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Abstract: We give an explicit formula for the p-Frobenius number of triples associated with Diophan-
tine Equations x2 − y2 = zr (r ≥ 2), that is, the largest positive integer that can only be represented in
p ways by combining the three integers of the solutions of Diophantine equations x2 − y2 = zr. This
result is also a generalization because if r = 2 and p = 0, the (0-)Frobenius number of the Pythagorean
triple has already been given. To find p-Frobenius numbers, we use geometrically easy to understand
figures of the elements of the p-Apéry set, which exhibits symmetric appearances.
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1. Introduction

Diophantine equations are a fundamental part and one of the oldest branches of num-
ber theory. The main study is of polynomial equations or systems of equations, particularly
in integers. Though there are many aspects and applications (see, e.g., [1–3]), Diophantine
equations are used to characterize certain problems in Diophantine approximations. The
study of the Frobenius problem of Pythagorean triples is important in the fields of number
theory and discrete mathematics. This problem has important applications in cryptography,
computer science, combinatorics, and other fields. For example, in cryptography, it is
related to the discrete logarithm problem and elliptic curve cryptography. In computer
science, it is related to algorithm design and complexity analysis. In combinatorics, it is
related to many problems in graph theory and discrete mathematics. Therefore, studying
the Pythagorean Frobenius problem not only helps to understand the basic problems of
number theory and discrete mathematics but also provides an important mathematical
foundation for practical applications.

In [4,5], we computed upper and lower bounds for the approximation of hyperbolic
functions at points 1/s (s = 1, 2, . . .) by rationals x/y such that x, y, and z form Pythagorean
triples. In [6,7], we considered Diophantine approximations x/y to values ξ of hyperbolic
functions, where (x, y, z) is the solution of more Diophantine equations, including x2 + y2 = z2.

In both physics and biology, both the Pythagorean triples and the Pythagorean the-
orem have some applications. In physics, the Pythagorean triples and the Pythagorean
theorem can be applied to describe problems in mechanics and kinematics. For example,
when studying the trajectory, velocity, and acceleration of an object, the Pythagorean the-
orem can be used to calculate the relationship between the position and velocity of an
object at different points in time. In addition, the Pythagorean theorem can also be used
to analyze the path and interference effects of waves when describing wave propagation
and interference. In biology, the Pythagorean triples and the Pythagorean theorem can be
applied to describe the morphology and structure of living organisms. For example, when
studying the bone structure, organ layout, and neural network of an object, the Pythagorean
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theorem and the Pythagorean triples can be used to analyze the relationship between them.
In addition, the Pythagorean theorem can be used to describe the proportions and associa-
tions between different parts during the growth and development of organisms. Overall,
the Pythagorean triples and the Pythagorean theorem can help scientists understand and
describe the motion, morphology, and structure of objects in physics and biology, thus
helping to study and explain various phenomena and laws.

For integer k ≥ 2, consider a set of positive integers A = {a1, . . . , ak} with
gcd(A) = gcd(a1, . . . , ak) = 1. Finding the number of non-negative integral representa-
tions x1, x2, . . . , xk, denoted by d(n; A) = d(n; a1, a2, . . . , ak), to a1x1 + a2x2 + . . . + akxk = n
for a given positive integer n is one of the most important and interesting topics. This
number is often called the denumerant and is equal to the coefficient of xn in 1/(1 −
xa1)(1 − xa2) · · · (1 − xak ) ([8]). Sylvester [9] and Cayley [10] showed that d(n; a1, a2, . . . , ak)
can be expressed as the sum of a polynomial in n of degree k − 1 and a periodic function of
period a1a2 · · · ak. For two variables, a formula for d(n; a1, a2) is obtained in [11]. For three
variables in the pairwise coprime case d(n; a1, a2, a3), in [12], the periodic function part is
expressed in terms of trigonometric functions.

For a non-negative integer p, define Sp and Gp by

Sp(A) = {n ∈ N0|d(n; A) > p}

and
Gp(A) = {n ∈ N0|d(n; A) ≤ p}

respectively, satisfying Sp ∪ Gp = N0, which is the set of non-negative integers. The set Sp
is called a p-numerical semigroup because S(A) = S0(A) is a usual numerical semigroup.
Gp is the set of p-gaps. Define gp(A) and np(A) by

gp(A) = max
n∈Gp(A)

n, and np(A) = ∑
n∈Gp(A)

1,

and these are called the p-Frobenius number and the p-Sylvester number (or p-genus). When
p = 0, g(A) = g0(A) and n(A) = n0(A) are the original Frobenius number and Sylvester
number (or genus), respectively. Finding such values is one of the crucial matters in
the Diophantine problem of Frobenius. More detailed descriptions of the p-numerical
semigroups and their symmetric properties can be found in [13].

The Frobenius problem (also known as the coin exchange problem, postage stamp
problem, or Chicken McNugget problem) has a long history and is one of the popular
problems that has attracted the attention of experts as well as amateurs. For two variables
A = {a, b}, it is known that

g(a, b) = (a − 1)(b − 1)− 1 and n(a, b) =
(a − 1)(b − 1)

2

(see Refs. [8,14]). For three or more variables, the Frobenius number cannot be given by any
set of closed formulas which can be reduced to a finite set of certain polynomials ([15]). For
three variables, various algorithms have been devised for finding the Frobenius number.
For example, in [16], the Frobenius number is uniquely determined by six positive integers
that are the solution to a system of three polynomial equations. In [17], a general algorithm
is given by using a 3 × 3 matrix. Nevertheless, explicit closed formulas have been found
only for some special cases, including arithmetic, geometric, Mersenne, repunits, and
triangular (see [18–20] and references therein). We are interested in finding explicit closed
forms, which is one of the most crucial matters in the Frobenius problem. Our method has
an advantage in terms of visually grasping the elements of the Apéry set, and it is more
useful to obtain more related values, including th egenus (Sylvester number), Sylvester
sum [21], weighted power Sylvester sum [22–24], and so on.
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We are interested in finding a closed or explicit form for the p-Frobenius number,
which is more difficult when p > 0. For three or more variables, no concrete examples had
been found until recently, when the first author succeeded in giving the p-Frobenius number
as a closed-form expression for the triangular number triplet ([25]) for repunits ([26,27]),
Fibonacci triplets ([28]), Jacobsthal triplets ([29,30]), and arithmetic triplets ([31]).

When p = 0, it is the original Frobenius number in the famous Diophantine problem
of Frobenius. We also obtain closed forms for the number of positive integers and the
largest positive integer that can be represented in only p ways by combining the three
integers of the Diophantine triple.

In this paper, we study the numerical semigroup of the triples (x, y, z) satisfying the
Diophantine equation x2 − y2 = zr (r ≥ 2). When r = 2 and p = 0, the Frobenius number of
the Pythagorean triple is given in [32,33]. The Frobenius number of a little-modified triple
is studied in [34]. To find p-Frobenius numbers, we use geometrically easy to understand
figures of the elements of the p-Apéry set.

2. Preliminaries

We introduce the p-Apéry set (see [35]) below in order to obtain the formulas for gp(A)
and np(A). Without loss of generality, we assume that a1 = min(A).

Definition 1. Let p be a non-negative integer. For a set of positive integers A = {a1, a2, . . . , aκ}
with gcd(A) = 1 and a1 = min(A), we denote by

App(A) = App(a1, a2, . . . , aκ) = {m(p)
0 , m(p)

1 , . . . , m(p)
a1−1},

the p-Apéry set of A, where each positive integer m(p)
i (0 ≤ i ≤ a1 − 1) satisfies the following

conditions:

(i)m(p)
i ≡ i (mod a1), (ii)m(p)

i ∈ Sp(A), (iii)m(p)
i − a1 ̸∈ Sp(A).

Note that m(0)
0 is defined to be 0.

It follows that for each p,

App(A) ≡ {0, 1, . . . , a1 − 1} (mod a1).

When k ≥ 3, it is hard to find any explicit form of gp(A) as well as np(A). Never-
theless, the following convenient formulas are known (for a more general case, see [36]).
Though finding m(p)

j is hard enough in general, we can obtain it for some special sequences
(a1, a2, . . . , ak).

Lemma 1. Let k and p be integers with k ≥ 2 and p ≥ 0. Assume that gcd(a1, a2, . . . , ak) = 1.
We have

gp(a1, a2, . . . , ak) =

(
max

0≤j≤a1−1
m(p)

j

)
− a1, (1)

np(a1, a2, . . . , ak) =
1
a1

a1−1

∑
j=0

m(p)
j − a1 − 1

2
. (2)

Remark 1. When p = 0, the formulas (1) and (2) reduce to the formulas by Brauer and Shock-
ley [37] and Selmer [38], respectively:

g(a1, a2, . . . , ak) =

(
max

1≤j≤a1−1
mj

)
− a1,
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n(a1, a2, . . . , ak) =
1
a1

a1−1

∑
j=0

mj −
a1 − 1

2
,

where mj = m(0)
j (1 ≤ j ≤ a1 − 1) with m0 = m(0)

0 = 0. The formula for the Sylvester sum was
discovered by Tripathi [21]. More general formulas using Bernoulli numbers can be seen in [22].

3. x2 − y2 = zr

For the solution of the Diophantine equation x2 − y2 = zr, we obtain two kinds of
parameterizations. Notice that there are common cases in both. If s ̸≡ t (mod 2), then

(x, y, z) =
(
(s + t)r + (s − t)r

2
,
(s + t)r − (s − t)r

2
, s2 − t2

)
,

where gcd(s, t) = 1. If 2 ∤ t, then

(x, y, z) = (2r−2sr + tr, 2r−2sr − tr, 2st),

where gcd(s, t) = 1.
The case where r = 2 has already been discussed in [32,34]. Namely,

g0(s2 + t2, 2st, s2 − t2) = (s − 1)(s2 − t2) + (s − 1)(2st)− (s2 + t2). (3)

Let r ≥ 2. Then the Frobenius number of this triple is given as follows.

Theorem 1. If s ̸≡ t (mod 2), then

g0

(
(s + t)r + (s − t)r

2
,
(s + t)r − (s − t)r

2
, s2 − t2

)
=

(2s − t − 2)(s + t)r + t(s − t)r

2
− (s2 − t2).

If 2 ∤ t, then

g0(2r−2sr + tr, 2r−2sr − tr, 2st)

= 2r−2(s + 2t − 2)sr − s · tr − 2st.

Remark 2. When r = 2, both formulas in Theorem 1 reduce to that in (3). It is important to see
that when r = 2, two kinds of parameterizations depend upon which of s2 − t2 and 2st is smaller.

3.1. When s ̸≡ t (mod 2)

For convenience, we put

x :=
(s + t)r + (s − t)r

2
, y :=

(s + t)r − (s − t)r

2
, z := s2 − t2. (4)

Since x, y, z > 0 and gcd(x, y, z) = 1, we see that s > t and gcd(s, t) = 1. Note that
x > y > z when r ≥ 3. When r = 2, we assume that y > z.

The elements of the (0-)Apéry set are given as in Table 1, where each point (Y, X)
corresponds to the expression Yy + Xx and the area of the (0-)Apéry set is equal to s2 − t2.
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Table 1. Ap0(x, y, z) when s ̸≡ t (mod 2).

(0, 0) · · · (s − t − 1, 0) (s − t, 0) · · · · · · (s − 1, 0)
...

...
...

...
(0, s − t − 1) · · · (s − t − 1, s − t − 1) (s − t, s − t − 1) · · · · · · (s − 1, s − t − 1)
(0, s − t) · · · (s − t − 1, s − t)

...
...

...
...

(0, s − 1) · · · (s − t − 1, s − 1)

Since

sy − tx = zt
⌊r/2⌋

∑
j=1

(
r − 1
2j − 1

)
sr−2jt2j−2, (5)

we have sy ≡ tx (mod z) and sy > tx. Therefore, the sequence {ℓy (mod z)}z−1
ℓ=0 can be

arranged as follows.
[Step 1]
After the row of the longer term

(0, X), (1, X), . . . , (s − 1, X) (0 ≤ X ≤ s − t − 1)

with length s, by increasing by t in the vertical direction, we move to the row

(0, X + t), (1, X + t), . . .

because sy ≡ tx (mod z). If it is still in the longer term, we repeat [Step 1].
[Step 2]
If it reaches the shorter term

(0, X′), (1, X′), . . . , (s − t − 1, X′) (s − t ≤ X′ ≤ s − 1)

with length s − t, by decreasing by (s − t) in the vertical direction, we move to the row

(0, X′ − s + t), (1, X′ − s + t), . . .

because
(s − t)y + (s − t)x = (s − t)(s + t)r ≡ 0 (mod z). (6)

If it is still in the shorter term, we repeat In fact, after the point (s − t − 1, s − t), one moves
back to (0, 0).

Since gcd(s, t) = 1, all the points inside the area in Table 1 appear in the sequence {ℓy
(mod z)}z−1

ℓ=0 just once. Indeed, this sequence is equivalent to the sequence {ℓ (mod z)}z−1
ℓ=0 .

It is clear that one of the values at (s − t − 1, s − 1) or at (s − 1, s − t − 1) takes the
largest element. Since (s − t − 1)y + (s − 1)x −

(
(s − 1)y + (s − t − 1)x = t(s − t)r > 0,

the element at (s − t − 1, s − 1) is the largest in the Apéry set. Hence, by Lemma 1 (1),
we have

g
(
x, y, z

)
= (s − t − 1)y + (s − 1)x − z

=
(s − t − 1)

(
(s + t)r − (s − t)r)

2
+

(s − 1)
(
(s + t)r + (s − t)r)

2
− (s2 − t2)

=
(2s − t − 2)(s + t)r + t(s − t)r

2
− (s2 − t2).

3.2. When 2 ∤ t

For convenience, we put

x′ := 2r−2sr + tr, y′ := 2r−2sr − tr, z′ := 2st . (7)
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Since x′, y′, z′ > 0 and gcd(x′, y′, z′) = 1, we see that s > r
√

4 t/2 and gcd(s, t) = 1. Note
that x′ > y′ > z′ when r ≥ 3. When r = 2, we assume that y′ = z > z′ = y.

Since (s + t)x′ − (s − t)y′ = (2r−2sr−1 − tr−1)z′ > 0, we have (s + t)x′ ≡ (s − t)y′

(mod z′) and (s + t)x′ > (s − t)y′. In a similar way, we know that all the elements of the
(0-)Apéry set are given as in Table 2.

Table 2. Ap0(x
′, y′, z′) when 2 ∤ t.

(0, 0) · · · (t − 1, 0) (t, 0) · · · · · · (s + t − 1, 0)
...

...
...

...
(0, t − 1) · · · (t − 1, t − 1) (t, t − 1) · · · · · · (s + t − 1, t − 1)
(0, t) · · · (t − 1, t)

...
...

...
...

(0, s − 1) · · · (t − 1, s − 1)

Therefore, the sequence {ℓy′ (mod z′)}z′−1
ℓ=0 can be arranged as follows.

[Step 1]
After the row of the longer term

(0, X), (1, X), . . . , (s − 1, X) (0 ≤ X ≤ s − t − 1)

with length (s − t), by increasing by (s − t) in the vertical direction, we move to the row

(0, X + s − t), (1, X + s − t), . . .

because (s + t)x′ ≡ (s − t)y′ (mod z′). If it is still in the longer term, we repeat
[Step 2]
If it reaches the shorter term

(0, X′), (1, X′), . . . , (s − t − 1, X′) (s − t ≤ X′ ≤ s − 1)

with length t, by decreasing by (t) in the vertical direction, we move to the row

(0, X′ − t), (1, X′ − t), . . .

because ty′ + tx′ = 2r−1srt ≡ 0 (mod z′). If it is still in the shorter term, we repeat [Step
2]. Otherwise, we apply [Step 1]. In fact, after the point (t − 1, t), one moves back to (0, 0).

Since gcd(s, t) = 1, all the points inside the area in Table 2 appear in the sequence
{ℓy′ (mod z′)}z′−1

ℓ=0 just once. Indeed, this sequence is equivalent to the sequence {ℓ
(mod z′)}z′−1

ℓ=0 .
Compare the elements at (t − 1, s − 1) and (s + t − 1, t − 1), which take possible

maximal values. Since

(s + t − 1)y′ + (t − 1)x′ −
(
(t − 1)y′ + (s − 1)x′

)
= 2st(2r−3sr−1 − tr−1) + tr+1 > 0,

we find that the element at (s + t − 1, t − 1) is the largest in the Apéry set. By Lemma 1 (1),
we have

g
(
x′, y′, z′

)
= (s + t − 1)y′ + (t − 1)x′ − z′

= (s + t − 1)(2r−2sr − tr) + (t − 1)(2r−2sr + tr)− 2s t

= 2r−2(s + 2t − 2)sr − s · tr − 2st.

4. p > 0

We shall show the following.
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Theorem 2. If s ̸≡ t (mod 2), then for a non-negative integer p with p ≤ ⌊t/(s − t)⌋,

gp

(
(s + t)r + (s − t)r

2
,
(s + t)r − (s − t)r

2
, s2 − t2

)
=

(
(p + 2)s − (p + 1)t − 2

)
(s + t)r +

(
ps − (p − 1)t

)
(s − t)r

2
− (s2 − t2).

If 2 ∤ t, then for a non-negative integer p with p ≤ ⌊(s − t)/t⌋,

gp(2r−2sr + tr, 2r−2sr − tr, 2st)

= 2r−2(s + (p + 2)t − 2
)
sr + (pt − s)tr − 2st.

4.1. When s ̸≡ t (mod 2)
4.1.1. p = 1

All elements of Ap1(A) are arranged in the form of shifting elements of Ap0(A) whose
remainders modulo z are equal. Assume that s < 2t now (otherwise, the arrangement of
the elements in the Apéry set is very complicated and requires separate discussions so that
the Frobenius number cannot be given in the general closed explicit formula, as mentioned
later in the general p case). See Table 3. Since (s− t)y+ (s− t)x ≡ 0 (mod z), each value at
(Y, X) is equivalent to the value at (Y + s − t, X + s − t). In addition, by sy ≡ tx (mod z),
the elements of the first t rows in Ap0(A) are shifted by (Y, X) → (Y + s − t, X + s − t)
(in the lower-right direction) as the elements of Ap1(A). However, as the column width
of the element in the first (s − t) rows is s, if it is transferred as it is, there will be a part
that protrudes sideways, and such a part is located below the lower-left area of Ap0(A)
(this position is reasonable because sy ≡ tx (mod z)). Finally, all elements other than the
elements in the first t rows move directly to the side of the area of Ap0(A) in the upper-right
(this position is also reasonable because sy ≡ tx (mod z)). From this arrangement, Ap1(A)
also forms a complete residue system modulo z.

Table 3. Ap1(x, y, z) when s ̸≡ t (mod 2).
(s, 0) · · · (2s − t − 1, 0)

...
...

(s, s − t − 1) · · · (2s − t − 1, s − t − 1)
(s − t, s − t) · · · (2s − 2t − 1, s − t) · · · (s − 1, s − t)

...
...

(s − t, 2s − 2t − 1) · · · (s − 1, 2s − 2t − 1)

...
...

(s − t, s − 1) · · · (2s − 2t − 1, s − 1)
(0, s) · · · (s − t − 1, s)

...
...

(0, 2s − t − 1) · · · (s − t − 1, 2s − t − 1)

Now we shall show that each element has at least two different representations. For
the (s − t)× (s − t) area at the bottom-left of Table 3, by

ty − sx = z
⌊(r−1)/2⌋

∑
j=0

(
r − 1

2j

)
sr−2j−1t2j,

we have for 0 ≤ Y ≤ s − t − 1 and 0 ≤ X ≤ s − t − 1

0z + Yy + (X + s)x =

(⌊(r−1)/2⌋

∑
j=0

(
r − 1

2j

)
sr−2j−1t2j

)
z + (Y + t)y + Xx.
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For the (s − t)× (s − t) area at the top-right of Table 3, by (5), we have for 0 ≤ Y ≤
s − t − 1 and 0 ≤ X ≤ s − t − 1

0z + (Y + s)y + Xx =

(
t
⌊r/2⌋

∑
j=1

(
r − 1
2j − 1

)
sr−2jt2j−2

)
z + Yy + (X + t)x.

For the middle area of Ap1(A), by (6), we have for 0 ≤ Y ≤ s − 1 and 0 ≤ X ≤ s − 1

0z + (Y + s − t)y + (X + s − t)x = (s + t)r−1z + Yy + Xx.

There are four candidates at

(s − t − 1, 2s − t − 1), (s − 1, 2s − 2t − 1), (2s − 2t − 1, s − 1), (2s − t − 1, s − t − 1)

to take the largest value in Ap1(A). Since tx > ty, the first one and the third one are larger
than the second one and the fourth one, respectively. Since (s − t)x > (s − t)y, the first one
is bigger than the third one. Hence, by Lemmas 1 (1)

g1(x, y, z)

= (s − t − 1)y + (2s − t − 1)x − z

=
(3s − 2t − 2)(s + t)r + s(s − t)r

2
− (s2 − t2) .

4.1.2. p ≥ 2

When p ≥ 2, it continues until p ≤ ⌊t/(s − t)⌋, the area of Ap1(A) moves to the
area of Ap2(A), which moves to the area of Ap3(A), and so on, in the correspondence
relation modulo (z). Table 4 shows the areas of the App(A) (p = 0, 1, 2, 3) for the case where
3 ≤ ⌊t/(s − t)⌋ < 4. In Table 4, the area of Ap0(A) is marked as 0 (including 0a and 0b); that
of Ap1(A) is marked as 1 (including 1c and 1d) with 1a and 1b; that of Ap2(A) is marked as
2 (including 2e and 2 f ) with 2a, 2b, 2c, and 2d; and that of Ap3(A) is marked as 3 with 3a, 3b,
3c, 3d, 3e, and 3 f . The areas having the same residue modulo (z) are determined as

0a ⇒ 1a ⇒2a ⇒ 3a,

0b ⇒ 1b ⇒2b ⇒ 3b,

1c ⇒2c ⇒ 3c,

1d ⇒2d ⇒ 3d,

2e ⇒ 3e,

2 f ⇒ 3 f ,

and the main parts are as

0 (excluding 0a and 0b) ⇒ 1 (including 1a and 1b),

1 (excluding 1c and 1d) ⇒ 2 (including 2e and 2 f ),

2 (excluding 2e and 2 f ) ⇒ 3.

That is, the elements of the area of the lower-left stair portions in App(A) correspond to the
elements of the area of the upper-right stair portion in App+1(A) and are aligned from the
upper-right row to the lower-left. The elements of the area of the upper-right stair portion in
App(A) correspond to the elements of the area of the lower-left stair portion in App+1(A),
respectively, and line up in the upper-right direction from the lowest-left column. The
elements of the area of App(A) in the center portion, except for the (s − t)× (s − t) area in
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the lower-left and the (s − t)× (s − t) area in the upper-right, correspond to the elements
of the area of App+1(A) in the lower-right diagonal direction.

Table 4. App(x, y, z) (p = 0, 1, 2, 3) when s ̸≡ t (mod 2).

0 0b 1a 2c 3e

1 1d 2b 3a

2 2 f 3d

0a 1c 2e 3

1b 2a 3c

2d 3b

3 f

More generally and more precisely, for 1 ≤ l ≤ p, each element of the l-th (s− t)× (s−
t) block from the left in the area of the lower-left stair portions in App(A) is expressed by

((l − 1)s − (l − 1)t + i, (p − l + 1)s − (p − l)t + j)

(0 ≤ i ≤ s − t − 1, 0 ≤ j ≤ s − t − 1), (8)

and for 1 ≤ l′ ≤ p, each element of the l′-th (s − t)× (s − t) block from the right in the area
of the upper-right stair portions in App′(A) is expressed by

((p′ − l′ + 1)s − (p′ − l′)t + i, (l′ − 1)s − (l′ − 1)t + j)

(0 ≤ i ≤ s − t − 1, 0 ≤ j ≤ s − t − 1). (9)

Then, by sy ≡ tx (mod z), we have the congruent relation for p′ = p + 1 and l′ =
p′ − l + 1 = p − l + 2(

(l − 1)s − (l − 1)t + i
)
y +

(
(p − l + 1)s − (p − l)t + j

)
x

≡
(
(p′ − l′ + 1)s − (p′ − l′)t + i

)
y +

(
(l′ − 1)s − (l′ − 1)t + j

)
x (mod z),

as well as for p = p′ + 1 and l = p − l′ + 1 = p′ − l′ + 2.
For simplicity, denote by (Z, Y, X) the value of Zz + Yy + Xx. Each element of the

leftmost (s− t)× (s− t) area of App(A) (p ≥ 1) has exactly (p+ 1) representations, because(
0, 0, ps − (p − 1)t

)
=
(

js + (j − 1)t, jt − (j − 1)s, (p − j)s − (p − j)t
)

(j = 1, 2, . . . , p).

Note that ps ≤ (p + 1)t since p ≤ ⌊t/(s − t)⌋.
Each element of the second from the left (s − t)× (s − t) area of App(A) (p ≥ 2) has

exactly (p + 1) representations, because(
0, s − t, (p − 1)s − (p − 2)t

)
=
(
s + t, 0, (p − 2)s − (p − 3)t

)
=
(

js + (j − 1)t, (j − 1)t − (j − 2)s, (p − j − 1)s − (p − j − 1)t
)
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(j = 1, 2, . . . , p − 1).

Each element of the third from the left (s − t)× (s − t) area of App(A) (p ≥ 3) has
exactly (p + 1) representations, because(

0, 2s − 2t, (p − 2)s − (p − 3)t
)
=
(
s + t, s − t, (p − 3)s − (p − 4)t

)
=
(
2s + 2t, 0, (p − 4)s − (p − 5)t

)
=
(

js + (j − 1)t, (j − 2)t − (j − 3)s, (p − j − 2)s − (p − j − 2)t
)

(j = 1, 2, . . . , p − 2).

In general, each element of the l-th (1 ≤ l ≤ ⌊t/(s − t)⌋) from the left (s − t)× (s − t)
area of App(A) (p ≥ l) has exactly (p + 1) representations, because(

0, (l − 1)s − (l − 1)t, (p − l + 1)s − (p − l)t
)

=
(
i(s + t), (l − i − 1)(s − t), (p − l − i + 1)s − (p − l − i)t

)
(i = 1, 2, . . . , l − 1)

=
(

js + (j − 1)t, (j − l + 1)t − (j − l)s, (p − l − j + 1)(s − t)
)

(j = 1, 2, . . . , p − l + 1).

Similarly, each element of the l′-th (1 ≤ l′ ≤ ⌊t/(s − t)⌋) from the top-right (s − t)×
(s − t) area of App(A) (p ≥ l′) has exactly (p + 1) representations, because(

0, (p − l′ + 1)s − (p − l′)t, (l′ − 1)s − (l′ − 1)t
)

=
(
i(s + t), (p − l′ − i + 1)s − (p − l′ − i)t, (l′ − i − 1)(s − t)

)
(i = 1, 2, . . . , l′ − 1)

=
(
(j − 1)s + jt, (p − l′ − j + 1)(s − t), (j − l′ + 1)t − (j − l′)s

)
(j = 1, 2, . . . , p − l′ + 1).

Concerning the central portion of App(A), it is easy to see that each element is ex-
pressed by(

0, p(s − t) + i, p(s − t) + j
)

(0 ≤ i ≤ s − t − 1, 0 ≤ j ≤ pt − (p − 1)s − 1;

s − t ≤ i ≤ pt − (p − 1)s − 1, 0 ≤ j ≤ s − t − 1), (10)

and all elements have exactly (p + 1) representations, because(
0, p(s − t), p(s − t)

)
=
(

j(s + t), (p − j)(s − t), (p − j)(s − t)
)

(j = 1, 2, . . . , p).

Finally, the candidates to take the largest value in App(A) are clearly scattered in the
lower right corners:(

0, l(s − t)− 1, (p + 2 − l)s − (p + 1 − l)t − 1
)

(l = 1, 2, . . . , p),(
0, (p + 1)(s − t)− 1, s − 1

)
,
(
0, s − 1, (p + 1)(s − t)− 1

)
,(

0, (p + 2 − l′)s − (p + 1 − l′)t − 1, l′(s − t)− 1
)

(l′ = 1, 2, . . . , p).

By comparing these values, we can find that
(
0, s− t− 1, (p+ 1)s− pt− 1

)
is the largest.

Hence, by Lemma 1 (1)

gp(x, y, z)

= (s − t − 1)y +
(
(p + 1)s − pt − 1

)
x − z
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=

(
(p + 2)s − (p + 1)t − 2

)
(s + t)r +

(
ps − (p − 1)t

)
(s − t)r

2
− (s2 − t2).

In addition, Theorem 2 does not hold for p > ⌊t/(s − t)⌋. As can be seen from the
example in Table 4, the elements of the central area of Ap4(A) corresponding to the elements
of the central area of Ap3(A) are not all left, and there will be elements corresponding
to another location. Due to the deviation, the place where the maximum value is taken
also changes from (0, s − t − 1, (p + 1)s − pt − 1) in App(A) for p > ⌊t/(s − t)⌋. In the
case of the example in Table 5, for p = 4, the elements in the area of the stair part on both
sides still regularly move to the opposite side, but in the main central part, some surplus
elements move to the lower-left (3i ⇒ 4i) and some to the upper-right (3k ⇒ 4k). In this
case, in general, (0, 2s − 2t − 1, (p + 1)s − pt − 1) takes the largest value. It is as shown in
Table 5. At p = 5, the place where the largest value is taken becomes more complicated
since the corresponding residue part is further displaced.

Table 5. App(x, y, z) (p = 4) when s ̸≡ t (mod 2).

0 0b 1a 2c 3e 4k

1 1d 2b 3a 4c

2 2 f 3d 4b

3h 3i
4 f

0a 1c 2e 3k
0⃝ 4h

1b 2a 3c 4e
1⃝

2d 3b 4a
2⃝

3 f 4d
3⃝ 4⃝

4i

In the table, n⃝ denotes the position of the largest element in Apn(A). Note that the
area 3h (and so 4h) does not exist if t/(s − t) is an integer.

4.2. When 2 ∤ t

When p ≥ 1, the situation is somewhat similar to that of the case where s ̸≡ t (mod 2),
but the roles of z′ = 2st and z = s2 − t2 are interchanged. Namely, the roles of (s − t) and t
are interchanged. Therefore, the calculation is not so similar.

Table 6 shows the case where 3 < ⌊(s − t)/t⌋ < 4. The numbers 0, 1, 2, 3 indicate the
area of App(A) for p = 0, 1, 2, 3.
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Table 6. App(x
′, y′, z′) (p = 0, 1, 2, 3) when 2 ∤ t.

0 1 2 3
0⃝

1 2 3
1⃝

2 3
2⃝

3
3⃝

1 2 3

2 3

3

For simplicity, denote γY,X = Yy′ + Xx′ by (Y, X). More generally and more precisely,
for 1 ≤ l ≤ p, each element of the l-th t × t block from the left in the area of the lower-left
stair portions in App(A) is expressed by(

(l − 1)t + i, s + (p − l)t + j
)
(0 ≤ i ≤ t − 1, 0 ≤ j ≤ t − 1), (11)

and for 1 ≤ l′ ≤ p, each element of the l′-th t × t block from the right in the area of the
upper-right stair portions in App′(A) is expressed by(

s + (p′ − l′ + 1)t + i, (l′ − 1)t + j
)
(0 ≤ i ≤ t − 1, 0 ≤ j ≤ t − 1). (12)

Concerning the central portion of App(A), each element is expressed by(
pt + i, pt + j

)
(0 ≤ i ≤ t − 1, 0 ≤ j ≤ s − pt − 1;

t ≤ i ≤ s − (p − 1)t − 1, 0 ≤ j ≤ t − 1). (13)

All the lower-right elements of the (t× t) square areas and the central area are candidates
for the largest value of App(A). Furthermore, by comparison, we can see that the position
at
(
s + t − 1, (p + 1)t − 1

)
takes the largest value, which is at the bottom-right of the central

area, and in Table 6, the position is shown by p⃝ (p = 0, 1, 2, 3). Hence, by Lemma 1 (1)

gp(x′, y′, z′)

= (s + t − 1)y′ +
(
(p + 1)t − 1

)
x′ − z′

= 2r−2(s + (p + 2)t − 2
)
sr + (pt − s)tr − 2st.

5. Sylvester Number (Genus)

We can use Table 4 to obtain an explicit form of the genus (Sylvester number). First,
let s ̸≡ t (mod 2). For a non-negative integer p, by the representation of each element in
Equations (8)–(10), we have

∑
w∈App(A)

w

=
p

∑
l=1

s−t−1

∑
i=0

s−t−1

∑
j=0

(
((l − 1)s − (l − 1)t + i)y

+ ((p − l + 1)s − (p − l)t + j)x
)
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+
p

∑
l=1

s−t−1

∑
i=0

s−t−1

∑
j=0

(
((p − l + 1)s − (p − l)t + i)y

+ ((l − 1)s − (l − 1)t + j)x
)

+
s−t−1

∑
i=0

pt−(p−1)s−1

∑
j=0

(
(p(s − t) + i)y + (p(s − t) + j)x

)
+

pt−(p−1)s−1

∑
i=s−t

s−t−1

∑
j=0

(
(p(s − t) + i)y + (p(s − t) + j)x

)
=

(s − t)(s + t)r

2

(
s2 + st − t2 − s − t + p(s − t)(s + 3t)− p2(s − t)2

)
.

By Lemma 1 (2) we have

np(x, y, z) =
1
z ∑

w∈App(A)

w − z − 1
2

=
(s + t)r−1

2

(
s2 + st − t2 − s − t + p(s − t)(s + 3t)− p2(s − t)2

)
− s2 − t2 − 1

2
.

Next, consider the case where 2 ∤ t. For a non-negative integer p, by the representation
of each element in Equations (11)–(13), we have

∑
w∈App(A)

w

=
p

∑
l=1

t−1

∑
i=0

t−1

∑
j=0

(
((l − 1)t + i)y′

+ (s + (p − l)t + j)x′
)

+
p

∑
l=1

t−1

∑
i=0

t−1

∑
j=0

(
(s + (p − l + 1)t + i)y′

+ ((l − 1)t + j)x′
)

+
t−1

∑
i=0

s−pt−1

∑
j=0

(
(pt + i)y′ + (pt + j)x′

)
+

s−(p−1)t−1

∑
i=t

t−1

∑
j=0

(
(pt + i)y′ + (pt + j)x′

)
= st

(
2r−2sr(s + 2t − 2)− tr+1 + p · 2r−2sr−1(4s − 3)t − p2 · 2r−2sr−1t2).

By Lemma 1 (2) we have

np(x′, y′, z′) =
1
z′ ∑

w∈App(A)

w − z′ − 1
2

=
1
2
(
2r−2sr(s + 2t − 2)− tr+1 + p · 2r−2sr−1(4s − 3)t − p2 · 2r−2sr−1t2)

− 2st − 1
2

=
1
2

(
2r−2sr(s + 2t − 2)− tr+1 − 2st + 1 + p · 2r−2sr−1(4s − 3)t

−p2 · 2r−2sr−1t2
)

.
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Theorem 3. When s ̸≡ t (mod 2), for a non-negative integer p with p ≤ ⌊t/(s − t)⌋, we have

np

(
(s + t)r + (s − t)r

2
,
(s + t)r − (s − t)r

2
, s2 − t2

)
=

(s + t)r−1

2

(
s2 + st − t2 − s − t + p(s − t)(s + 3t)− p2(s − t)2

)
− s2 − t2 − 1

2
.

When 2 ∤ t, for a non-negative integer p with p ≤ ⌊(s − t)/t⌋, we have

np(2r−2sr + tr, 2r−2sr − tr, 2st)

=
1
2

(
2r−2sr(s + 2t − 2)− tr+1 − 2st + 1 + p · 2r−2sr−1(4s − 3)t

−p2 · 2r−2sr−1t2
)

.

6. Examples

When r = 2 in Theorems 2 and 3, the result appears in [34].
When r = 3 and (s, t) = (8, 7), by applying the first formula of Theorem 2, for 0 ≤

p ≤ 7 = ⌊7/(8 − 7)⌋ we have

gp(x, y, z) = gp(25313, 25312, 15)

= 0y + (p + 7)x − z = 25313p + 177176.

In fact,

{gp(25313, 25312, 15)}7
p=0 = 177176, 202489, 227802, 253115, 278428, 303741, 329054, 354367.

However, when p = 8, this formula gives 379680, which does not match the real value
379679. By applying the first formula of Theorem 3, we have for 0 ≤ p ≤ 7

np(25313, 25312, 15) =
188986 + 97875p − 3375p2

2
.

In fact,

{np(25313, 25312, 15)}7
p=0 = 94493, 141743, 185618, 226118, 263243, 296993, 327368, 354368.

When r = 3 and (s, t) = (14, 3), we can apply the second formula of Theorem 2.
For 0 ≤ p ≤ 3 = ⌊(14 − 3)/3⌋ we have

gp(x′, y′, z′) = gp(5515, 5461, 84)

= 16y′ + (3p + 2)x′ − z′ = 16545p + 98322 .

In fact,
{gp(5515, 5461, 84)}3

p=0 = 98322, 114867, 131412, 147957 .

By applying the second formula of Theorem 3, we have for 0 ≤ p ≤ 3

np(5515, 5461, 84) =
98620 + 64680p − 3528p2

2
.

In fact,
{np(5515, 5461, 84)}3

p=0 = 49310, 79886, 106934, 130454 .
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7. Final Comments

In the case of two variables, there are general explicit formulas for the Frobenius and
Sylvester numbers. Even if the classic p = 0 is such a situation, the case when p > 0 is
even more difficult. In this paper, we succeeded in providing closed explicit formulas
with a smaller non-negative integer p. If the value of p becomes larger, as is shown in the
tables, the regularity is broken, so these numbers can only be found in separate arguments.
It is clear that it is very difficult to give a general closed explicit formula for all non-
negative integers p. For more than three variables, general closed explicit formulas for all
non-negative integers p have not yet been discovered in any particular case.

Diophantine equations of the type x2 + y2 = zr (r ≥ 2) seem to be more popular.
Their solutions can also be parameterized. However, the situation becomes much more
complicated, and much more detailed discussion is needed. In addition, if the value r is
different, the situation of the Apéry set is different, so we cannot discuss the general r.

8. Conclusions

Pythagorean triples are positive integer solutions to the most fundamental equations
among the many Diophantine equations and have been studied by many researchers for a
very long time.

On the other hand, the linear Diophantine problem of Frobenius is a very familiar
problem that is also encountered in topics in everyday life. This paper becomes very
meaningful in that it combines such familiar topics. Since there are a huge number of
Diophantine equations, it is hoped that by applying the method in this paper, it will be
possible to connect even more Diophantine equations and the linear Diophantine problem
of Frobenius in the future.
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