), 10 µm (U– 718 X). Scale bars, 50 µm (H, P, T), 10 µm (X). (Y) The areas of 50 randomly selected alveoli were 719 calculated using ImageJ software. The images used for analysis are shown in Fig. S3A–D. (Z) 720 The integrated density was calculated using ImageJ software. The images used for analysis are 721 shown in Fig. S4A–P in addition to I–P. **P<0.01, ****P<0.0001. 722 723 Figure 5. 1-aminoanthracene and 2-aminoanthracene, both of which may be components of 724 the 3R4F extract, induce apoptosis in BEAS-2B cells. 725 (A, B) Compound (10 μ M) or the same volume of control (MeOH or DMSO) was 726 added to BEAS-2B cells (day 0). For each well, cells were counted on days 0 and 3, and the

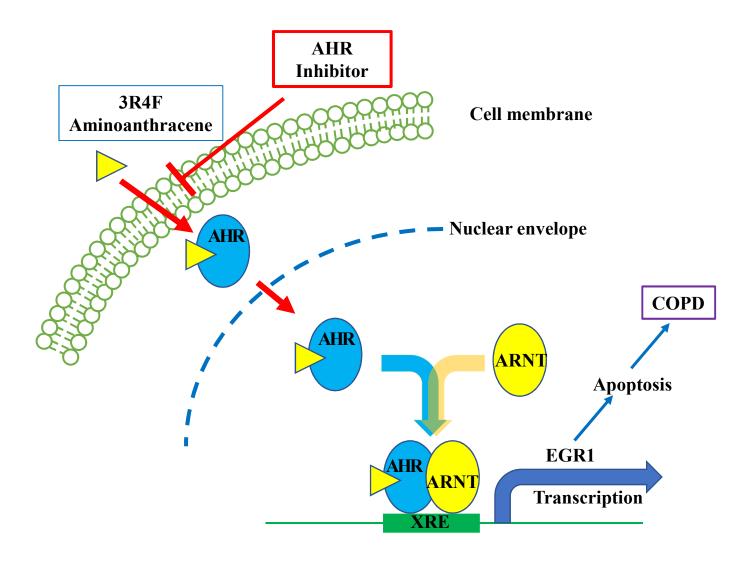
relative cell count growth was calculated by dividing the number of cells on day 3 by the
number of cells on day 0.

- (C, D) Compound (10 μM) or the same volume of control (MeOH or DMSO) was
 added as indicated. After one hour, the cell extracts were analyzed by RT-qPCR. Target gene
 expression levels were normalized to *GAPDH* expression.
- 732 (E–L) BEAS-2B cells were plated at a concentration of 2.0 x 10⁵ cells/well in 6-well
- plates. On the next day, BEAS-2B cells were untreated (E) or treated with 0.1% DMSO (F),
- 734 0.1% 3R4F extract (G), or 10 µM compound (H–L). After 24 hours, the cells were analyzed
- vising the annexin V–PE assay and then by flow cytometer.
- 736 Control*, MeOH; Control**, DMSO. (A–C) One-way ANOVA followed by
- 737 Dunnett's test. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
- 738 NNN, *N*-nitrosonornicotine; NNK, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone.
- 739
- Figure 6. The AHR antagonist SR1 inhibits apoptosis induced by 3R4F extract in BEAS-2B
 cells.

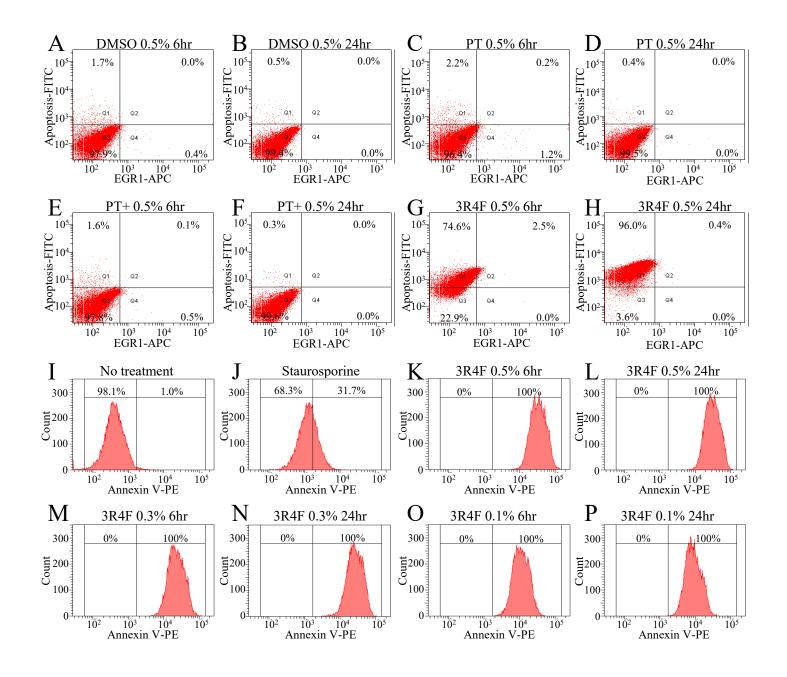
742	(A, B) 3R4F (0.1%) and 100 nM compound or the same volume of control (DMSO)
743	were added to each well (on day 0) as indicated. For each well, the cells were counted on
744	days 0 and 3, and the relative cell count was calculated by dividing the number of cells on day
745	3 by the number of cells on day 0.
746	(C) 3R4F (0.1%) and 100 nM compounds or the same volume of control (DMSO)
747	were added to BEAS-2B cells, as indicated. One hour later, cell extracts were analyzed by RT-
748	qPCR. EGR1 expression levels were normalized to GAPDH expression.
749	(D–G) BEAS–2B cells were treated with 0.1% DMSO (D), 0.1% 3R4F extract (E),
750	0.1% 3R4F extract and 1 μ M CH-223191 (F), or 0.1% 3R4F extract and 1 μ M SR1 (G), and
751	24 h later, an annexin V-PE assay was performed and analyzed by flow cytometer. The mean
752	and median annexin V-PE values shown in E, F, and G are plotted in H.
753	(I) 3R4F (0.1%), 1 μ M CH-223191, or 1 μ M SR1 was added to BEAS-2B cells, as
754	indicated. One hour later, cell extracts were analyzed by RT-qPCR. EGR1 expression levels
755	were normalized to GAPDH expression.
756	Control**, DMSO.
757	(A–C) One-way analysis of variance (ANOVA), followed by Dunnett's test.
758	**P<0.01, ***P<0.001, ****P<0.0001.
759	FICZ, 6-formylindolo[3,2-b] carbazole; 5, 6-DMB, 5,6-dimethylbenzimidazole; propranolol,
760	propranolol hydrochloride; celiprolol, celiprolol hydrochloride.
761	
762	Figure 7. Aryl hydrocarbons contained in CS induce EGR1 expression via the AHR,
763	resulting in apoptosis and COPD.
764	Aryl hydrocarbons, which are components of CS but present at lower levels in HNB products,
765	bind to the AHR, possibly forming a heterodimer with the AHR nuclear translocator (ARNT)
766	(11, 44, 45), resulting in response-element binding and EGR1 expression. EGR1 expression

plays a role in apoptosis and subsequent COPD. This pathway can be blocked by AHRblockers, such as SR1.

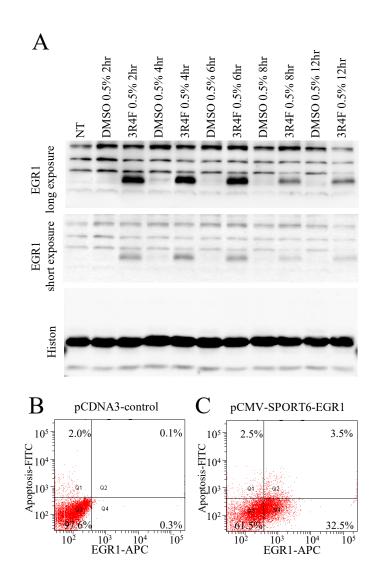
769

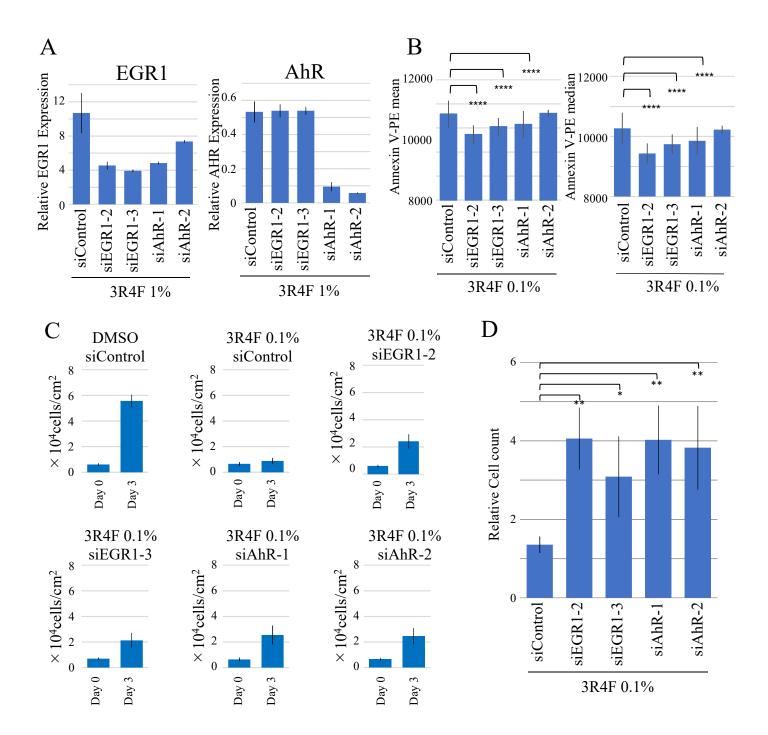

770 Supplementary Figure 1. Aryl hydrocarbons contained in CS induce EGR1 expression via the

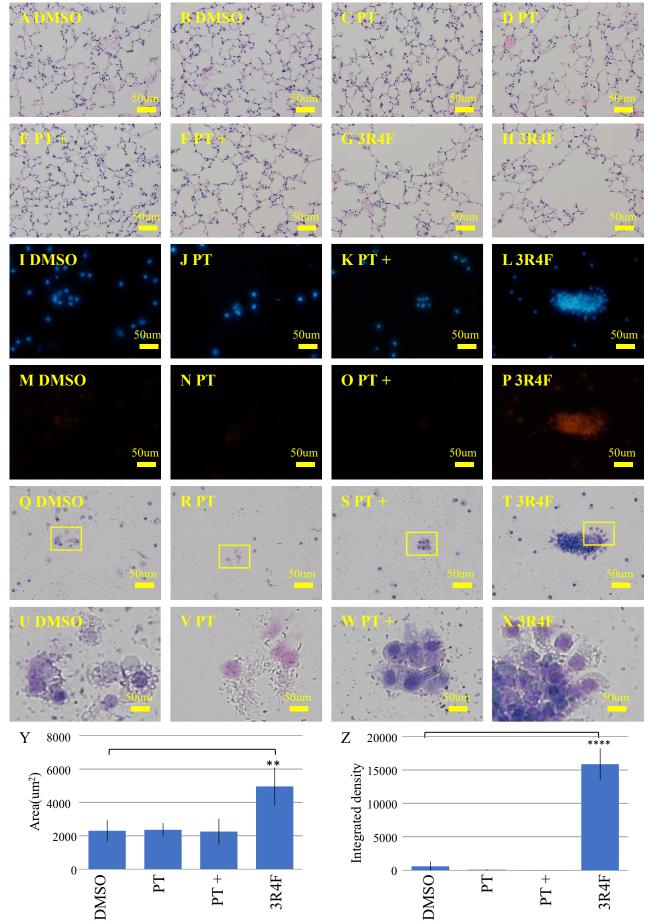
771 *AHR*, resulting in apoptosis and COPD.


772 (A-E) Knockdown of EGR1 and AHR using two different siRNAs for each 773 gene was performed using BEAS-2B cells, as indicated. After 24 hours, 0.1% 3R4F extract 774 was added and incubated for another 24 hours. Forty-eight hours after knockdown, the cells 775 were analyzed using a flow cytometer after performing an annexin V–PE assay. The black 776 line indicates 1×10^4 , and the blue line indicates the median. (F) 3R4F(0.1-0.5%) or the same 777 volume of control (DMSO) was added to each well (on day 0), as indicated. The cells were 778 counted on days 0 and 3, and the relative cell count was calculated by dividing the number of 779 cells on day 3 by the number of cells on day 0. (G) 3R4F (0.1–0.5%) or the same volume of 780 control (DMSO) was added to BEAS-2B cells, as indicated. After one hour, the cell extracts 781 were analyzed by RT-qPCR. EGR1 expression levels were normalized to GAPDH expression. 782 783 Supplementary Figure 2. The images used for analysis in Figure 4Y. 784

785 Supplementary Figure 3. The images used for analysis in Figure 4Z.


Graphical Abstract


Figure 1 Hattori et al


Figure 2 Hattori et al

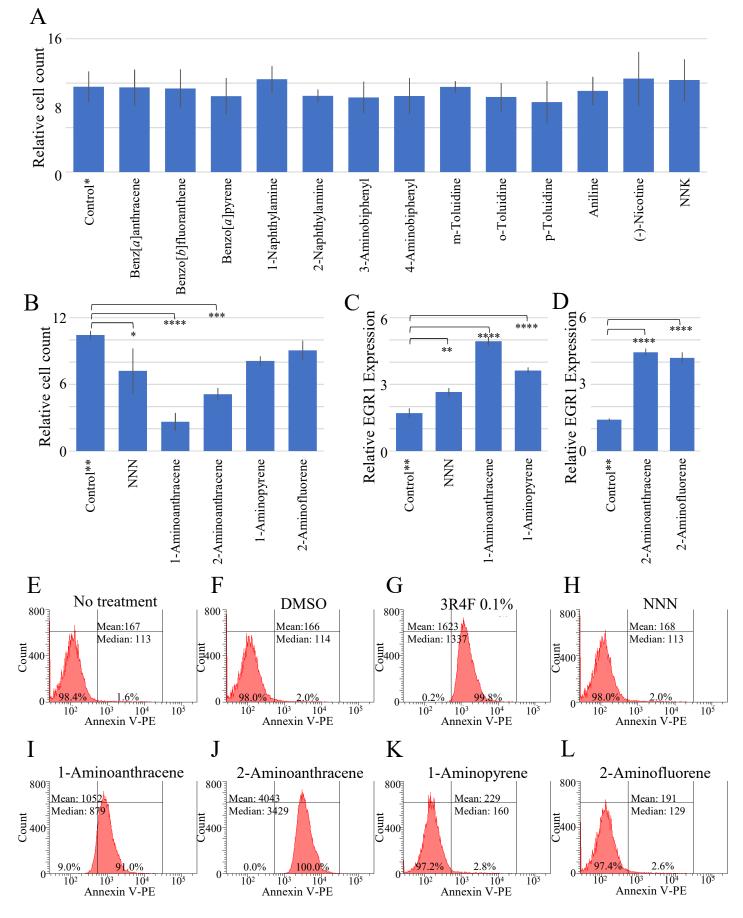


Figure 4 Hattori et al

Figure 5 Hattori et al

Figure 6 Hattori et al

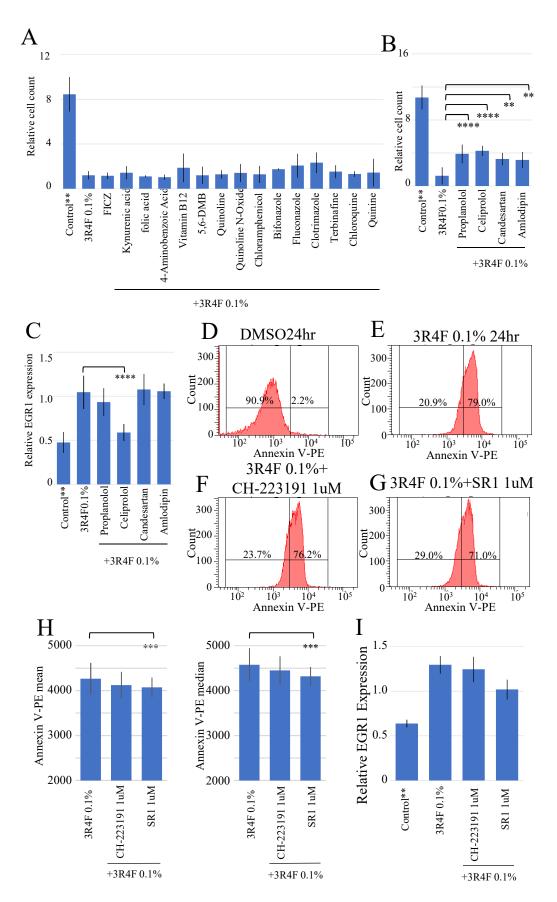
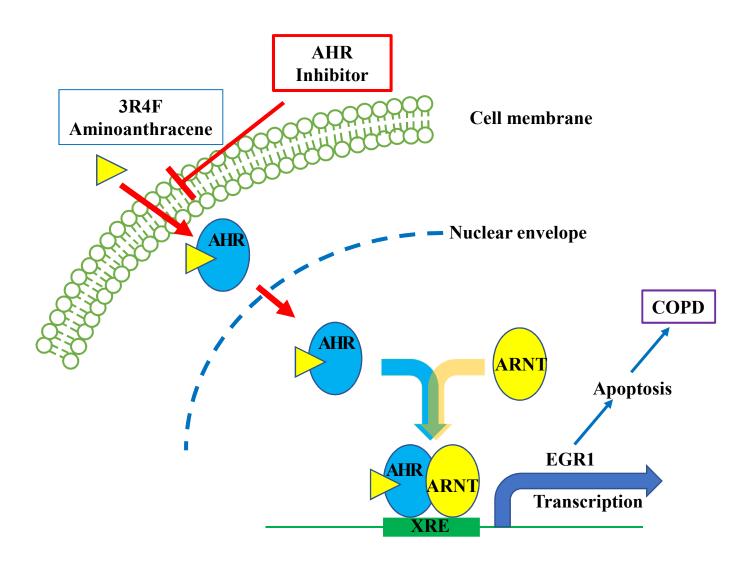
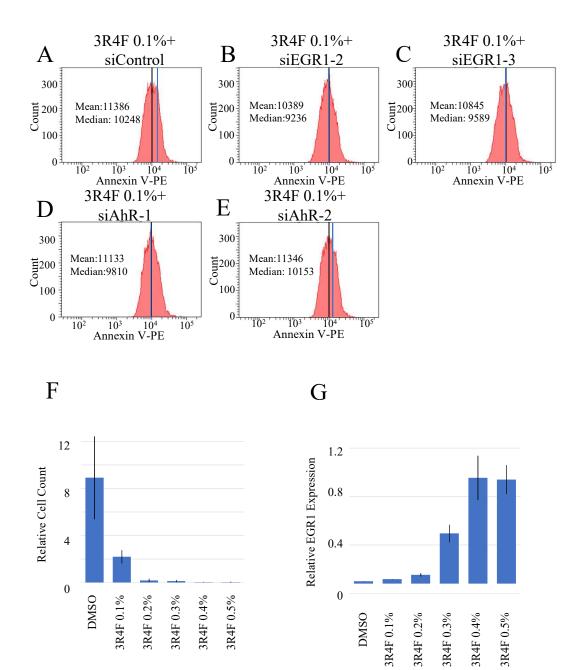
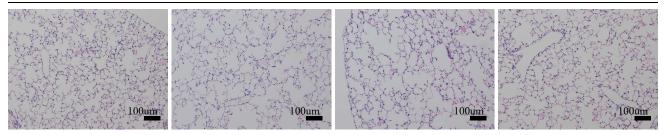
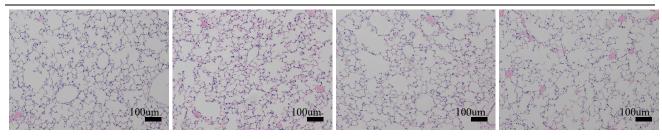




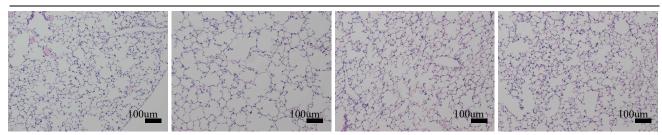
Figure 7

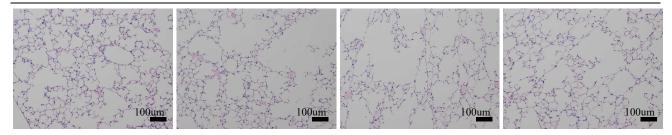


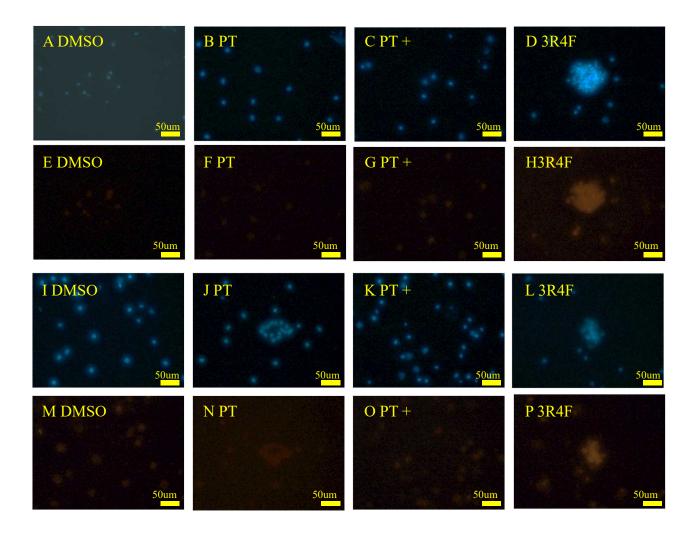
Supplementary figure 1 Hattori et al



Supplementary figure 2 Hattori et al


A DMSO


B PT


CPT+

D 3R4F

Supplementary figure 3 Hattori et al

	Chemical compound	solvent
1	Benz[a]anthracene standard	Acetone
2	Benzo[b]fluoranthene	Acetone
3	Benzo[a]pyrene standard	Acetone
4	1-Naphthylamine	Methanol
5	2-Naphthylamine	acetonitrile
6	3-Aminobiphenyl	Methanol
7	4-Aminobiphenyl	Methanol
8	m-Toluidine	Methanol
9	o-Toluidine	Methanol
10	p-Toluidine	Methanol
11	Aniline	Methanol
12	(-)-Nicotine solution	Methanol
13	N-Nitrosonornicotine	DMSO
14	4-(methylnitrosamino)- 1-(3-pyridyl)-1-butanone	Methanol
15	Pentobarbital	Methanol
16	4-Nitroquinoline-1-oxide	DMSO
17	1-Aminoanthracene	DMSO
18	2-Aminoanthracene	DMSO
19	1-Aminopyrene	DMSO
20	2-Aminofluorene	DMSO

Table 1. Chemical compounds used in experiments summarized in Figure 4.

	drug	solvent
1	6-Formylindolo[3,2-b]carbazole	DMSO
2	Kynurenic acid	DMSO
3	Folic acid	DMSO
4	4-Aminobenzoic acid	DMSO
5	Vitamin B12	Water
6	5, 6-Dimethylbenzimidazole	DMSO
7	Quinoline	Methanol
8	Quinoline N-Oxide	DMSO
9	Chloramphenicol	DMSO
10	Bifonazole	DMSO
11	Fluconazole	DMSO
12	Clotrimazole	DMSO
13	Terbinafine	DMSO
14	Chloroquine Diphosphate	Water
15	(-)-Quinine Sulfate Dihydrate	Methanol
16	Proplanolol Hydrochloride	DMSO
17	Celiprolol Hydrochloride	DMSO
18	Candesartan	DMSO
19	Amlodipine	DMSO

Table 2. Drugs used in the experiments summarized in Figure 5.