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 Accumulating evidence has indicated the presence of 

HTLV-I quasispecies in infected individuals. To elucidate 

their biological consequences, we amplified the whole Tax 

open reading frame (ORF) of HTLV-I proviruses by nested PCR 

from six infected individuals, including three HAM/TSP 

patients, and a cloned HTLV-I DNA, pMT2, and the products 
were introduced into an expression vector. The potential for 

transcriptional transactivation of protein products of inde-

pendent 20-39 tax clones derived from each sample was 
evaluated by transfecting into pA18G-BHK-21 cells containing 

the HTLV-I LTR-driven lacZ gene. While all of 30 clones derived 

from pMT2 gave positive results, significant proportions, ranged 

between 16.0 and 35.0%, of the tax clones from the infected indiv 

iduals were functionally defective. The functional loss of these 

tax clones was confirmed by chloramphenicol acetyltransferase 

(CAT) assay in cells cotransfected with an HTLV-I LTR-CAT 
reporter. DNA sequence analysis revealed that the defective 

clones contained at least one nonsynonymous nucleotide 

substitutions from the consensus sequences of the individual. 

These findings strongly suggested that the accumulation of 

HTLV-I proviruses with defective tax was a common feature 

among infected individuals. Since the Tax protein is indis-

pensable for viral replication, these defective viruses were 

likely to be generated in individuals after the event of 

infection. It is conceivable that the quasispecies plays a key 

role in the latency of HTLV-I infection and possibly in 

HTLV-I-related pathogenesis.
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Introduction 

 Human T-cell lymphotropic virus type I (HTLV-I) is 

a causative agent of adult T-cell leukemia (ATL)'"2', 
HTLV-I-associated myelopathy/tropical spastic paraparesis 

(HAM/TSP) 3,4', and other chronic inflammatory disorders 
of various organs"". HTLV-I transmits horizontally via 

sexual contact and blood transfusion as well as vertically 
through breastfeeding". The virus persists as a proviral 
DNA in T cells of infected individuals and after a long 

latency a minor population of carriers develops HTLV-I-
associated diseases',". The molecular mechanisms involved 

in exerting the pathogenicity of the virus are not yet fully 
understood. 

 HTLV-I is a very old virus which has been conserved 
among human populations in some geographical regions 
for a long time". In contrast to other RNA viruses 

including human immunodeficiency virus (HIV), 
HTLV-I is thought to be structurally stable because 

little divergence in the nucleotide sequence has been 
identified among HTLV-I isolates derived from different 

geographical regions throughout the worlds'. The nucleotide 
diversity of HTLV-I among isolates is estimated to be 

about 20 times smaller than that of other RNA viruses 
such as the influenza A virus and HIT". However, 

recent studies have shown some intrastrain variability 
in the pX region of the HTLV-I proviral genome, 

indicating the presence of the HTLV-I quasispecies in 
an infected individual' ,12,13'. The pX region encodes a 

transcriptional transactivator, Tax, which activates its 
own viral promoter in the LTR sequence and is thought 

to be indispensable for viral replication","). In addition, 
Tax has the potential to upregulate the expression of 

various cellular genes involving cell proliferation, 
including interleukin-2 (IL2)16,"', IL2 receptor- a 18.'9,2°' 

IL621>, GM-CSF22,231, and c-fos24,25'. Moreover, Tax is known 
to be a dominant target antigenic molecule of cytotoxic 

T lymphocytes (CTL) against HTLV-I in ViVo 21,21'. The 
Tax protein is therefore considered to be a key molecule 
for viral replication, persistency, and the pathogenicity
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of HTLV-I. 

 In the present study, in order to elucidate the biological 
consequences of the HTLV-I quasispecies in infected in 

dividuals, we evaluated the potential for transactivation 
on HTLV-I LTR of the Tax protein encoded by random 

plasmid clones of the Tax open reading frame (ORF) derived 
from HTLV-I proviral DNA of six infected individuals. 
The results indicate that proviruses with functionally 

defective tax genes commonly accumulate in vivo.

MATERIALS AND METHODS 

DNA preparations. 

 The experimental protocol was approved by the Ethics 
Review Committee for Human Experimentation at our 
institution and an informed consent was obtained from 

all subjects. Heparinized peripheral mononuclear cells 

(PBMC) and/or bronchoalveolar lavage cells (BALC) 
were obtained from three HAM/TSP patients and HTLV-I 
carriers. The PBMCs were isolated by Ficoll-Conray 

gradient centrifugation (Daiichi Pharmacecutica, Tokyo, 
Japan), as described"'. Approximately 10' cells were 
lysed in 0.5 ml of lysing buffer (150 mM NaCI, 10 mM 
Tris-HCI [pH8], 10 mM EDTA, 0.5% SDS) and treated 

with proteinase K (100,u g/ml) for 2 h at 50 °C. After 

phenol/chroloform extraction and ethanol precipitation, 
high molecular weight DNA was resuspended in 10 mM 

Tris (pH8), 1 mM EDTA.

Plasmids and cells 

 The expression vector pCG has been described and 
characterized elsewhere". The pCHL4 contained the 

chloramphenicol acetyltransferase (CAT) gene driven 
by a Smal-BglI 1,630 by fragment of HTLV-I LTR30' 

We used the pA18G-BHK-21 cell line (a kind gift from 
Dr. Astier-Gin), a Syrian hamster kidney cell line stably 

transfected with a plasmid vector containing the lacZ 

gene under the control of HTLV-I LTR promoter, whose 
expression was inducible by the Tax protein"). Both 
the cell lines used (pA18-BHK-21 and A293T) were 
maintained in Dulbecco's modified Eagle's medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS).

Amplification and cloning of HTLV-I tax DNA. 

 The whole Tax-ORF of the HTLV-I provirus was am 

plified by nested PCR from 0.5 a g of DNA in a 50 a 1 
cocktail containing 10 mM Tris-HC1 (pH7.5), 50 mM 
KCl, 1.5 MM MgCl2, 0-01% gelatin, 0.25 mM dNTPs, 
1 u M each of primers, and 2.6 units of High - Fidelity

Taq Polymerase (Boehringer Mannheim). The primers 

used were : Tax 11 (5'-GATAGCAAACCGTCAAGCACAG-
3'; positions 7158 to 7179) and Tax6 (5'-TCCTGAACT 

GTCTCCACGCTTT-3'; positions 8650 to 8629) for the 
first amplification, and Tax 15-XB (5'-TACTCTAGAAC 
CATGGCCCACTTCCCAGG-3 ; positions 7324 to 7337) 

and Tax30-Bam (5'-CTGAGGATCAGAGCCTTAGTCT-3'; 

positions 8409 to 8397) for the second amplification. 
Xbal and BamHI restriction sites (underlined) were in-
cluded in Tax 15-XB and Tax30-Barn primers, respec-
tively, to allow subsequent subcloning into pCG. PCR 

was performed in a Thermal Cycler (Biometra) for 30 
cycles: denaturation at 94 °C for 30 sec (2 min on the 

first cycle), annealing at 60 °C for 30 sec, and extension 
at 72 °C for 70 sec (7 min on the last cycle). For the 

nested PCR, 1/10 volume of the first-step PCR product 

purified by Superec II column (Takara Co. Tokyo) was 
further amplified for 27 cycles using the inner primer 

pair. The thermal cycle program was almost the same 
as that used for the first PCR except the annealing temp 

erature was 58 °C for the first 6 cycles and 63 °C for 
the following 21 cycles. The nested PCR product was 

purified on a 1.0% agarose gel (Seakem GTG), di-

gested with Xbal and BamHI, and ligated into the ex-
pression plasmid pCG. After transformation of E. Coli 
(DI-15a), the recombinant clones were randomly picked 
up and the plasmid DNA were miniprepared by the 
NaOH/SDS method.

Transfection. 

 Transient transfection was performed by the lipofection 
method"). Plasmid DNA mixed with 5 p 1 of Lipofectamine 

(GIBCO/BRL) was added to subconfluent cells cultured 
in 5 ml of serum-free DMEM in a 10 cm-diameter dish. 

After incubation for 8 h at 37 °C, 5 ml of DMEM con-
taining 20% FBS was added, and at 24 h, the medium 

was replaced with DMEM containing 10% FBS. The 
cells were used for the following assays 48 h after 
transfection.

Colorimetric assay. 

 The pA18G-BHK-21 cells transfected with pCG-tax 

(0.2,u g) were fixed with 25 % glutaraldehyde and washed 
three times with PBS. The cells were then mixed with 

0.1% X-gal solution and incubated overnight at 37 °C. 
When stained cells were observed in 10 view-fields 

under an inverse microscope (magnification: 100x), 
the sample scored positive for transactivation via 

HTLV-I LTR. Reproducibility of the negative result 
was confirmed by repetitive experiments.



Chrolamphenicol acetyltransferase (CA T) assay. 

 A293T cells co-transfected with pCG-tax (0.2,u g) and 

pCHL4 (1 u g) were harvested and lysed 48 h after 
transfection. Cell extracts (50 p 1) containing 10 u g of 
cellular proteins were mixed with 55 u 1 of 1 M Tris-
HCl (pH7.8), 5p 1 of ['"C]-chloramphenicol (0.05 Ci/ml), 

and 20,a 1 of acetyl coenzyme A. After incubation for 4 h 

at 37 ', chloramphenicol and its acetylated derivatives 
were analyzed by silica-gel thin-layer chromatography 
and autoradiography. The radioactivity of the spots 

was quantified using an image analyzer (BAS 2000; 
Fuji Film, Tokyo, Japan). Efficiency of each transfection 
was monitored by co-transfecting pRSV-lacZ.

DNA sequencing. 

 The whole Tax ORF (1,059 bp) in the plasmid DNA was 

sequenced by the dideoxy chain termination method 

(Thermo Sequenase core sequencing kit, Amersham ) 
using the two kinds of 5' Texas Red-labeled primers 
corresponding to the flanking vector sequences (HSV-tk 
sequence; 5'-GCCCAGCGCCTTGTAGAA-3', and rabbit-

13 -globin sequence; 5'-TAGCGAAAAAGAAAGAAC-3'), 
and analyzed on an automated sequencer (SQ5500 ; 

Hitachi Co, Tokyo, Japan). A sequence comparison was 
carried out using the DDBJ database (J02029).

RESULTS 

HTL V-I proviruses with the functionally defective tax 

gene in infected individuals. 

 We analyzed six HTLV-I-infected individuals including 

three patients with HAM/TSP (I.T., N.O., and D.K.) and 
three healthy carriers (N.M., N.Y., and D.E.). In consistency 
with previous findings'"", the HAM/TSP patients had 

relatively higher serum antibody titers and viral loads 

(data not shown). The whole Tax ORF was amplified 
from genomic DNA samples of the infected individuals 

as well as plasmid DNA containing a cloned HTLV-I, 

pMT235'. The amplified products were inserted into an 
expression plasmid and random 20-39 tax clones were 
obtained from each product. In order to define the biological 
consequence of in vivo HTLV-I quasispecies, the function 

of each of the tax clones was evaluated by transfection 
and a successive colorimetric assay in pA 18G-BHK-21 

cells with the lacZ gene under the control of the HTLV-I 
LTR promoter. Transfection of the wild-type tax successfully 
induced lacZ expression, while the expression plasmid 

without tax insert did not gave any stained cell (Fig. 1). 
When stained cells were observed in 10 view-fields under 

an inverse microscope, the sample scored positive for 
transactivation via HTLV-I LTR. As shown in Table 1,

Fig. 1 Transcriptional transactivation of HTLV-I LTR by Tax. The function of each of the tax 
clones was evaluated by transfection and a successive colorimetric assay in pA 18G-BHK-21 cells 
with the lacZ gene under the control of the HTLV-I LTR promoter. While the expression plasmid 
without tax insert (A) gave no stained cell, transfection of the wild-type tax (B) successfully in-
duced lacZ expression,



Table 1. Proportion of nonfunctional tax clones in HAM/TSP patients and healthy carriers 

                                No. of No. of clones No. of clones Percentage of     Disease Subjects total clones competent for defective for defective clones                                        transactivation transactivation (%) 

              pMT2 30 30 0 0.0 

                 I.T. 39 31 8 20.5 

   HAM/TSP N.O. 25 21 4 16.0 

                 D.A. 25 21 4 16.0 

                 average 17.5 

                 N.M. 38 31 7 18.4 

 Healthy Carriers N.Y. 20 13 7 35.0 

                  D.H. 25 17 7 32.0 

                  average 29.4

all of 30 clones derived from pMT2 gave positive results. 

On the other hand, significant proportions, ranged between 
16 and 35%, of the tax clones from the infected individuals 

were functionally defective. Frequencies of the defective 
tax among three healthy carriers, 18.4, 35.0, and 32.0% 

(average: 29.4%), were higher than those among the 
HAM/TSP patients, 20.5, 16.0, and 16.0% (average: 

17.5%), although the differences between the two were 
statistically insignificant. All the negative results were 

reproducible in repetitive colorimetric assays and were 
further confirmed by CAT assay in A293T cells

                                                  9-gal assay %conversion relative CAT activity 

pCG-BL (-) 8.3 1.0 

pCG-Wt (+) 97.9 11.8 

  2P10 (-) 8.9 1.1 

                                          (-) 3.1 0.4  2B16 `~ 

  3P07 (-) 7.7 0.9 

  3B07 (-) 8.2 1.0 

 3B21 a (+) 93.1 11.2 

  3P19 (-) 7.2 0.9 

  2P14 (+) 98.5 11.9 

 2805 (+) 98.4 11.9 

  2P08 (+) 98.0 11.8 

  3P05 - (+) 98.3 11.9

Fig. 2 Loss of transactivation for the HTLV-I LTR-CAT promoter 
in Tax proteins encoded by in vivo-derived mutants. One 
microgram of the reporter plasmid, pCHL4, was transfected 
together with 0.2p g of the indicated tax clone into A293T 
cells, and CAT activity in the cell extract was analyzed. The 
vectors without tax insert, pCG-BL, and with wild-type tax, 

pCG-Wt, were used as negative and positive controls, respec-
tively. All or nothing results of the colorimetric assay in 

pA 18G-BHK-21 cells are indicated as (+) or (- ). The rela-
tive CAT activity was determined as a ratio of the % conver-
sion between each tax clone and pCG-BL.

cotransfected with a reporter plasmid, pCHL4. Only a 
representative CAT assay is shown in Fig. 2. The clones 

(2P10, 2B16, 3P07, 3B07, and 3P19) defective in the 
colorimetric assay exhibited significant CAT activity, 
but its level (% conversion: 3.1-8.9%) was equivalent 

to that in the cells transfected with the vector without 
tax insert (8.3%). In contrast, functionally competent 

clones (3B21, 2P 14, 2B05, 2P08, and 3P05) were capable 
of converting more than 93.1 % of chrolamphenicol into 

its acetylated forms. Additional CAT assays for the 
remaining tax clones reproduced exclusively the results in 

the colorimetric assay. Expression levels of g -galactosidase 
encoded by the co-transfected pRSV-lacZ were roughly 

equivalent among each transfection (data not shown), 
excluding the possibility that low transfection efficiency 

affected the results of the reporter assay.

Functional loss of in vivo-derived tax clones as a conse-

quence of nonsynonymous nucleotide substitution. 

 To analyze the sequence variation leading to functional 

loss of the tax gene of HTLV-I proviruses in infected 
individuals, 39 tax clones derived from PBMC and

Table 2. Correlation between functional loss and nonsynonymous 
nucleotide stubstitution in tax clones from an HAM/TSP patient 

                                   No. of clones No. of clones 

  Transactivation No. of with without                     t
otal clones nonsynonymous nonsynonymous 

                              substitution substitution 

    (+) 31 12 19 

    (-) 8 8 0



BALC of a HAM patient (I.T.) were subjected to the 

sequence analysis. Sequence comparison found two 
consensus sequences (Fig. 3) . One (consensus A) was 

identical to the reference, ATKI?6), while the other 

(consensus B) was different at three nucleotide positions 
from ATKI. Among the 39 clones analyzed, 5 and 9 

exactly shared the sequence with consensus A and B, 
respectively, but the remaining 25 contained one to 

four nucleotide substitutions. The distribution of the 41 
substitutions identified in these 25 clones was random and 

encompassed the whole region of the tax gene. About 
three quarters of the substitutions (31/41) resulted in 

amino acid changes (nonsynonymous substitution), 
and a half of the clones (20/39) had one or more 
nonsynonymous substitutions. 

 All the defective tax clones contained one or more n 
onsynonymous nucleotide substitutions (Table 2). Among 

the 20 clones with nonsynonymous nucleotide substitutions,

8 (40%) were functionally defective. As shown in Fig. 4, 
amino acid substitutions possibly causing the functional 

loss of the Tax protein are random and distributed throughout 
the Tax sequence. In one clones (2P01), nonsynonymous 

nucleotide substitution resulted in a termination codon 
at near the amino-terminal portion of the Tax. A single 

amino acid substitution found in a clone (G 14R in 2P 10) 
is likely to be solely responsible for the functional 
loss. The G 14R substitution was also found in the 

other two defective clones (2P1 1 and 21301). Although 
the localization was random, leucine-to-proline (L / P ) 

and serine-to-proline (S/P) substitutions were frequent. 
Interestingly, all the nonsynonymous nucleotide substi-

tutions (T-C conversion) resulting in the proline residue 
were always duplicated in the defective tax clones 

(2P11, 2B08, 2B16, and 2B17). In contrast, each of 
such substitutions found in three functionally competent 
clones was at only a single position (data not shown).

                                                                                                  COLOR. 

position 7324 8382 FREQ ASSAY 
ATKI TG-G--T-------ATCTTA-T-TG--G--C---TTTA-AGCC-CA--ACCA--T---ATTC-T-A-T--TTAGA-
clone 

CONS.A ------------------- --------------------------------------------------- 5 (+) 
CONS.B ------------------------------------------ G-------G----------T-------------- 9 (+) 

2P13 ---------- ----------------------------------------C------ -------- 1 (+) 
2P14 -------------------G-------------------------------------------------------- 1 (+) 

2P16 -------------------------------------C-------------------------------------- 1 (+) 
2P17 ------------------------------------------------G------------------ --------------------------- 1 

2B03 -----------------------------------------------------------------------C---- 1 (+) 
2B04 ---------------------------A------------------------------G---------------G- 1 (+) 
2B06 ------------------C--------------------------------------------------------- 1 (+) 

2B18 -------------------------------------------------T-------------------------- 1 (+) 
2P03 ----------------------------------------- GG------- G---------- T----------- A-- 1 (+) 

2P04 ------------------------------------------G-------G----------T--------C----- 1 (+) 
2P05 ------------------------------------------G-------G----------T----------C--- 1 (+) 

2P06 --------------------------------------- GA-G-------G--------C-T-------------- 1 (+) 
2P09 ------------------------------------------ G--G----G----------T---- -------------- 1 

2B07 ------------------------------------------ G-T-----G----------T -------- 1 (+) 
2B12 ------C--------- -----------------G-------G----------T---G---------- 1 (+) 
2B13 ---A---------- G--------------------------- G------- G---------- T-------------- 1 (+) 

2B20 ------------------------------T-----------G-------G----------T-------------- 1 (+) 
2P01 A---------------T----------------------------------------------------------- 1 (-) 

2P02 -------------------------------------G----G-------G----------T-C------------ 1 (-) 
2P10 -A--------------- -------------------G-------G--- T-------------- 1 (-) 

2P11 -C--------------- C----------------- C------ G------- GG--------- T------------- 1 (-) 
2B01 -A----------------------A-----------------G-------G----------T-------------- .1 (-) 

2B08 ---------------C-------C------------------G-------G----------T-------------- 1 (-) 
2B16 --------------------- C--------------------------------------------- C-------- 1 (-) 
2B17 --------------------- C-------------- C----- G------- G--------- Cr-------------- 1 (-)

Fig. 3 Nucleotide sequence variation among in vivo-derived HTLV-I tax clones. The whole Tax-ORF 
amplified from a sample DNA was ligated into pCG, and randomly selected plasmid clones were 
sequenced. Nucleotide sequences of 39 tax clones derived from an HTLV-I-infected individuals, I.T.are 
aligned in comparison with the reference ATK135'. Dots indicate sequences identical to the reference. 
Italicized letters indicate nonsynonymous substitutions, and those resulting in the translational terminal 
codon, in particular, are underlined. The dominant sequences in the individual are indicated as consensus 
sequences (CONS.). The number of clones identical to a given nucleotide sequence (FREQ) and the 
positive (+) or negative (-) result for the colorimetric assay (COLOR. ASSAY) in transfected 
pA 18G-BHK-21 cells are shown on the right.



        1 amino acids position 353 AMINO ACID CHANGES 

ATK1 F--G-------LRS--------S-----LG---LV-G-----------L----SF--S------------

CONS.A ---------------------- ------------------ -------- ATK1 
CONS.B ------------------------------------------------V--------------------- L241V. 

2P01 Y-----------* F7Y, R74* 
2P10 ---R ------------------------------------------------------------- G14R. 

2P11 ---R---------P-------------------P---------------A-------------------- G14R, S77P, L167P, T243A. 
2B01 ---R-------------------------E---------------------------------------- G14R, G148E. 
2B08 -----------P----------------P----------------------------------------- L71P, L146P. 

2B16 ---------------------- P---------------------------------- P------------ S113P, S293P. 
2B17 ----------------------P-----------A------------------P---------------- S113P, V171A, S273P. 

2P02 ------------------------------------R-----------------S--------------- G180R, F278S 

Fig. 4 Predicted amino acid changes in non-functional Tax proteins encoded by in vivo-derived mutants. Predicted amino acid 

sequences of non-functional Tax are aligned in comparison with the reference ATK136'. In the alignment, the one-letter code 

is used. Dots indicate identity to the reference sequences, and asterisks indicate in-phase termination codons. The positions of 

amino acid substitutions in each protein are indicated on the right.

Discussion 

 The present study has strongly suggested that a 
significant proportion of the tax gene of HTLV-I provi 

ruses in infected individuals is functionally defective. 
DNA sequencing of the tax clones from an individual 
revealed that the defective clones contained at least 

one nonsynonymous nucleotide substitution from the 
consensus sequences of the individual. The Tax protein 

activates viral transcription through interactions with 
the cellular transcription factor, the cyclic AMP response 

element (CRE)-binding protein (CREB), and its coactivator, 
CREB binding protein (CBP)37'38). Tax is thought to stabilize 

CREB-DNA binding"' and also to serve as a bridging 
molecule to recruit CBP to the viral promoter401. Previous 

in vitro mutagenesis studies have revealed that nonfunctional 
missense mutants involve residues located throughout 

the linear tax sequence"". This strongly suggests that 
subtle alterations in the protein structure have dramatic 

effects on Tax function by affecting some aspects of the 
complex interaction with cellular proteins. The random 
localization of amino acid substitution in in vivo-derived 

nonfunctional tax clones identified in the present study 
is consistent with this notion. Interestingly, duplicated T-C 

conversions resulting in a proline residue were frequently 
found in these missense tax mutants. Proline is one of 

aliphatic amino acids but is distinct from other members 
because of its aliphatic side chain bonded to both the 

nitrogen and the a -carbon atom"'. The resulting cyclic 
structure markedly influences protein architecture. It is 

conceivable that duplicated proline substitutions dra-
matically change the secondary or tertiary structure of 

Tax and affects its interaction with cellular proteins. 
 Because Tax is thought to be indispensable for HTLV-I 

replication in infected cells, the provirus encoding non-
functional Tax should be transcriptionally silent and

should therefore no longer be infectious. Accordingly, 

it is likely that such a defective virus is generated in 
individuals after the event of infection. Reverse tran-

scription, an error-prone process, presumably leads to 
the introduction of inactivating mutations during viral 

replication. Recently, Saito et al."' have demonstrated 
the sequence variation of the LTR region of HTLV-I 

proviruses in an infected individual at a similarly high 
level as the tax gene. Our preliminary study has also 
revealed an equivalent or higher level of variation in 

the env region (A.M., unpublished results). If a mutation 
occurs at an equivalent frequency throughout the 

whole HTLV-I genome, a significant number of mu-
tants involving regions other than the tax region would 

also be replication defective. Moreover, the presence of 

proviruses lacking a long gag-pol region in ATL cells 
has been well documented44.45,46>. With the frequency of 

proviruses with nonfunctional tax ranging from 16-35%, 
the majority of HTLV-I proviruses in infected individuals 
might be defective. In the case of another human retrovirus, 

HIV, a recent report has revealed that a significant 

population of the tat gene encoding a HIV transactivator 
in infected individuals is defective and has estimated 
that only about 0.005% of integrated HIV proviruses 

could produce the infectious virus, but that such a 
minute fraction is sufficient to maintain a persistent 

infection 41). Presumably, this is also the case in HTLV-I, 
and the parental or conserved strain (the consensus strain 

in an individual) maintains persistency in vivo. In contrast 
to the intrastrain variability, little divergence in nucleotide 

sequence has been identified among HTLV-I isolates, 
even among those derived from different geographical 
regions in the world 1,41). This discrepancy could be well 

explained if the replication-competent strain with a 
highly conserved sequence alone is inheritable. 

 In comparison with healthy carriers, HAM / TSP



patients revealed a smaller proportion of the defective 
tax clone. Although mechanisms generating the HTLV-I 

quasispecies in vivo remain to be elucidated, it is possible 
that some factors with roles in determining the outcome 
of HTLV-I infection might affect the tax quasispecies. 

One of the candidates for such a factor is the level of 
CTL responses in HTLV-I-infected individuals, since Tax 

is an immunodominant protein in those responses","'. 
While CTL is sometimes detectable against other viral 

proteins such as Gag, Pol, and Env, in most cases Tax 
is the only protein recognized by CTL in the PBMC. 

Multiple CTL peptide epitopes have been identified in 
the linear sequence of Tax. An anti-Tax CTL response 
is likely to be one of the major limiting factors for 

HTLV-I replication in vivo and may select escape Tax 
variants with altered amino acid sequences in target 

peptides of CTLs. It is conceivable that an accumulation of 
nonfunctional tax in infected individuals is a consequence 

of such a positive selection. Indeed, according to a recent 
report by Niewiesk et al. 12', the ratio of nonsynonymous 

versus synonymous nucleotide substitutions in variant 
tax sequences is consistently higher in healthy carriers 

than in HAM/TSP patients. Low CTL responders would 
develop a high viral load with less sequence diversity, 

and the resulting chronic T cell activation causes tissue 
damages such as that seen in HAM /TSP patients49'. 

More extensive sequence comparison together with 
immunological analyses are under in progress in our 

laboratory to evaluate the proposed role for the CTL 
response in the outcome of HTLV-I infection and the 

quasispecies. 
 A number of literature reports have described the 

involvement of defective or variant viruses in the 
chronic infection or pathogenesis of the wild-type vi-

ruses through a modulation of their replication and 
immune responses in vivo. The defective genome of some 

RNA viruses interfering with the replication of wild-type 
viruses are well known as defective interfering (DI) 

particles50'. The involvement of defective C-type retroviruses 
in the immunosuppression of infected animals has also 

been well documented5'•52.53' More recent studies have 
revealed that naturally occurring variant sequences of 

hepatitis B virus or HIV efficiently interfere with the 
recognition of wild-type peptides by CTL, resulting in the 

protection of infected cells from CTL attacks54•55' It would 
be worthwhile to elucidate the role of the accumulated 

defective HTLV-I in the latency and pathogenicity of 
the virus. Tax is a multifunctional protein and considered 

to play an important role in activating various cellular 

genes involving the cell growth and inflammatory cell 
responses. This process involves activation of the particular 
transcriptional factors including NF-kB19,20,Z1) and serum 

response factor (SRF) 25', which are distinct from the

CREB/CBP pathway used for the HTLV-I LTR activation. 

It would be of particular interest to examine whether 
the in vivo-derived Tax variants lacking the potential 

to activate the viral promoter preserve the function in 
the transcriptional activation of cellular genes via the 

NF-kB or SRF pathways.
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