Declining Trends in Blood Pressure Levels and Prevalence of Hypertention in Atomic Bomb Survivors in Nagasaki, Japan, 1971-1991

Y. Honda, H. Nakashima and T. Katayama
The Devision of Cardiology, Nagasaki Citizens Hospital

Abstract

The annual trends in blood pressure levels and prevalence of hypertension classified by JNC-5 were investigated. This survey was conducted retrospectively in a large cohort of Nagasaki atomic bomb survivors (78, 323 persons in 1971) over 20 years. In the age-sex specific groups from the 30 's to the 90 's, the levels of mean SBP decreased in the latter 10 years compared to the former 10 years except in males in the 30 's and the mean DBP decreased except in both sexes in the 30's. The annual trends in age-sex specific mean SBP and DBP were observed in a significant downward fashion and the most conspicuous depletion was shown at the age 80 's in males, 8.3 mmHg per 10 years for SBP and 3.0 mmHg per 10 years for DBP. The prevalence of high blood pressure has decreased. The depletion was most striking in the severe (stage 3) and very severe (stage 4) groups of JNC-5 classification. In all sex-age groups, the proportion of stage 3 decreased to the level below one-third or even one quarter compared to the maximum rate in the study period. The depletion of the stage 4 group was most conspicuous, for example, from $\mathbf{3} \%$ in 1975 to 0.38% in 1989 in the 80 's male group.

Introduction

Numerous investigations have revealed an increased risk of stroke, congestive heart failure and ischemic heart disease in elderly hypertensive persons. ${ }^{122)}$ Furthermore, active treatment for hypertension has reduced mortality and morbidity in hypertensive subjects. ${ }^{3)^{4)}}$ A substantial proportion of adults suffered from hypertension and the progressive increase in blood pressure with age is widely noticed in Japan as well as in Western countries. ${ }^{5 \text { (7) }}$ Utilizing WHO criteria (SBP $\geqq 160 \mathrm{mmHg}$ and/or DBP \geqq 95 mmHg), approximately 40% of persons aged 65 years or older have this condition. ${ }^{8)}$ The proportion of aged people is now increasing repidly in Japan and the persons aged 65 years or more will be 20% of all Japanese population in the year of 2000 and 25% in 2020. Therefore, preventive measures and treatment for hypertension are now becoming more important. From clinical and public viewpoint, it is also essential to apprehend the changes in
blood pressure levels and the prevalence rate of hypertension over the past year by sex and age. The purpose of this study is to investigate the age- and sex-specific trends in mean systolic and diastolic blood pressure and prevalence of high blood pressure during the past 20 year (April 1971-March 1991) in Nagasaki atomic bomb survivors.

Subjects and Methods

The subjects were approximately 78,000 atomic bomb survivors (78,323 persons in 1971 and 63,165 persons in 1991) registered at the Scientific Date Center of Atomic Bomb Disaster, Nagasaki University, and their offsprings selected randomly. Each subject was requested to visit the A-bomb Casualty Council Medical Center twice a year for medical examination and approximately 38% of the subjects complied. Consequently, the total number of blood pressure measurements was $1,833,264$ (male: 641,590, female: $1,191,674$) in the entire study period. Annual change in number of cohorts is shown in Table 1. A gradual reduction is observed because of the sum of deaths and emigrants from Nagasaki City exceeded that of new entry and transfer from other districts every year. The blood pressure was measured at the right arm in the sitting position with a mercury sphygmomanometer.

Results

The 20-year study period was divided into 2 terms, April 1971 to March 1981 and April 1981 to March 1991. The mean systolic and diastolic blood pressures in each term are shown by age and sex in Fig. 1.

In males and females, an increase of mean SBP with age was evident until at least 80 's in both terms. In the 1st term, the systolic pressure in males consistently rose from 126 mmHg in the 30 's to the maximum level of 153 mmHg in the highest age group of the 90 's. In females, the rising was from 118 mmHg in the 30 's to the maximum value

153 mmHg in the 80 's. Compared to the 1 st term, the systolic pressure in the latter term was low in all age groups except in males in the 30 's. The magnitude of decline was larger for the older age groups than for the
younger age groups. The maximum reduction was 8.1 mmHg in males in the $70^{\prime} \mathrm{s}$ and 7.5 mmHg in females in the 60's (Fig. 2).

DBP changes with age were somewhat different from

Males
(Total No of BP measurements 649,200)

Females
(Total No of BP measurements $1,203,500$)

※ P<0.05 ※ ※ P<0.01
Fig. 1 Mean systolic and diastolic blood pressures by sex and age group

Fig. 2 BP changes between the 1st and 2nd terms

Males

Regression coefficient 1975~90

age	SBP	DBP
40	-0.163	-0.043
50	$-0.343^{* *}$	-0.113
60	$-0.538^{* *}$	$-0.181^{* *}$
70	$-0.718^{* *}$	$-0.237^{* *}$
80	$-0.829^{* *}$	$-0.298^{* *}$
P 0.05		${ }^{* *} \mathrm{P}<0.01$

Females

Regression coefficient 1975~90
Regression coefficient 1975~90

age	SBP	DBP
40	-0.566^{*}	-0.214^{*}
50	$-0.482^{* *}$	-0.147^{*}
60	$-0.644^{* *}$	$-0.180^{* *}$
70	$-0.791^{* *}$	$-0.239^{* *}$
80	$-0.488^{* *}$	$-0.189^{* *}$

Fig. 3 Mean systolic and diastolic blood pressures by sex and age group
those of systolic pressure. The peak of diastolic pressure was seen in somewhat younger groups. In males, the highest pressure was shown in the 50 's and the 60's in both terms. In females, the peak values were obtained in the 50 's and the 80 's in both terms. The magnitude of diastolic pressure depletion in the 2nd term compared to the 1st term also revealed a consistent acceleration with age. However, the degree of acceleration was generally smaller than the systolic pressure. The maximum decline of 3.2 mmHg was observed in males in the 80 's (Fig. 2).

Age-specific mean SBP and DBP by sex are shown in Fig. 3. The trend analysis revealed a slight decline in SBP and a more trivial decline in DBP in both sexes in age groups of $40,50,60,70$ and 80 years over the past 15 years (from 1975 to 1990). However, even apparent increases were noted in some age groups of both sexes between 1971 to 1975. The regression coefficients for the trend in SBP and DBP for both sexes during the period of 1975 to 1990 are shown at the bottom of Fig. 3. In females, all trends for SBP and DBP in each age group were observed in a
significant downward fashion ($p<0.05$ and $p<0.01$). The most striking depletion was shown at age of 70 , 7.9 mmHg per 10 years for SBP 2.4 mmHg per 10 year for DBP. In males, the SBP and DBP also decreased significantly in the age groups of 50 years or more except DBP at age 50 , and the grade of changes in systolic and diastolic pressures became larger with advancing age ; the maximum of 8.3 mmHg SBP depletion per 10 year and 3.0 mmHg DBP depletion at age 80 .

The annual proportion of the subjects with SBP \geqq 160 mmHg which was subdivided into $160-180 \mathrm{mmHg}$ and $185-219 \mathrm{mmHg}$ over the 20 -year study period is presented in Fig. 4-a. The prevalence was exclusively higher in males than in females each year during the 20 years of follow up period in the groups of the 40 's, 50 's and 60 's. In the group of the 40 's in males, the prevalence of moderately high blood pressure ($160-184 \mathrm{mmHg}$) increased from 6.3% in 1971 to 10.6% in 1977 followed by gradual and consistent depletion to 4.6% in 1986, and thereafter the depletion turned to a plateau of 4.5% in 1989. Among the groups of

Fig. 4-a Prevalence of systolic hypertension

Table 1. Annual change in number of cohort

Year	Survivors	New regist	Deaths	Emigrants
1971	78,323	3,628	1,039	1,823
1972	79,123	2,623	1,084	1,410
1973	79,287	2,455	1,070	1,148
1974	79,578	4,131	1,186	1,566
1975	81,196	2,946	1,173	1,848
1976	78,358	3,593	1,166	1,192
1977	79,553	1,256	1,133	1,127
1978	78,537	1,297	1,140	1,280
1979	77,202	1,304	1,172	1,095
1980	74,043	1,188	1,225	1,276
1981	73,608	1,162	1,267	856
1982	72,390	912	1,192	764
1983	71,437	1,008	1,152	914
1984	70,456	1,087	1,217	933
1985	69,364	847	1,120	960
1986	68,130	67,033	626	1,203
1987	65,721	523	1,209	715
1988	64,434	521	1,220	723
1989	63,165	563	1,212	589
1990				577
1991				568

Table 2 Classification of blood pressure in adults aged 18 years and older
Classification of Blood Pressure for Adults Aged 18 Years and Older

Category	Systolic, mm Hg	Diastolic, mm Hg
Normal	<130	<85
High normal	$130-139$	$85-89$
Hypertension		
Stage 1 (mild)	$140-159$	$90-99$
Stage 2 (moderate)	$160-179$	$100-109$
Stage 3 (severe)	$180-209$	$110-119$
Stage 4 (very severe)	$\geqq 210$	$\geqq 120$

Fig. 5 Prevalence trends of blood pressure at each stage according to the classification by JNC5
\star decrease below a half of the maximum prevalence
$\star \star$ decrease below one-third of the maximum prevalence
$\star \star \star$ decrease below one quarter of the maximum prevalence
the 50 's and 60 's, the prevalence gradually decreased throughout the study period except in the initial few years. In females, the same tendency was observed. In summary, the annual prevalence of high systolic blood preassure decreased year by year during he past 10 to 15 years and now it is about a half compared to the maximum value in the group of the 40 's and even less than a half in the 50 's and 60's in both sexes. The trend of prevalence of high DBP
was also shown demonstrating a similar pattern to SBP although the magnitude of depletion was smaller (Fig. 4-b).

Moreover, the subjects were categorized into 6 groups according to the classification of blood pressure for adults by the 5th report of the Joint National Committee (JNC 5) shown in Table 2.9) The trends of prevalence for each group by age and sex are demonstrated in Figs. 5 and

Fig. 6 Prevalence trends of very severe hypertension (stage 4)

pressure levels. Although the reason remains to be elucidated, we are inclined to attribute it partially to the deaths of more persons in advanced age groups with high diastolic pressure because of the high mortality rate of stroke and cardiovascular disease.

Epidemiologic investigations have indicated that the prevalence of hypertension has decreased and mean systolic and/or diastolic blood pressure has revealed downward trend. ${ }^{7)^{12)}}$ In our results, the decline in the mean systolic pressure in the latter 10 years compared to the initial 10 years was evident. The mean systolic blood pressure and the prevalence rate of hypertension in every age group started to decrease during 1973 to 1977 and continued thereafter to decrease slowly but steadily in both sexes, although the magnitude of decline was small after 1986. A remarkable depletion in the prevalence of moderate hypertension (stage 2), severe hypertension (stage 3) and very severe hypertension (stage 4) as classified by JNC-5 was apparent. Especially, the fact that the proportion of the group of stage 4 (SBP $\geqq 210 \mathrm{mmHg}$ and/or DBP \geqq 120 mmHg) remarkably decreased to the level below 0.5% in 1990 in all age groups of both sexes is much to be emphasized. From these results, the changes in blood pressure levels and prevalence of hypertension are in the preferable direction during the past 15 years in Nagasaki atomic bomb survivors. There are several reports to reveal that the proportion of controlled hypertension has increased. ${ }^{3)}$ Kannel WB et al reported that untreated blood pressure levels in normotensive subjects are not changing over time, that is, only a 1 mmHg decline in mean systolic and diastolic pressure over each 10 year interval was noted. ${ }^{16)}$ Accordingly, it is reasonable to assume the major factors of the decreased mean systolic and diastolic blood preassure and the downward trend of prevalence rate of hypertension in atomic bomb survivors might be (1) the recent more prevalent antihypertensive treatment, (2) prescription of more effective antihypertensive drugs by practicing physicians, and (3) the life style modification such as weight reduction, salt restriction and high physical
activity.
The downward trend of blood pressure in Nagasaki atomic bomb survivors seems to be even more apparent than that in the general population of Japan that was reported in National Nutrition Survey conducted by Nutrition Section, Ministry of Health and Welfare. ${ }^{6)}$ We speculate that the more favorable downward trends in our subjects might be attributed in part to the awakening of individual persons for health and to having more economical advantage to receive medication.
Stroke mortality has been declining remarkably since 1965, and a similar tendency in mortality from ischemic heart disease has been observed since 1970 in Japan. ${ }^{133}{ }^{14}$ A decline in mortality of atomic bomb survivors has been documented by Okajima and Nakamura as "(1) the agespecific death rates by all causes of atomic bomb survivors are lower than those of the controls, and (2) the agespecific death rates by cerebrovascular disease are lower in atomic bomb survivors than in the controls. The latter was subsequently confirmed by Kunihara et al in Hiroshima data. ${ }^{15}{ }^{177}$

In conclusion, the favorable blood pressure trends in a large population of atomic bomb survivors shown in our study might suggest an important impact. The spread of medical treatment for hypertension has resulted in not only the decreased population with hypertension but also improved severity of disease, which might contribute to the recent improved mortality from stroke and cardiovascular disease. From these results, we believe that more vigorous efforts for treatment and education of the hypertensive persons should be continued.

Acknowledgments

This work was supported by the Nagasaki City Office and Nagasaki A-bomb Casualty Council. We thank many doctors and nurses in A-bomb Casualtycouncil Medical Center and we also wish to show our appreciation to Mr. Kondo H in the Scientific Data Center of A-bomb Disaster, Nagasaki University School of Medicine, who managed the database for blood pressure values.

References

1) Kannel WP, McGee L et al. Perspective on Systolic Hypertension : The Framingham Study. Circulation. 1979; 61: 1179-1187
2) Perry HM, Hurry SB et al. Morbidity and Mortality in the Systolic Hypertension in the Elderly Program (SHEP) Pilot Study. Stroke. 1989; 20: 4-13
3) Felsom AR, Blackbure H et al. Improvement in Hypertension Detection and Control From 1973-1974 to 1980-1981: The Minnesota Heart Survey Experience. JAMA. 1981; 19: 916-921
4) Hypertension Detection and Follow-up Program Cooperative Group. Five-Year Findings of the Hypertension Detection and Follow-up Program: Reduction in Mortality of Persons With High Blood Pressure, including Mild Hypertension. JAMA. 1979; 242: 2562-2571
5) Davidson RA, Stewart RB et al. Incidence of Hypertension in an Ambulatory Elderly Population. J Am Geriatr Soc. 1989; 37: 861-866
6) Ueshima H, Okamoto M et al. Declining Trends in Blood Pressure Level and the Prevalence of Hypertension and Changes in Related Factors in Japan. J Chron Dis. 1987; 40: 137-147
7) Dannenberg AL, Leaver PE et al. Progress in the Battle Against Hypertension: Changes in blood Pressure Levels in the United States from 1960 to 1980 Hypertension. 1987; 10:226-233
8) Roberts J, Maurer K. Blood Pressure Levels of Persons 60-74 Years: United States 1971-1974. Vital Health Stat 11. 1977; 203: 1-103
9) The Fifth Report of the Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure (JNC 5). Arch Intern Med. 1993; 153; 154-183
10) Dannenberg AL, Kannel WB et al. Incidence of Hypertension in Framingham study. AJPH. 1988; 78: 676-679
11) Timio M, Bichisao E et al. Age and Blood Pressure Changes : A 20 -year Follow-up Study in Nuns in a Secluded Order. Hypertension. 1988; 12 : 457-461
12) Page LB, Friedlander J. Blood Pressure, Age, and Cultural Change: a Longitudinal Study of Solomon Islands Populations. In: Holan MJ, Steinberg GM, Dumber JB, Hadley EC, eds. Blood Pressure Regulation and Aging. New York: Biochemical Information Corporation. 1986; 11-25
13) Ueshima H, Asakura H et al. Mortalit Trends in Stroke, Blood Pressure, the Treatment RAte of Hypertension between 1956 and 1980 in Japan. Slowdown of the Decreasing Rate of Stroke Mortality of Men aged 30s and 40s. Jpn J Public Health. 1984; 31:589-599
14) Ueshima H, Asakura H et al. Declining Trends in Coronary Heart Disease and Changes in Coronary Risk Factors in Japan, 1956-1980. Presented in the 10th Scientific Meeting of the International Epidemiological Association, Vancouver, Canada 19-25 August 1984 (Abstract No. 72)
15) Kurihara M, Ohtaki M et al. Mortality statistics among A-bomb survivors in Hiroshima Prefecture, 1968-1972. J Radiat Res. 1981; 22: 456-471
16) Kannel WB Dannenbert AL et al. Secular Blood Pressure Trends in Normotensive Persons: The Framingham Study. Am Heart J. 1993; 125: 1154-1158
17) Okajima S, Mine M, Nakamura T. Mortality of Registered A-Bomb Survivors in Ngasaki, Japan, 1970-1984. Radiat Res. 1985; 103 : 419-431
